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Abstract: In recent years, the need for sophisticated human in vitro models for integrative biology has
motivated the development of organ-on-a-chip platforms. Organ-on-a-chip devices are engineered
to mimic the mechanical, biochemical and physiological properties of human organs; however,
there are many important considerations when selecting or designing an appropriate device for
investigating a specific scientific question. Building microfluidic Brain-on-a-Chip (BoC) models
from the ground-up will allow for research questions to be answered more thoroughly in the brain
research field, but the design of these devices requires several choices to be made throughout the
design development phase. These considerations include the cell types, extracellular matrix (ECM)
material(s), and perfusion/flow considerations. Choices made early in the design cycle will dictate
the limitations of the device and influence the end-point results such as the permeability of the
endothelial cell monolayer, and the expression of cell type-specific markers. To better understand
why the engineering aspects of a microfluidic BoC need to be influenced by the desired biological
environment, recent progress in microfluidic BoC technology is compared. This review focuses on
perfusable blood–brain barrier (BBB) and neurovascular unit (NVU) models with discussions about
the chip architecture, the ECM used, and how they relate to the in vivo human brain. With increased
knowledge on how to make informed choices when selecting or designing BoC models, the scientific
community will benefit from shorter development phases and platforms curated for their application.

Keywords: brain-on-a-chip; microfluidics; extracellular matrix; basement membrane; endothelial
cells; astrocytes; pericytes; neurons

1. Introduction

In recent years, progress toward understanding human brain physiology and disease
mechanisms has been advanced using animal models, and in vitro studies. The most
common animal models are rodents, which are either studied as a whole animal or through
use of primary cells harvested for in vitro studies. Mouse models are particularly appealing
due to their low cost and the repertoire of genetically engineered strains for studying
disease [1]. While there are efforts to “humanize” mouse models to make them more
relevant to study human disease, a major limitation is that rodents do not naturally develop
diseases seen in humans, and thus they are unable to recapitulate the complex series of
events leading to pathologies such as Alzheimer’s disease. The human and murine brain
also differ considerably in the proportion of gray:white matter, regional organization and
gene expression [2]. The species-based limitations that accompany animal models have led
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to the widespread use of human-based in vitro models for exploring disease mechanisms
and therapeutic development.

Human brain tissues can be modeled in vitro using organoids, where human induced
pluripotent stem cells (iPSCs) or embryonic cells are differentiated into neural cell types that
mimic the brain physiology in a 3D structure [3]. Neural organoids have become common
tools for researching brain development and disease, with a focus on either localized
regions or the complex interactions that occur between brain regions [4]. Unfortunately,
using organoids for late-stage disease modeling is limited by nutrient and oxygen diffusion
into the 3D structure, and incorporating functional vasculature into organoids is an ongoing
area of exploration [5]. These limitations have influenced in vitro models to move towards
a more controlled microenvironment such as brain-on-chip (BoC) models, where brain
cells can be patterned to resemble the brain architecture and nutrients can be circulated
throughout a microfluidic channel to mimic vascularization.

Transitioning from a relatively simple 2D monolayer culture—supported by widely
available liquid handling and imaging systems—to a 3D microfluidic BoC model is more
labor-intensive and costly. However, 3D models are capable of recapitulating important
aspects of physiology, including flow over endothelial cells, and the space for neuronal
and astrocytic projections. Further, this development can be made with relatively common
materials, as the ability to pattern complex structures using soft lithography enables
microenvironments to be compatible with a flow system by incorporating channels and
ports into elastomeric materials such as polydimethylsiloxane (PDMS) polymers [6].

Recent advances in the development of microfluidic BoC devices and biological
research have shed light on the importance of shear stress exerted on endothelial cells,
substrate stiffness, and cell-to-cell contact for inducing the physiology that is observed
in vivo. For example, BoC models have shown that shear stress exerted against brain
microvascular endothelial cells (BMECs) plays a role in upregulating adherens and tight
junction proteins [7], and modulating expression of blood–brain barrier (BBB) markers such
as claudin-5 and glucose transporter 1 (GLUT-1) [8]. Several independent lines of evidence
suggest that shear stress does not change BMEC morphology [9,10], but rather tightens
the barrier; most often evaluated using trans-endothelial electrical resistance (TEER) and
permeability assays [11]. Additionally, recent 2D in vitro studies have demonstrated that
substrate stiffness plays a role in BMEC tight junction integrity as well as astrocyte and
neuron morphology [12–14]. Transwell assays have also demonstrated the importance
of cell-to-cell contact on BBB integrity, as several studies have shown that coculture of
BMEC with astrocytes and pericytes can increase TEER and permeability measures [15].
Together, these findings suggest that contextual cues are critical when mimicking complex
microenvironments such as the human brain. Throughout this review, we will outline
recent advances in BoC models, as well as provide an overview of factors to consider when
developing a BoC device (Figure 1).
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neered platform that incorporates flow, requires careful initial consideration. Limitations 
of current models are discussed, so that new developments of BoC devices can aim to 
improve physiological relevance by selecting cell types, ECM, and a microenvironment 
that are similar to the brain in vivo. In this section, we will highlight the main considera-
tions that are needed to build BoC devices, as well as highlight some of the current state-
of-the-art BoC platforms and their limitations. To initiate development of a microfluidic 
BoC platform, the system requirements should be understood. The major initial consider-
ations for BoC modeling include determining the region of interest within the brain and 
the corresponding vascular shear stress in that region. This will influence the BoC geom-
etry and the pump specifications (syringe or peristaltic) needed to incorporate flow into 
the system. To decide on flow rate and BoC dimensions, the appropriate shear stress equa-
tion should be used. For instance, for a rigid, uniform, cylindrical vessel, the shear stress 
(τ) at the vessel wall can be derived from Poisseuille’s law to become: 

τ = 4Q *η/πr3 (1)

where Q is the flow rate, η is the viscosity, and r is the radius of the vessel (Figure 2). 
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2. BoC Development

Advancing from a static 2D well-plate or Transwell experiment to a complex engi-
neered platform that incorporates flow, requires careful initial consideration. Limitations of
current models are discussed, so that new developments of BoC devices can aim to improve
physiological relevance by selecting cell types, ECM, and a microenvironment that are sim-
ilar to the brain in vivo. In this section, we will highlight the main considerations that are
needed to build BoC devices, as well as highlight some of the current state-of-the-art BoC
platforms and their limitations. To initiate development of a microfluidic BoC platform,
the system requirements should be understood. The major initial considerations for BoC
modeling include determining the region of interest within the brain and the corresponding
vascular shear stress in that region. This will influence the BoC geometry and the pump
specifications (syringe or peristaltic) needed to incorporate flow into the system. To decide
on flow rate and BoC dimensions, the appropriate shear stress equation should be used.
For instance, for a rigid, uniform, cylindrical vessel, the shear stress (τ) at the vessel wall
can be derived from Poisseuille’s law to become:

τ = 4Q *η/πr3 (1)

where Q is the flow rate, η is the viscosity, and r is the radius of the vessel (Figure 2).
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For example, to achieve a capillary-like shear stress of 1 dyn/cm2 [16] using a vessel
with a radius of 100 µm, and standard cell media composition (Dulbecco’s Modified
Eagle Medium (DMEM)) supplemented with 10% fetal bovine serum (FBS), which has
a viscosity of ~0.93 mPa*s [17], then an approximate flow rate of 304 µL/hr would be
required. However, if investigations lead to capillary vessel diameter changes, as seen with
pericyte-mediated contractility, then adjusting the flow rate to obtain the desired shear
stress may be needed [18]. To mimic blood flow in the brain, a continuous, unidirectional
flow system is desirable to achieve physiological relevance. However, the concentration of
soluble substances will be diluted as a function of flow rate and, at high flow rates, may fall
below the detection limit of quantitative measures such as enzyme-linked immunosorbent
assay (ELISA). Use of a peristaltic pump to continuously circulate fluid throughout the
system may improve end-point analyses, as analytes would become concentrated in the
circulating media.

During the prototyping stage, microfluidic chips are often fabricated using polydimethyl-
siloxane (PDMS). PDMS is a transparent, biocompatible, oxygen-permeable polymer that can
be easily molded into high resolution geometries [6]. Creating a negative mold pattern is
often performed using photolithography with a UV-sensitive material, patterning the silicon
wafer with high resolution features in the micron range [19]. More recently, lower cost, 3D
printed molds have been used to fabricate geometries in the range of hundreds of microns [20].
Alternative fabrication materials may be desirable, such as thermoplastic or polyester elas-
tomers, if optical clarity or low adsorption is essential, although this will likely increase the
cost per chip and affect the ease of fabrication [21]. Thermoset polymers such as SU-8 and
thermoplastic polymers such as PMMA, polystyrene, and polytetrafluorethylene have also
been used in microfluidic devices with improved solvent resistance, reduced small molecule
adsorption, and improved rigidity compared to PDMS [22]. Teflon microfluidic chips, which
will not adsorb small molecules, have been made using thermal compression [23], and PMMA
chips have been made by thermal compression or laser micromachining. For research use,
PDMS prototypes represent a reasonable compromise between the ease of production and
low cost with performance of the device. The drawbacks of small molecule adsorption can
be overcome with a coating on the PDMS or other postprocessing step. For commercial high
volume manufacturing, the reliability that can be offered by other polymers such as polystyrene
will become more important, and economy of scale justifies the investment in injection molding
of polystyrene chips.

Throughout this review, we will be classifying 2D, 2.5D and 3D BoCs based on
their microfluidic chip architectures. We will term models that have ECs, astrocytes and
pericytes as BBB BoCs and models that include ECs, astrocytes, pericytes and neurons as a
neurovascular unit (NVU) BoCs (Figure 3). Depending on the cell types included in the
model, consideration should be given to the extracellular matrix (ECM), which is a key
component of the brain microenvironment that must be incorporated into BoC models to
recapitulate physiological phenotypes. These considerations will be covered in subsequent
sections, following an overview of the advances and limitations of existing BoC designs.
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Planar cell layers (2D) are amenable to simple fabrication processes and are the
easiest transition from a static 2D model. The design of a 2D microfluidic BoC typically
includes two compartments separated by a permeable membrane permitting cell–cell
interaction, where at least one compartment acts as a flow channel to mimic vascular
blood flow [11,24]. Commonly used membrane materials include polycarbonate (PC),
polyester (PET) and PDMS membranes. In previous 2D BoC microfluidic models, PET and
PC membranes were cut out of Transwell inserts to use in microfluidic BoCs [25]. More
recently, commercially available track-etched PET and PC A4 sheets have been used [26,27].
To bond porous membranes to PDMS to obtain a leak-free channel, spin-coating PDMS [28],
aminosilanization [29] or custom bonding procedures [30] may need to be performed.
Furthermore, porous membranes such as PDMS will need further treatment to achieve the
hydrophilicity required for adherence of ECM coatings [31]. The pore size and thickness of
the porous membrane should be selected based on the application, as contact of astrocytes
and pericytes with the endothelial cell monolayer will influence BBB function [32], thus
larger pore sizes (~3 µm) should be considered to enable contact and increase fidelity to
the native BBB anatomy. Commercially available microfluidic chip options such as the
Emulate platform use a PDMS chip with 7.0 µm pore size in the membrane separating
the channels [33]. Another important consideration in a 2D model is the ECM coating
used on the membrane to mimic the microenvironment of the human brain basement
membrane. Recent studies have explored the effect of ECM composition on endothelial cell
tight junction properties [34], as well as permeability in Transwell inserts [35]. However,
there are limited investigations into ECM coatings appropriate for coculture and tricultures
in 2D environments that incorporate flow. Further exploration into ECM coatings used
for BBB models will strengthen the robustness of 2D BoC models and potentially provide
reliable environments to establish in vivo-like cellular functions and gene expression.

In this review, the term 2.5D model is used to describe endothelial cells forming a flat
2D monolayer around a rectangular channel that contains a 3D matrix [36]. 2.5D models
are often used to recapitulate the architecture of the brain parenchyma by using a parallel
channel design containing a hydrogel in one channel and flow across endothelial cells
in the other channel. This design uses pillars to create distinctions between channels,



Micromachines 2021, 12, 441 6 of 36

so that a hydrogel can be flowed into the channel and cured using thermal gelation,
photocrosslinking or chemical crosslinking methods. A 2.5D design allows brain cells to
migrate towards the endothelium through a hydrogel to provide direct cell-to-cell contact
as an artificial membrane is not required [37]. Having a planar 2.5D model will also
improve imaging, since the media supply is parallel to the cells, compared to underneath
and on top of the cells in 2D BoC models, which increases the working distance from
the microscope focal point and may require imaging through additional layers of PDMS.
Adriani et al. used a 2.5D model to embed primary rat astrocytes and neurons in a
collagen-I hydrogel using microscale trapezoidal PDMS structures that acted as phase-
guides to create a hydrogel network along their flow channel [38]. The commercially
available Mimetas Organoplate® platform also enables astrocytes and pericytes to be
embedded into a collagen-I hydrogel, and endothelial cells to be seeded adjacent to the
gel, and bidirectional flow is achieved using a rocking plate [39]. Yoojin et al. developed
a microfluidic chip with five parallel channels to study BBB dysfunction in Alzheimer’s
disease [40]. The use of collagen-I as a hydrogel has been largely investigated based on its
structural integrity when gelled at a high concentration (>4 mg/mL). However, collagen-I
is not found in the brain microvascular ECM; therefore, there is need for a hydrogel that
can maintain its form while in a gelled state. Lee et al. have used a fibrin-based 2.5D model
that was able to support angiogenic behavior [41]. Moving away from collagen-I-based
2.5D models will enable a more physiologically relevant brain compartment, where further
insights can be gained into the functionality of neurons, mural cells, and glia.

A 3D BoC consists of a 3D matrix completely surrounding a perfusable circular cross-
section of the endothelial cell layer. Several methods can be used to develop BoC with
a circular cross-section, including using a needle as a sacrificial mold within a hydro-
gel [37,42–46] and using gravity-driven pressure to displace the hydrogel, also known as
viscous fingering [47]. Notably, there are recent 3D BoC models that contain immortalized
or primary endothelial cells [42,43,45–48], pericytes [42,45,47] and astrocytes [42,43,46–48],
and some progress is being made in including iPSC-derived cells in 3D BoC devices [44,49].

One of the major challenges with creating 3D BoCs is the ability to select a hydrogel
that is sufficiently mechanically stable to withstand perfusion while also providing a
physiologically relevant ECM for cell growth. As in 2.5D systems, collagen-I is also
commonly used as an ECM that encapsulates either astrocytes or pericytes in a 3D BoC
architecture [42,47,48,50]. A mixed matrix of collagen-I, Matrigel® and hyaluronic acid that
supports astrocyte growth in 3D and endothelial cell growth on the inner lumen has also
been developed [43,46]. Studies on mechanically stable hydrogels other than collagen-I that
can support brain cells are of high interest. For instance, human umbilical vein endothelial
cells (HUVECs) and brain pericytes were successfully cultured in a fibrinogen matrix that
could withstand perfusion for up to 7 days [45].

Notably, all of the previously mentioned 3D BoC models lack neurons. To identify
viable options for hydrogel-based ECM for BoC devices that contain neurons, knowledge
gained from other in vitro modeling fields should be incorporated into BoC models. For
example, there have been advances in angiogenic brain models that use biocompatible
hydrogels to culture combinations of iPSC-derived endothelial cells, astrocytes, pericytes,
microglia, and neurons in 3D [51,52]. In addition, Arulmoli et al. have demonstrated
mechanical compatibility and biocompatibility of a salmon fibrin/hyaluronic acid/laminin
hydrogel that could support iPSC-derived neurons and was in the brain stiffness range [53].
Furthermore, O’Grady et al. developed a gelatin-based, N-cadherin hydrogel that sup-
ported significant outgrowth for cultured neurons compared to conventional biomaterials
such as Matrigel® and had the mechanical stability to form a lumen [54]. To streamline this
research for use in BoC models, an effort should be made to define and report mechanical
properties of hydrogels in development so that mechanical dependencies of brain cells can
become more defined for future development.
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3. Decision Workflow: Factors to Consider When Selecting a Model System

It can be a daunting task to select or design a BoC device to address a specific biological
question. This section aims to guide the selection of an in vitro model best suited for a given
biological question and application. The intention is to eliminate the need for significant
trial and error and allow for a streamlined development or selection of a minimum viable
model (MVM). An MVM can be defined as the required model components that are
essential to answer a biological question. For example, if the goal is to examine the toxicity
of a compound, a 2D monolayer high throughput screen could be an appropriate starting
point. The MVM does not necessarily represent the optimal model, but rather constitutes
the base model with the minimum level of complexity needed to answer the desired
question(s). Additional model complexity can be added to gain further biological insight,
although this often increases both cost and experimental variability [55]. Ideally, the device
should mimic the in vivo microarchitecture and microenvironment as closely as possible
while demonstrating predictability, reproducibility and robustness. A stepwise approach
to increase throughput or enhance physiological relevance can avoid introducing multiple
variables at once.

To ensure confidence in the selection and/or design process, we aim to better inform
the decision-making process by highlighting the benefits, constraints and limitations of
various model components (Figure 4).
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3.1. Biological Question

The first step in selecting a BoC system is to consider the goal of the experiment
and the limitations of different BoC systems (Box 1). For example, BoC platforms of
various designs and complexities have been used for studies on transport across the
blood–brain barrier [39,56], cancer cell and immune cell invasion [57], drug screening [11]
and disease modeling [58,59]. Each application may require a different MVM given the
end-points, timeline and throughput required. Generally, throughput and complexity are
inversely related, with simpler systems selected for high throughput experiments (i.e., drug
screening) and complex systems containing multiple cell types and physiological ECMs for
lower throughput experiments that focus on understanding physiological/pathological
processes. Most microfluidic-based BoC models are not designed for high throughput;
however, models that fall into the 2.5D category or simply eliminate flow can be adjusted
to meet throughput needs. For example, the Mimetas Organoplate® platform simplifies
flow in order to increase its throughput capacity [39].
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Box 1. Factors to consider when selecting a BoC model system.

A. Application

• What is the purpose of the experiment?

◦ Examples:

� Investigate biological processes such as tissue repair or cell migration.
� Investigate cell response to drugs.
� Disease modeling.

B. Endpoints

• What endpoints are needed for the application?

◦ Examples:

� Localization of proteins (Immunocytochemistry).
� Permeability.

• What kind of assays exist for this endpoint?

◦ Example:

� Fluorescein isothiocyanate (FITC)-dextran permeability assay.
� Monocyte adhesion.

• What kind of samples are required for the assay?

◦ Examples:

� Monoculture.
� BBB (EC, pericytes, astrocytes).
� NVU (EC, pericytes, astrocytes, neurons).

• Will there be real time measurements or an endpoint measurement?

C. Throughput

• How many conditions will be tested?
• How many samples are needed for the analysis?

D. Experimental timeline

• How long will the experiments take to get a result?
• How long does it take to establish the cell culture?

Important Note(s):

• Even though PDMS is a common material found in BoC platforms, its drawbacks
include absorption of some proteins and small molecules [60].

• Real time analysis can be carried out with integrated electrochemical sensors [61]
or fluorescence microscopy, among other methods. If this analysis is carried out by
visualization (i.e., real time visualization of barrier function), it is important to select or
design a device with desirable optical properties (i.e., optical transparency, thickness
within the working distance of the microscope that will be used for visualization).

• If the biological question requires dissection of the contributions of individual cell
types, independent access/channels for each cell type are required or different chips
that represent various portions of transport can be utilized [56].
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3.2. Cell-Based Criteria

A major challenge in designing a relevant model for a specific application is choosing
the appropriate cells to form its basis. The first step is determining whether the cells
and their specific origins are required or desired. Brain microvascular endothelial cell
(BMEC) monocultures are suitable for testing toxicity [62] and proliferation [63], but this
model often lacks the cell-to-cell signaling that is required for BMECs to achieve their
full barrier potential [64,65]. Often, when a research question is associated with the brain
microvasculature, a BBB model is used to answer mechanistic [52,66] or transport [67]
related questions. Here, we define the functional unit of a BBB to be a triculture of BMECs
with pericytes and astrocytes, since these supporting cells are critical in maintaining the
highly selective barrier in vivo, through many mechanisms (reviewed in [68]). If neuronal
signaling or crosstalk with the vasculature is a focus of the study, then a neurovascular unit
(NVU) consisting of BMEC, pericytes, astrocytes, and neurons should be used. Differenti-
ation of specific cell types from induced pluripotent stem cells (iPSCs) has been a major
advancement in modeling the human cerebrovasculature in vitro, but several limitations
still exist with these new techniques. In this section, we highlight the main contributions of
each cell type to the defined units and review the advantages and limitations that govern
cell selection options (i.e., immortalized, primary, iPSC-derived).

Brain endothelial cells (BECs/BMECs) line the inner walls of the cerebrovasculature
and establish the highly selective barrier for entry into the brain. Single-cell transcriptomics
has demonstrated that these cells have a gradual phenotypic change along the transition
from artery to capillary to vein [69], but most BoC models aim to recapitulate the capillary,
so brain microvascular endothelial cells (BMECs) will be the focus of this section. When
selecting BMECs for use in a BoC, they should express key markers seen in vivo, including
endothelial cell-specific markers (PECAM-1, VE-cadherin), tight junction markers (claudin-
5, occludin, ZO-1), and key transporters (GLUT1, P-glycoprotein, LRP1, MFSD2A, BCRP),
in addition to their ability to form a confluent monolayer with a tight barrier. Measuring
barrier function is often performed on a Transwell insert, where transepithelial/endothelial
electrical resistance (TEER) measurements can be obtained as a global measure of barrier
integrity. Animal studies suggest that a physiological TEER value of the brain microvascu-
lature is between 1500 and 8000 Ω·cm2 [70,71], compared to peripheral capillary vessels,
which have TEERs of 2–20 Ω·cm2 [72,73].

As for sourcing BMECs, it is well-established that human immortalized and primary
BMECs cannot achieve physiological TEER or permeability values in vitro, even when tricul-
tured with pericytes and astrocytes (reviewed in [74]). Despite this limitation, immortalized cell
lines (HCMEC/D3, TY10, BB10, HMEC-1) and primary human brain microvascular endothe-
lial cells (HBMECs) continue to be used to identify changes in barrier integrity by measuring
relative values before/after a treatment or disruption [40,75–77]. Immortalized cell lines are an
attractive option due to their low cost, ease of use, and their ability to be passaged multiple
times while retaining BBB transporter expression [78,79]. However, their monolayer perme-
ability is much higher than physiological levels, with an average TEER of <40 Ω·cm2 [74],
indicating that there is likely paracellular transport due to immature tight junction formation.
Recent effort has been made to optimize immortalized BMECs by altering their culture condi-
tions to improve barrier functions. For instance, Hinkel et al. have cultured HCMEC/D3s in
static and dynamic conditions, adjusting the cell culture media, adding supplements to the
media, adding ECM coatings to cultureware, and coculturing with astrocytes, but none of these
conditions improved their TEER [80]. This is in agreement with earlier work demonstrating
that coculture of BMEC immortalized cell lines with astrocytes or pericytes did not improve
their TEER [40,75–77]. Another study identified transcriptional differences in HCMEC/D3
compared to primary human BMEC in genes that regulate the immune response, which seem
to be directly related to the immortalization procedures used to create the cell line [81]. Taken
together, these results suggest that immortalized human BMECs are not a suitable model for
investigation of permeability or BBB transport and may not accurately depict a physiological
inflammatory response.
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Primary cells are another option as a source of human BMECs. The main advantages
of primary HBMECs are that they are directly derived from human brain microvessels
(often from temporal lobectomies), have not been altered by immortalization, and express
the majority of the defining BEC markers in vitro [82]. However, the limited availability
of human cerebral tissue makes cell sourcing challenging and introduces between-donor
variabilities. Further, primary HBMECs also do not achieve physiological TEER, even under
various optimized culture conditions [12,34,74]. Another major concern for primary cells is
their dedifferentiation in vitro, which has been well-documented by many groups [81,83].
Human umbilical vein endothelial cells (HUVECs) are another common course of human
endothelial cells for BBB/NVU models, which may acquire some characteristics of BMEC
when in co- or triculture [84]. However, to date these HUVECs have not been shown
to form a tight barrier even in the presence of both astrocytes and pericytes [52,66], and
behave differently than HBMEC in several contexts [85,86].

To achieve an endothelial barrier that recapitulates the in vivo context, the best option
to date is iPSC-derived BMECs [26,44,87–91]. While TEER values within the physiological
range has been achieved by some of these differentiation protocols, a recent paper by Lu
et al. demonstrates that the resulting cells from all protocols lack some key characteristics
of endothelial cells and appear to be more closely related to epithelial cells [92]. Yet, these
cells remain the only BMECs in culture that have both a strong barrier and functional BBB
transporters [93] and will likely continue to be the gold standard until a better protocol
is validated. Maximum barrier maturity with these cell types has taken up to 11 days in
culture following differentiation [94], which will influence the experimental timeline and
design considerations for the BoC model.

Astrocytes—named after their star-shaped morphologies—are the most abundant cell
type in the brain. They play many critical functional roles, including reinforcement of the
BBB [95,96], regulating cerebral blood flow [97,98], responding to inflammation [42,99,100],
maintaining molecular homeostasis through regulating ion and pH balance [98,101], and
supporting neurons by facilitating synaptic stability and plasticity [102,103]. Astrocytes
extend their endfeet to contact and ensheath cerebral vessels [104] and have classically
been considered as essential components in the physical barrier of the BBB. However, a
recent mouse study that removed endfeet from cerebral vessels using a laser found that
the vessels did not become more permeable [105], suggesting that it is their effect over
time on endothelial cells—likely through secreted factors that could be soluble or compo-
nents of ECM [106,107]—that reinforce the BBB. In vitro, astrocyte contact or noncontact
coculture with BMECs from various origins has been shown to increase tight and adherens
junction gene expressions and global permeability measures [94,108–112] further illustrate
that astrocyte crosstalk with endothelial cells is critical for BBB physiology. Given their
established roles in facilitating neurovascular coupling [97,98,113], astrocytes are key com-
ponents in NVU models. There are many nuances in astrocyte classification depending
on function and brain region, which is beyond the scope of this review. Several excellent
reviews have recently been published on astrocytes in physiological and pathological
contexts [68,98,114–117].

To date, most in vitro work with astrocytes has been carried out using mixed glial
cells harvested from early postnatal rodent pups, which become enriched to approximately
95% in astrocytes during culture but do not achieve purity. While many BBB/NVU models
have used this approach [118,119], recent work has highlighted both transcriptional and
functional differences between human and murine astrocytes [120], which limit the capacity
of rodent-based models to suitably mimic human physiology and disease. Therefore, here
we will focus on cells of human origin. To validate the astrocyte identity, the most common
marker is glial fibrillary acidic protein (GFAP), which is the major intermediate filament
protein in astrocytes that is upregulated when they are in a reactive state. However,
GFAP is not expressed in all mature human astrocytes [121,122]; therefore, a panel of
additional astrocyte markers including S100-beta and NDRG2 [120,123] is recommended
to confirm astrocyte identity prior to use. Sources of human astrocytes include commercial
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immortalized (astrocytoma) cell lines [124–126] and primary cells [127–129], as well as a
growing collection of published protocols to generate iPSC-derived astrocytes, [130–133] as
reviewed in [134–136]. Several new differentiation protocols have been published within
the last year, including Gatto et al. who showed that direct differentiation of astrocytes
from fibroblasts retained the age-related transcriptional differences of their donors [137].

The main limitations of culturing astrocytes from any source are purity and reactivity,
as discussed in a review by Guttenplan et al. [123]. While obtaining pure isolates of primary
human astrocytes is now possible due to advances in cell isolation methods [120,138], these
methods are expensive for commercially sourced cells. Differentiation protocols have also
advanced to produce pure astrocyte cultures [138], but these are labor-intensive and can be
costly. If purity is essential and cost is a limitation, one option is to use an immortalized line,
albeit with lower physiological relevance. Another option is to introduce neural precursor
cells into the model, whereby the cells will differentiate within the model itself [139]. In
this case, the result would be a mixed population of cells, which is suitable for a NVU
model, but may limit the ability to identify astrocyte-specific effects. Astrocyte reactivity is
a limitation across the map in vitro, as culture with serum or on stiff substrates will induce
reactivity [123,140,141]. To date, the option to best mimic astrocytes in their quiescent state
is to culture them in a hydrogel in either a 2.5D or 3D model [141–143].

Pericytes are mural cells embedded in the basement membrane of microvasculature.
The cerebrovasculature has significantly higher pericyte coverage than peripheral ves-
sels [64,144], which underscores their functional importance in the brain. Over the last
decade, pericytes have gained considerable attention for their critical role in maintaining
BBB integrity [144,145], as it has also been shown that increases in BBB permeability with
aging can be traced to pericyte loss [146]. In vivo, pericytes guide astrocytic end feet and
mediate their polarization [147], as well as induce specific transporter (Mfsd2a) expres-
sion in BMECs to promote a selective barrier phenotype [148]. The reinforcing effect of
pericytes on in vitro BBB integrity has also been observed by many groups with various
cell sources [37,88,149,150]. The interaction between pericytes and BMEC is likely very
complex, as Yamazaki et al. recently showed that pericyte genotypes can influence BMEC
barrier integrity by altering the secreted ECM [151]. These lines of evidence showcase
the critical interaction among pericytes, astrocytes, and endothelial cells in the BBB. In
addition to their roles in preserving a functional BBB, pericytes regulate cerebral blood
flow and capillary diameter [18,152,153] and are involved in the immune response [42,154],
among other functions (reviewed in [155]). Importantly, the contribution of pericyte dys-
function to the neuropathological features of stroke and Alzheimer’s disease is being
increasingly recognized [156]. Therefore, a BoC model without pericytes will limit insights
into physiological and pathological functionality of the BBB, and effectively the NVU.

A main issue in the use of pericytes in BBB/NVU models is their heterogeneous
natures [157] and the lack of consensus on defining markers of this cell type for use in
culture. Vanlandewijck et al. published an elegant single-cell transcriptomics paper which
defined the zonation differences in mural cells along the murine cerebrovasculature and
compared brain-derived pericytes to those from the lung [69]. They found many differences
between pericytes from the brain and lung, reinforcing the idea of organotypicity in
cells [158]. To confirm brain pericyte identity in vitro, no single marker is sufficient due to
the overlap of markers with other mural cell types, but rather a combination of PDGFRβ,
CD13, CD146, and NG2 expression is recommended [159]. As for cell source options, there
are immortalized, primary, and iPSC-derived options available. Immortalized human brain
pericytes are available from several vendors and have been used in many studies [39,149],
but a new line (HBPC/ci37) recently developed and characterized by Umehara et al. [160]
is another option. Primary human pericytes are also commercially available and are
widely used [42,161,162]. As for iPSC-derived pericytes, the unclear definition of pericytes
has resulted in all recent differentiation protocols being limited to the titles of “pericyte-
like” [163,164] or “mural cells” [52,66], but these cells have been successfully incorporated
into BoC models [37].
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Neurons are often considered as the functional unit of the brain, and many have
argued that without neurons, any given model does not truly represent the brain. Here, we
make the distinction between modeling the BBB and the NVU, whereby the neurons are not
essential for BBB formation, but are indispensable in modeling the NVU. Neurovascular
coupling is the relationship between neurons and other cells comprising the BBB, which
ensures that the highly metabolically active neurons are supported by sufficient oxygen and
nutrients from the bloodstream. Neurons communicate their metabolic demands directly
to endothelial cells or indirectly through astrocytes and pericytes to induce vasodilation
that regionally increases blood flow where required [165]. Other cell types and the ECM
of the NVU can also directly influence neuronal signaling [166]. This complex interplay
is disrupted in many diseases [68], which increases the importance of near-physiological
modeling of the human NVU. In addition to their communication with other cell types
of the NVU, a key feature of neurons is their communication with each other. Neurons
communicate via synaptic transmission, and they are classified into different types based
on the neurotransmitters they secrete (e.g., dopaminergic neurons, glutamatergic neurons,
etc.), as well as their location in the brain (e.g., cerebellar, cortical, hippocampal, etc.).
Neuronal classification is beyond the scope of this review but has been discussed in several
other reviews [167,168] and is an important factor to consider when designing an NVU
model. Ideally, neurons should be derived from the brain region of interest and signal with
the neurotransmitter(s) of interest, relevant to the biological question to be answered.

Similar to the other cell types discussed, significant differences between rodent and hu-
man neurons have been identified in recent years [169]. As for human-derived options, the
neuroblastoma line SH-SY5Y is a relatively cheap and commonly used source of neurons
in vitro, which retain the expression of many neuronal markers and can be further differen-
tiated into more specific neuron classes (reviewed in [170]). These attributes have recently
been leveraged to explore BoC model variations by Bastiaens et al. [171], highlighting their
utility in model development rather than answering complex biological questions. Human
fetal primary neural stem/progenitor cells, including the commonly used HIP-009 line,
are also a popular choice used by several labs [56,169,172,173] and have been incorporated
successfully into a BoC model [56]. There are also many emerging differentiation protocols
for generating a variety of different types of neurons from iPSCs [174–178], which are
beginning to be used in disease modeling [179,180] and toxicity testing [181].

Ultimately, all sources of neuronal cells will require some level of differentiation to
generate well-defined cell types either before introduction into the model or differentiate
while in the model. Differentiations from iPSC can take months and experimental timeline
design considerations should account for the possibility of further differentiation within
the model.

Microglia are the resident immune cells of the brain and are currently a main re-
search focus in understanding underlying and potentially treating neurodegenerative
diseases [182–184]. Activated microglia are seen as both a cause and consequence of BBB
dysfunction in neurological disease [185], so their incorporation into BoC models is often
desired to fully understand disease processes. In fact, a recent study in a mouse model
has shown that microglia play a dual role in the context of systemic inflammation, first
reinforcing the BBB at an acute phase, then disrupting it during chronic inflammation [186].
However, recapitulating adult human microglia in vitro to further study the relationship
of microglia with the cerebrovasculature has been very challenging due to many technical
limitations. A discussion of these issues is beyond the scope of this review, but if microglia
incorporation into the BoC model is required, we refer the readers to several excellent
reviews on this topic [187–190].

Overall, it is important to note that even after the required cells are incorporated into
the device, each cell type should be validated for retention of in vivo-like phenotypes and
behaviors, including marker expression and functional outcomes (e.g., endothelial cell trans-
port, neuron signaling), as 3D cocultured environments are increasingly appreciated to alter
cell gene expression and phenotypes compared to classical 2D monocultures. Therefore, the
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overall complexity of the model should only be increased once an acceptable level of valida-
tion is achieved. Transitioning from immortalized cell line-based proof-of-concept models
to primary or iPSC-derived models will also require additional optimization steps, as these
cells will behave differently than the robust immortalized lines. Optimization may relate to
cell seeding densities, the basement membrane (BM) or ECM composition, adding physiolog-
ical flow, or even considering microenvironmental criteria such as oxygenation and media
composition. Furthermore, no single-cell type functions independently; barrier formation and
neuronal function depend on multicellular interactions among cell types of the NVU [191,192].
Therefore, mimicking cell–cell interactions is just as vital as incorporating the cells into the
model. Once the required cells and cell origins have been determined, the focus should turn
to the interactions of interest. Interactions within a given cell type (homotypic) and between
cell types (heterotypic) of the BBB or NVU can be replicated by leveraging microfabrication
techniques to control tissue organization and structure. The 3D multicellular tissue architecture
of the brain is best recapitulated using 2.5D and 3D models through the use of hydrogels, to
maintain cells in a physiological orientation. If replication of cell stratification/organization
is required, the MVM should contain independent cell access and segregation methods (i.e.,
using pillars to separate hydrogel and media channels) to ensure cells are seeded as they
appear in vivo. In addition to replicating cell–cell interactions, many applications require
modeling of cell–ECM interactions to interrogate the biology of the brain microenvironment or
disease pathophysiology. When interested in investigating cell–ECM interactions (described
in the following sections) it is vital that the MVM contain an appropriate ECM composed of
natural biopolymers. Models become limited in their ability to replicate cell–ECM interactions
in addition to other crucial ECM properties when synthetic materials (i.e., porous polyester
membranes) are used as ECM substitutes.

3.3. Extracellular Matrix Criteria

The extracellular matrix of the brain, initially known as the “ground substance”, con-
stitutes about 20% of the total brain volume [193,194] and serves as a microenvironment
constituted of glycans and proteins (hyaluronic acid, proteoglycans, linker proteins) se-
creted by neurons and glial cells. The ECM not only anchors the cellular components of
the brain, but also facilitates fundamental CNS processes such as neuronal development
and synaptic plasticity [195,196]. During development, the ECM serves as an enriched
environment for survival and maintenance of neural stem cells and modulates their dif-
ferentiation and migration (reviewed in [197–199]). Importantly, the ECM is dynamically
regulated during development as well as under pathological conditions [200,201]. Based
on its structural organization and functional complexity, three different forms of brain
ECM are identified: the interstitial matrix, the perineuronal nets (PNNs), and the basement
membrane (Figure 5) [202]. In this section, we will outline the function of these different
forms of ECM in vivo and discuss methods to model them in BoC models.

The brain interstitial matrix constitutes the parenchyma in which brain cells are em-
bedded [202]. It is a complex network that differs considerably in composition from
the vascular basement membrane and from systemic ECM outside of the brain [203,204].
Four main components make up the interstitial matrix ECM: hyaluronan (also known as
hyaluronic acid), laminin, proteoglycans, and tenascins. Hyaluronan is synthesized and se-
creted by neurons [205], while proteoglycans are produced by glial cells and neurons [206].
The most common ECM proteoglycans are from the lectican family (versican, aggrecan,
neurocan, brevican), which bind to hyaluronic acid [206]. Interstitial ECM also consists of
fibronectin, elastin, entactin [207], matrix metalloproteinases (MMPs) capable of remod-
eling the ECM, [208] and serine proteases [209]. The absence of a collagen component to
reinforce this network results in a low stiffness of 1–3kPa [210,211], which is important
in glial migration as well as neuronal projections. Stiffness of interstitial ECM has been
shown to increase in pathological processes including traumatic brain injury [212] and
neurodegenerative diseases [213]. This can profoundly affect the migration of neurons and
glia to establish connections and clear waste.
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PNNs are specialized ECM structures that surround neurons [214]. They are composed
of hyaluronan backbones that are noncovalently connected to proteoglycans of the lectican
family [206]. Aggrecan—a member of the lectican family that is secreted by both neurons and
astrocytes—has been shown to play a central role in the formation of PNNs in vivo [215,216].
The functional roles of PNNs in the brain is not fully understood and have been primarily
associated with development and maturity of inhibitory neurons [217]. In line with PNN
detection in vivo, PNNs have also been observed in a dissociated hippocampal culture main-
tained for 2–3 weeks in vitro [218], but it is yet to be determined whether mono- or cocultured
neurons develop PNNs in vitro. Stiffness of these specialized and localized pockets of ECM is
not well-defined.

The cerebrovascular basement membrane (BM) is a specialized ECM secreted from
endothelial cells, astrocytes, and pericytes that serves as a barrier between the endothelium
and the brain parenchyma. At the level of the capillary, the ECM from each individual
cell type is indistinguishable, while at other points along the vasculature (i.e., artery,
postcapillary venule), there is more of a separation between endothelial and astrocytic ECM,
either by layers of smooth muscle cells, or the perivascular space. Five key proteins make
up the cerebrovascular BM: collagen-IV, laminins, nidogens, heparan sulfate proteoglycans
(HSPGs), and fibronectin, but there are several other glycoproteins and soluble factors,
including growth factors, embedded within (reviewed in [219,220]). Importantly, laminin
has three variable chains—making 16 possible isoforms—but only five have been detected
in the cerebrovascular BM: laminin-111, -211, -411, -511, and -421 [120,221,222], with
different ratios at different points along the cerebrovasculature. Self-assembly of the BM
begins with the laminins forming a sheet, followed by the binding of nidogens and HSPGs,
and then the binding of a collagen-IV network to the nidogens in order to stabilize the
overall structure [223,224].

This BM network has been evaluated to have inconsistent elastic moduli values
due to the ongoing challenge of obtaining in vivo measurements [225]. Elastic moduli
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measurements obtained at the capillary level are limited, and at the artery level, the results
are variable between species and location of measurement [226–228]. Notably, the elastic
moduli of arteries will differ from those of capillaries, as collagen-I present in arteries
forms thicker, stiffer, and longer fibers than the mesh-like networks of collagen-IV in the
microvasculature [229]. Cells adhere to components of the BM via cellular receptors called
integrins and dystroglycans, and this adherence plays an integral role in BMECs forming
tight junctions [230,231]. Several studies have shown that BM composition is critical in
BBB formation, with an emphasis on the importance of both collagen-IV [151,230,232] and
astrocytic laminin-211 [107] in the expression of adherens junction marker claudin-5 by
BMECs. BM composition is also important in maintaining the integrity and differentiation
of mural cells [233], which further ties into BBB integrity given that the differentiation stage
of pericytes is critical in their role of maintaining the BBB [64,145].

3.3.1. Modeling the Cerebrovascular ECM In Vitro

Traditionally, the ECM component of BBB and NVU in vitro models has solely been
used to promote cell adherence, with little consideration of the ECM interactions with
cells and their effects on cell phenotypes. Importantly, most of the previously employed
coatings and hydrogel systems do not mimic the physiological compositions and functional
capabilities of the ECM in vivo [234]. Substrate stiffness dictated by some of these ECM
components may also alter the ECMs that the cells in the system produce [235], pushing
the model further away from physiological relevance. With the dawn of a new era in
ECM research, it has become clear that ECM remodeling is an important process in the
context of neurodegenerative disease including Alzheimer’s disease and stroke (reviewed
in [219,220]), and therefore it is an increasingly important aspect in the design of in vitro
models. The choice of ECM formulation will highly depend on the microsystem under
investigation. Substrate stiffness can affect cell phenotypes in vitro. For instance, HUVECs
cultured on soft micropatterned polyacrylamide substrates (2.5 kPa compared to 8.5 and
25 kPa) had fewer actin fibers and a rounded nucleus, suggesting that substrate stiffness
produces internal tension and remodels the EC nucleus [236]. Bastounis et al. also demon-
strated that HUVECs and human microvascular endothelial cells (HMEC-1) had increased
traction stresses when cultured on stiff (70 kPa) compared to soft (3 kPa) substrates, but
no major changes in their transcriptome were observed, and these changes differed be-
tween the cell types [237]. Another study using primary human BMECs found that cells
cultured on collagen-coated polyacrylamide gels and collagen-coated glass formed the
highest percentage of mature junctions when cultured on gels with a Young’s modulus of
1 kPa, compared to 8 kPa, 15 kPa, 194 kPa, and glass (~47.7 GPa) [12]. In contrast, Katt
et al. assessed the effect of matrix stiffness on iPSC-derived BMEC monolayer formation
and observed a trend of increasing cell coverage with increasing stiffness of a collagen-I
hydrogel (4–7 mg/mL) coated with collagen-IV/fibronectin [35]. Based on the conflicting
evidence from different BMEC cell sources to date, we recommend fine-tuning substrate
stiffness to be optimized with the selected BMEC to ensure confluent monolayer formation
and expression of key markers.

The effects of stiffness are not exclusive to endothelial cells, as a study using primary
rat astrocytes demonstrated that a stiffness of 8 kPa induced reactive astrocytes (astrogliosis)
in vitro [140], while a lower stiffness of 200 Pa did not. Further studies using primary rat
astrocytes demonstrated that astrocytes cultured on substrates with a shear modulus of
10 kPa had increased perimeters, areas, diameters, elongations, and number of extremities
compared to substrates with a shear modulus of 100 Pa [238]. Additionally, astrocytes
reacting to stiff environments have been demonstrated in Alzheimer’s disease modeling,
where the astrocyte mechanosensing ion channel, Piezo1, was upregulated in the presence
of amyloid-beta plaques [239]. Georges et al. studied cortical rat astrocyte and neuron
morphologies when in contact with soft and hard polyacrylamide substrates. They found
that astrocytes had reactive characteristics, such as a spread morphology, when cultured
on hard (9 kPa) substrates. However, neurons experienced neurite extensions on both the



Micromachines 2021, 12, 441 16 of 36

soft (200 Pa) and hard (9 kPa) substrates [14]. This is in contrast to other studies, which
demonstrated dendrite branching increased with substrate stiffness up to 3 kPa [240] and
between 100 and 10 kPa compared to soft substrates of ~10 Pa [241].

In addition to stiffness, it is important to consider methods to replicate the unique
nonlinear rheological properties of the native brain ECM. This increase in stiffness caused
by an increase in strain (strain stiffening) is difficult to replicate in vitro as most synthetic
materials that are used as a culture substrate for cells do not display these properties [242].
For example, in the case of PET (a common synthetic material that acts as a cellular barrier
in 2D BBB BoC devices) the stiffness of the material typically does not change when strain is
applied [243]. Undoubtedly, in this case, an ECM coating will be applied to the membrane
to enhance cell growth—but since cells are able to sense stiffnesses up to 20 microns
deep [244], and the thickness of the vascular BM is 20–200 nm [219], then moving away
from membranes with a linear MPa stiffness to soft (kPa range), nonlinear biological
materials such as collagen [245] and fibrin [246] would enhance physiological-relevance.
When such materials are incorporated into BoC platforms, the shear stress environment
should be tailored to trigger this behavior; greater than 0.01 MPa [247].

Hydrogels for BoC Modeling

3D cell culture provides an opportunity to mimic a more physiologically relevant
cellular environment yet raises challenges in ECM scaffold design to support a complex en-
vironment. Both natural and synthetic hydrogel systems have been tested, each with their
own unique benefits and limitations. Hydrogels are reticulated structures of crosslinked
polymer chains with very high water contents, and they exhibit flexibility in mechan-
otransduction properties unlike nanofibrous or microporous scaffolds [248]. The field of
regenerative medicine continues to benefit from the development of smart hydrogels that
are thermo, photo, electro, pH and biochemically responsive [249]. These hydrogels in
combination with unique ECM formulations can facilitate development of sophisticated
BoC models. Natural hydrogels incorporate ECM components such as collagen, fibrin,
hyaluronic acid [250] and are biocompatible due to presence of endogenous factors required
for cell viability, proliferation, and development. Another commonly used complex ECM
formulation is the commercially available Matrigel®, which is a purification of ECM se-
creted by a murine sarcoma cell line in vitro. While it retains the complexity of endogenous
ECM, it is highly variable from lot to lot, contains several growth factors, and is generally
poorly defined—making it difficult to precisely identify ECM proportions and their impact
on cellular functions.

For many years, gelatin has been used as a cell culture substrate for in vitro and
in vivo applications due to its advantageous traits of being readily available, biocompatible
and biodegradable [251]. Gelatin is a natural, hydrophilic polymer that is produced from
denatured collagen and possesses arginine-glycine-aspartic acid peptides that encourage
cell adherence, proliferation and differentiation [252]. This was demonstrated when iPSC-
derived BMECs were successfully seeded into the lumen of a 3D gelatin structure to form a
stable monolayer [44]. However, gelatin’s need for chemical crosslinking can sometimes
lead to local cytotoxicity, and its poor thermal stability at body temperature [253] led to
the widespread use of methacrylamide-modified gelatin (GelMA) [254]. GelMA’s ability
to be mechanically tuned by adjusting its polymer [255] concentration, initiator concen-
tration and ultra-violet (UV) or visible light conditions has enabled its use in biomedical
applications [254]. For example, GelMA was used as a treatment for rats following myocar-
dial infarction [256]. GelMA’s ability to be mechanically tuned between 1–200 kPa [257]
has enabled the identification of favourable conditions for adherence of HUVEC [258]
and PC12 cells [259]. Furthermore, GelMA has been further biofunctionalized with an
N-cadherin extracellular peptide that has been shown to enable iPSC-derived neurons to
form networks with functional synapses [54].

Hyaluronic acid is a major component of the interstitial ECM, and its biocompatibility,
biodegradability, and ability to be crosslinked render it a prime candidate for in vitro
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hydrogel-based studies [260]. Methacrylated hyaluronic acid (Me-HA) enabled iPSC-
derived neural progenitor cells (NPCs) to be cultured within hydrogels with stiffness values
of 0.5 and 2 kPa [255]. A study that added gelatin and gelatin/HA into rats demonstrated
that gelatin/HA had better contiguity with surrounding tissues [261].

Fibrin is often used in in vitro neuron-associated studies due to its presence in periph-
eral nerve-repair [262] and its ability to be mechanically adjusted based on the concentra-
tions of thrombin and fibrinogen [262]. Fibrin has been able to achieve a stiffness range of
~2–85 kPa [241]. Although fibrin is not present in the interstitial ECM, fibrin gels have been
used in several in vitro models that leveraged HUVECs and iPSC-derived BMEC as their
endothelial cell sources [263–265]. However, recent work has shown that fibrin is easily
digested by iPSC-derived BMEC and is therefore not ideal to use with this cell type [35].

Collagen-I is a very popular hydrogel used in many models of the microvascula-
ture [42,47,50], including models adopted for the commercially available Mimetas Organoplate®

platform [39]. Rat-tail collagen-I can be mechanically tuned by adjusting the collagen
concentration, the gelation temperature and the solubilization technique. Collagen-I at a
concentration of 4 mg/mL was demonstrated to have a storage modulus—the materials’ ability
to store energy elastically [266]—of ~100 Pa, and when 10 mM of genipin was added, this
increased the modulus to ~300 Pa before experiencing nonlinear stiffening up to ~700 Pa [245].

Many of the abovementioned natural hydrogels have been optimized or combined to
be able to form a perfusable 3D BoC and be compatible with cell types found in the BBB
(see Table 1). Further optimization of such gels could be beneficial in the development of
models. For instance, exogenous addition of bovine aggrecan in hydrogels for cartilage
regeneration has shown promising outcomes but these aggrecan formulations have yet to
be tested in CNS models [267].

Table 1. Hydrogels and coatings previously used in 2D, 2.5D and 3D BoC devices.

BoC
Dimension

ECM
Hydrogel BM Coating Endothelial

Cell Type
Coculture Cell

Types

Tracer and
Barrier

Permeability

TEER
(Ohm/cm2) Ref

2D N/A collagen IV
and fibronectin

iPSC-derived
BMEC

primary astrocytes,
pericytes and EZ

spheres differentiated
into astrocytes and

neurons

3 kDa Dextran:
1 × 10 −7 cm/s 1500 [268]

2D N/A collagen IV
and fibronectin

iPSC-derived
BMEC

primary human
pericytes and

astrocytes

3, 10, 70 kDa
Dextran: 8.9,

1.1 and 0.24 ×
10−8 cm/s,
respectively

24,000 [26]

2.5D collagen I collagen I hCMEC/D3
and HUVEC

primary rat
astrocytes and

neurons

10 kDa
Dextran: 1.23
× 10−5 cm/s

N/A [269]

2.5D collagen I N/A Primary
HBMEC

primary human
pericytes and

astrocytes

3 kDa Dextran:
2–3 × 10−6

cm/s
N/A [42]

3D

collagen I,
Matrigel®,
hyaluronic
acid (HA)

N/A hCMEC/D3 human astrocytes
4 Da FITC

dextran: 0.7 ×
10−6 cm/s

~1000 [43]

3D porcine gelatin collagen IV
and fibronectin

iPSC-derived
BMEC,

HUVEC,
human dermal
microvascular

endothelial
cells (uVas)

N/A
3 kDa Dextran:

2.9 × 10−7

cm/s
N/A [44]
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Table 1. Cont.

BoC
Dimension

ECM
Hydrogel BM Coating Endothelial

Cell Type
Coculture Cell

Types

Tracer and
Barrier

Permeability

TEER
(Ohm/cm2) Ref

3D
collagen I

crosslinked
with genipin

collagen IV
and fibronectin

iPSC-derived
BMECs N/A

Lucifer Yellow:
5–6 × 10 −7,
Alexa 647:

below
detection limit

and 10 kDa
Dextran:
Below

detection limit

200–4000 [50]

3D collagen I collagen IV
and fibronectin

iPSC-derived
endothelial

cells
hiPSC pericytes

Lucifer Yellow:
4 × 10−7 and

10 kDa Dextran
was below

detection limit

N/A [37]

3D fibrinogen N/A HUVECs human brain
pericytes

Dextran
Rhodamine B:
70 kDa: 2.62 ×

10−7 cm/s

N/A [45]

3D collagen I, HA,
Matrigel® N/A hCMEC/D3

primary human
astrocytes and

human coronary
arterial smooth

muscle cells
(HCASMCs)

4 kDa FITC
dextran: ~1.5
× 10−6 cm/s

N/A [46]

Coatings to Mimic Cerebrovascular Basement Membrane In Vitro

Most cells in culture secrete their own ECM, which promotes their attachment to the
culture surface. Thomsen et al. recently demonstrated that in a Transwell system, primary
murine BMECs deposit a basement membrane that closely resembles the composition
seen in vivo [222], although the cells were cultured onto a membrane that was precoated
with collagen-IV and fibronectin. This is common practice in BBB/NVU modeling since
an ECM substrate facilitates cell adhesion, promotes BMEC monolayer formation, and
induces tight/adherens junction expression to some degree; all of which ultimately dictate
downstream measures including TEER and permeability assays. Several groups have
investigated the effect of different coating compositions on the phenotype of immortalized,
primary, or iPSC-derived human BMECs, with results that seem to depend on the type of
cells used. It is clear that iPSC-derived cells show the most varied responses to differences
in coatings, while immortalized cells do not show much of a response to any coating,
and primary cells responses vary. Here, we will provide an overview of the selection
of compatible BM coatings for each source of endothelial cells as they are the cell type
most affected by BM composition. Out of all endothelial cell options, immortalized cell
lines are the most readily cultured, and many studies do not use an ECM coating at
all [270,271]. Since HCMEC/D3 cells are the most commonly used BMEC cell line, we
will focus on coatings compatible with these cells. Given their generally robust phenotype
(reviewed in [79]), most studies that do use a coating for these cells select generic rat-
tail collagen-I (10 ug/cm2) [272–275] due to its low cost, even though collagen-I is not
found in the cerebral microvasculature. Several combinations of coatings that are more
physiologically relevant have been tested in an attempt to optimize the barrier formation
of HCMEC/D3, with little success. In a recent study by Hinkel et al. using Transwell
inserts, combinations of coatings with collagen-I, collagen-IV, fibronectin, and laminin
were tested, but the condition without any additional coating on the PET insert gave the
highest mean TEER value (17.7 Ω·cm2) [80]. Further research is warranted to investigate
coatings as a variable that may influence HCMEC/D3 barrier formation, but to date there
is no evidence that immortalized BMEC phenotypes change in response to increasing



Micromachines 2021, 12, 441 19 of 36

complexity of BM coatings. Based on these results, HCMEC/D3 can be cultured without a
coating to conserve costs; however, this should be carried out only after considering the
constraints and limitations that result when choosing immortalized cell lines and/or a
nonphysiological microvascular BM substitute.

To our knowledge, there is no consensus on the optimal ECM for use with primary
BMECs. In a 2013 study, primary HBMECs in monoculture did not have a significantly
higher TEER when cultured on a collagen-IV/fibronectin (80 ug/cm2, 20 ug/cm2) or
Matrigel® (80 ug/cm2) coating compared to collagen-I (10 ug/cm2) [75]. In the past year,
a more comprehensive analysis on culture conditions of HBMEC has been carried out by
Gray et al. who explored stiffness, coatings, and additional media supplements to optimize
mature tight junction expression. They tested a series of coatings, including collagen-I
(100 ug/mL), fibronectin (100 ug/mL), collagen-IV (100 ug/mL), laminin (2 ug/cm2),
and 0.4% thiol-modified hyaluron: 0.4% thiol-modified gelatin, with some combinations
of the mentioned coatings, and they quantified tight junction phenotype (continuous,
punctate, or perpendicular) [12]. They found that the fibronectin coating marginally
induced the greatest mature tight junction coverage compared to the other coatings, which
is aligned with previous studies using porcine BMECs that demonstrated the importance of
fibronectin, collagen-IV and laminin for in vitro barrier formation [231,276]. Many groups
use a generic collagen-I coating to culture primary BMECs, but a recent study observed
dedifferentiation of primary murine BMECs cultured on collagen-I-coated plates [83],
indicating that collagen-I alone is not sufficient to maintain the phenotype of BMECs in the
absence of other stimuli. To our knowledge, no study has fine-tuned ECM composition to
culture BMEC with other cell types.

Despite emerging questions surrounding their true identity [92], iPSC-derived brain
microvascular endothelial cells remain the only BMEC capable of barrier formation reach-
ing physiological levels seen in vivo. A substrate mimicking the BM is critical for their
adherence and complete differentiation, with the majority of existing protocols opting for a
collagen-IV (400 ug/mL) and fibronectin (100 ug/mL) mixture as the final “purification”
step in the differentiation [26,44,87–91]. Importantly for 2.5D and 3D applications, collagen-
IV/fibronectin coatings increased TEER of iPSC-derived BMEC on a collagen-I hydrogel
in a Transwell insert [35], and another group demonstrated that an iPSC-derived BMEC
monolayer demonstrated a stable barrier for up to 21 days when cultured in a gelatin chan-
nel coated with collagen-IV/fibronectin [44]. Given this evidence, collagen-IV/fibronectin
coatings appear to be suitable for iPSC-derived BMEC culture.

The other most commonly used substrate for iPSC-derived BMECs is commercially
available Matrigel®. While Matrigel® is an attractive option given its complexity and
compositional alignment with many of the constituents of the cerebrovascular BM (collagen-
IV, laminins), it should be noted that it only contains laminin-111 [277], and therefore
lacks laminin-211, which has been shown to be key in the context of BBB integrity [107].
A study by Sixt et al. demonstrated that laminin-111 is predominantly synthesized by
leptomeningeal cells in large vessels, and it is either absent or produced at low levels at
the level of the capillary [278]; thus coatings that are predominantly laminin-111 are not
the optimal option to recapitulate the capillary microenvironment in vivo. The recognized
lot-to-lot variability in Matrigel® composition has led researchers to examine specific
components of ECM to generate a more controlled and reproducible environment with
less lot-to-lot variation. A recent study compared defined coatings to Matrigel® for the
differentiation of iPSC-derived BMECs [279] and found that cells cultured on laminin-221
had superior barriers, with higher TEER values, and the barrier was maintained for longer.
Though laminin-221 is slightly different from the laminin-211 secreted by astrocytes, they
both share the alpha-2 chain, which is suggested to be the main regulator of the maturation
and function of the BBB [107].



Micromachines 2021, 12, 441 20 of 36

3.3.2. ECM Choice Special Considerations

Adult vs. developmental ECM formulations: Physiologically, the composition of
the ECM differs between the developing and the adult brain, where the former is much
more plastic than the latter. ECM components are also differentially secreted, and some
are only expressed in the developing brain. Therefore, it is important to consider the age
and maturation parameters of the cells being cultured to better identify the appropriate
ECM formulation.

Downstream Quantification of ECM: An important consideration when downstream
analysis will involve ECM quantification is how to distinguish endogenous ECM from
the coating. One method is to use ECM coatings from a different species than the cells
populating the model. Thomsen et al. took this approach and used human collagen-
IV/fibronectin to coat the Transwell membranes of their primary murine cell model [222].
This enabled them to identify human sequences during mass spectrometry analysis of
the deposited ECM. Another approach is to quantify mRNA from harvested cells, but
mRNA is not always reflective of protein production or deposition [280]. Additional
approaches to take include using collagen-I or GelMA as the ECM, since collagen-I is not
produced in the microvasculature, and gelatin is mainly derived from sources that are rich
in collagen-I [281].

Drug Delivery: In vitro assessment of BBB permeability a priori requires a tight and
physiologically relevant barrier. This will involve choosing a BMEC source that is capable
of forming continuous tight junctions and providing a microenvironment to preserve
its phenotype. The barrier produced by the vascular basement membrane must also
be considered, in addition to the endothelial monolayer itself. Here, complexity of the
ECM coating is critical. One group has shown that using laminin and/or collagen-IV on
their own was not sufficient in providing the filtering effect—suppressing microscopic
mobility—that endogenous ECM displays [282].

3.4. Microenvironment Criteria

The brain is a complex system with cells and ECMs representing only a portion of
the brain microenvironment. Once appropriate cells and ECMs have been selected for the
MVM the next step is to determine additional components that may need to be present in
order to obtain a functional model. These components include nutrient and oxygen supply,
waste removal and their respective gradients (Figure 6).
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In vivo, brain homeostasis is a complex phenomenon that has many contributing
factors. For instance, there are natural concentration gradients for oxygen, pH, nutrients
and cellular metabolites that affect various cell behaviors (i.e., cell signaling) [55]. These
gradients are highly dynamic and are driven by blood flow, as well as the movement of two
other key fluids: the cerebrospinal fluid (CSF) encasing the entire central nervous system,
and the interstitial fluid (ISF) between cells in the brain parenchyma.

In vivo, cerebral blood vessels supply oxygen and nutrients to the brain in response to
the metabolic activity of neurons through neurovascular coupling [283,284]. Neurovascular
coupling involves the cued vasodilation of the microvasculature by the neurons. Vasodi-
lation and vasoconstriction are the main mechanisms that control oxygen and nutrient
levels, with recent evidence showing that pericytes play a crucial role in regulating the
vasodilation in the microvasculature [285]. However, this dynamic aspect of the brain
microenvironment is often overlooked, thus limiting physiological relevance and pre-
dictability. Replication of this aspect of the brain microenvironment involves incorporation
of the various NVU cells as well as the selection of an appropriate ECM which should be
soft to enable the expansion and contraction in response to mural cell activity. Replication
of this cell–ECM interaction can be assisted by selecting an ECM substitute that can be
remodeled by secreted MMPs, and displays nonlinear elasticity.

The NVU utilizes passive diffusion as well as selective and active transport to provide cells
with the molecules (O2), nutrients, ions and macromolecules (i.e., glucose) essential for neural
function [286]. Replicating the transport of these components across the microvasculature
is important and can be accomplished through microfluidic platforms. The flow within
these platforms is laminar (diffusion limited) and often controlled by pump-based systems
mimicking the passive diffusion of hydrophobic molecules across the brain endothelium [287].
These systems also provide the opportunity to replicate the microvascular wall shear stress
present in the brain vasculature. The shear stress experienced in vivo is known to increase
endothelial gene expression and barrier function [9,288]; therefore, replication is important
to create a BBB that restricts the diffusion of large hydrophilic molecules and solutes in the
circulating blood from nonselectively crossing into the cerebrospinal fluid.
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CSF is a specialized filtrate of blood with a stable composition that plays roles in
nutrient delivery and waste clearance [289]. It is mainly produced by a structure called
the choroid plexus, which is situated within the ventricles of the brain. The dynamics of
CSF secretion, flow, and drainage are not well-defined [290] but are a current research
interest. Large-scale in vitro models of CSF flow are being developed to understand the
flow dynamics and their relationship with pressure in the brain [291], but this complex
movement is not able to be captured by current microfluidic models. While the BBB
is a main focus of BoC modeling, the blood–CSF barrier produced by choroid plexus
ependymal cells is also an important site for studying many processes, including immune
responses in the context of the brain [292]. A review by Erb et al. outlining efforts to model
the blood–CSF barrier was recently published [293].

ISF is also a critical component of the microenvironment in the brain, which feeds into
the CSF since there is no distinct barrier between the two fluids. Waste produced by the
cells in the brain can diffuse from the ISF to the CSF for clearance or can follow perivascular
clearance pathways along the basement membrane of cerebral vessels to ultimately be
cleared out through the leptomeningeal arteries on the surface of the brain. Perivascular
clearance pathways were first discovered in mice intracranially injected with fluorescent
dyes [294] and have since gained considerable attention in neurodegenerative disease
research, where these pathways seem to get disrupted [294]. This pathway is thought
to be driven by arterial pulsations [295,296], which are a challenge to recapitulate with
microfluidic models. A review on the interstitial system of the brain along with limitations
in its modeling in vitro was recently published by Lei et al. [297]. They emphasize that
the ECM and geometry of the model will influence the trajectory of metabolite transport,
further reinforcing the development of 2.5/3D models with physiological ECM.

Establishing these complex environments requires consideration of the choice of ECM
as well as the design of the chip. For example, the presence of blood vessels influences
natural gradients; therefore, it is important to consider the distance from the blood vessel
to the region of interest within the in vitro model. This can be accomplished by designing
the device to contain microchannels separated by thin membranes [269], hydrogels with
embedded vascular structures [298] or using self-assembly based techniques [265]. In
addition, the diffusion of molecules through the ECM also impacts cellular metabolism
and the production of waste products—further highlighting the importance of selecting
an appropriate ECM. Traditional 2D monolayer cultures are not suitable for establish-
ing oxygen and nutrient gradients as all cells are homogeneously exposed to the tissue
culture media. In order to establish physiologically relevant gradients, cellular cultures
encapsulated in 3D matrices and/or microfluidic platforms are needed [55]. Additionally,
replication of brain homeostasis can be optimized using growth factors and additional
proteins in the media or hydrogel environment. Astrocyte conditioned media containing
cyclic adenosine monophosphate (cAMP) or the addition of Rho-associated kinase (ROCK)
inhibitor combined with cAMP has been shown to facilitate a more BBB-like monolayer in
HUVECs [299], primary HBMECs [34] and iPSC-derived BMECs [35].

4. Discussion

Here, we describe the factors to consider when designing and selecting fit-for-purpose
BoC models of the BBB and NVU (Figure 7).

When modeling the NVU it is essential that the MVM incorporates brain microvascular
endothelial cells, pericytes, astrocytes, and neurons. All four cell types are needed to
replicate the cell–cell interactions necessary to interrogate the biology related to the NVU.
Inability to incorporate these cell types may result in an oversimplified model that yields
misleading results. However, work focused on interactions and functions of the BBB
can benefit from a simplified MVM by using BMEC, astrocytes and pericytes to assess
cell physiology and barrier function. 2D BBB BoC models can be utilized for simple
biological questions. For instance, Park et al. developed a 2D BBB BoC model that
was used to study the effects of differentiation of iPSC-derived BMECs under hypoxic
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conditions. Their results show that hypoxic conditions coupled with shear stress exerted
on the endothelium results in maximum TEER values of 24,000 Ω [26], suggesting that
this protocol could be a useful resource for BoC developments. However, the inherent
nonphysiological stiffness and planar geometry of 2D BoC models will automatically
limit astrocyte projections that are observed in cultures grown in a 3D matrix; therefore,
utilizing microfabrication techniques to develop 2.5D and 3D BoC models that incorporate
a hydrogel as the ECM is advisable. To ensure BBB and NVU models are not being
overestimated on their physiological relevance, more emphasis should be placed on the
reasoning behind why certain models are being utilized over others when studies are
being reviewed and published. This includes investigating the effects of substrate material
and stiffness on cell types independent of shear and media composition before moving
to co-, tri- and quadculture models. Although it is important to increase physiological
relevance through increased complexity to obtain more predictive results, it is also essential
to limit the number of dependent variables that a model has so that the results can be easily
interpreted. Increasing complexity in a controlled manner—one dependent variable at a
time—will facilitate the ease of interpretation as well as troubleshooting when the model
behaves in a nonphysiological manner.
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The suitability of a model will depend on multiple variables including the question
of interest, application, resource availability, cost and throughput capacity. However,
once selected, it is important to understand the limitations of the device prior to using it
as an experimental tool. For example, the benefits and limitations of immortalized cell
lines, primary cells and iPSC-derived cells should be considered before use in vitro. While
iPSC-derived cells are currently seen as the most attractive option, there is considerable
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room for improvement in the quality, purity and maturity of differentiated cells, as re-
viewed elsewhere [179,189,300,301]. Depending on the origin of the cell types of interest,
the composition of ECM incorporated into the models should also be considered. BM
coating considerations for endothelial cell phenotypes should be cell type-dependent,
as immortalized cell lines have similar phenotypes across different ECM substrates or
without coatings [270–275], primary cells have shown promising results with fibronectin,
collagen IV and laminin as the BM [231,276] and iPSC-derived BMECs show physiological
behavior when cultured with collagen IV/fibronectin coatings, Matrigel®, and possibly
laminin-221 [44,279]. Any investigators studying barrier function should consider testing
an array of BM compositions to find a suitable option for their specific cell source. To
determine suitability, quantitative analysis methods should be used, such as confluency
percent, tight junction coverage and tight junction maturity [12,34,35]. Further, there is
much room for improvement of mechanically stable hydrogels that can encompass brain
cells while also forming a stable lumen. Available options that have been used with primary
astrocytes and pericytes include collagen-I, fibrinogen, and hydrogel combinations that
include hyaluronic-acid and Matrigel® [43,45,50] When selecting an ECM, it is important
to optimize the stiffness to induce healthy cell phenotypes, as BMEC, astrocytes, and neu-
rons are known to respond differently to different substrate stiffnesses [14]. Additionally,
the method of quantifying the stiffness of hydrogels should be considered as there are
different forms of elastic moduli (compressive, tensile) and depending on the instrument
(dynamic mechanical analyzer, tensile testing machine) and the conditions of the sample
during measurement (hydrated, nonhydrated), conflicting elastic modulus values may be
obtained. 2.5D and 3D BoC models should encompass an optimized microenvironment
that aims to nourish the cells while providing physiological flow to induce BMEC gene
expression [9,288].

As these BoCs are intended to be used as in vitro tools, it is not only essential that the
MVM replicates the microarchitecture and microenvironment of the brain but also can be
created in a reproducible manner. The lack of standardization of organ-on-a-chip devices
has been identified as a major barrier for adoption by the broad research community.
Therefore, it is important that once designed, the MVM be validated for reproducibility and
robustness. A recently developed open-source microphysiology system database aims to
provide a centralized data center to allow for investigators to evaluate the reproducibility
of their model and compare it with clinical data [302]. Once validated in-house, it is also
necessary to have the MVM tested and validated by an external party to remove bias from
the process. This was demonstrated by Sakolish et al. who used predefined metrics and
an external laboratory to determine the robustness and reliability of a human microfluidic
four-cell liver acinus microphysiology system (LAMPS) [303]. Tissue chip testing centers
have been set up to evaluate functionality, reproducibility, robustness and reliability of
chips as their primary initiatives [304].

5. Conclusions

Deciding on factors to include in a microfluidic BoC platform can be a complex
decision-making process that includes many external factors. In this review, we have
highlighted that the presence of BM, ECM, stiffness, flow, nutrient, and growth factors
influence cell physiology and promote a physiological model of the microvasculature.
We have also provided an overview of 2D, 2.5D and 3D BoC models that have been
successfully used. Future developments of BBB or NVU models should prioritize building
in physiological relevance into their models to ensure that cells are behaving as they would
in vivo. This review has focused on the design from the perspective of the physiological
model at the innovation and research stage.

Finally, BoC systems offer the opportunity for better in vitro methods within the drug
development process. Within this workflow, 2D monoculture high throughput assays may
be used during initial screening of upwards of 10,000 compounds. As candidates move
through the pipeline, these BoC systems may be positioned in the preclinical trials, enabling
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teams to gain more predictive data prior to moving to animal testing of a narrowly focused
number of drug candidates. BoC systems can allow researchers to examine some of the
mismatches between the hits from 2D screens and the failure of those drug candidates in
animals, and testing a well-defined panel of drug candidates can help elucidate the biology.
Pharmaceutical companies may also need integrated platforms that feature multiple-organ
models. In future, integrating organ-on-a-chip devices into automated equipment will
greatly improve their usability, lowering the barrier to wider adoption.

As the BoC models move beyond prototyping in a laboratory setting toward routine
adoption in the industrial setting, users will need to consider alternative microfabrication
methods more suited for high volume production. Standards, guidelines, and harmo-
nization of materials, standardization of interconnects between modules to permit plug-
and-play functionality, and standardized common testing methods will not only help the
researchers to develop new systems faster and with higher success, but will also facilitate
translation from research labs to industry.
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