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A B S T R A C T   

Objective: We re-examined the reported number of COVID-19 cases in Australia and across its states during the first wave of the pandemic. We 
provided estimates of the total number of cases, adjusted for under-reporting. 
Methods: Publicly available data sourced from Australian governments at federal, state and territory levels included records on cumulative 
confirmed COVID-19 cases and cumulative deaths occurring in Australia and across its states on a daily basis. Lower bound and upper bound es
timates of the total number of COVID-19 cases in Australia and across its states, that included the undetected cases that have not been recorded, 
were estimated. 
Results: On January 25, 2020, Australia recorded its first 4 cases of COVID-19 and the first death occurred on March 3, 2020. On April 1, 2020, 4864 
cases had been reported with 21 deaths. Our estimation showed that on April 1, 2020, the minimum and maximum number of COVID-19 cases in 
Australia were in fact 10,160 (95 % CI: 9781–10,538) and 21,748 (95 % CI: 21,607–22,014) respectively. We estimated that the total number of 
cases were at least twice and at most four times the observed cases recorded. These differences were also found at the state level where in New South 
Wales there was a minimum and maximum of 207 and 447 cases in total for every 100 reported cases, while in Victoria these figures were much 
lower at 157 and 265 respectively for every 100 reported cases. 
Conclusion: Case ascertainment during the pandemic is known to have been underestimated due to difficulties in testing and contact tracing, 
amongst others. Capture-recapture methods provided a measure of the gap between the official number of cases recorded and the actual number 
during the first wave of the pandemic.   

1. Introduction 

Since its early stages, cases of the coronavirus disease 2019 (COVID-19) arising from the severe acute respiratory syndrome 
coronavirus-2 (SARS-CoV-2) have been highly under-reported in official statistics [1–4]. As such, there remains a significant difference 
between the observed (reported) number of cases and the ‘true’ number of cases. A population consists of infected and uninfected 
people, infected people may be symptomatic or not, and their probability of being detected depends heavily on symptoms that some 
approaches to case ascertainment such as sero-prevalence surveys [5] or modelling based on Infection Fatality Ratios [6] refer only to 
the broader population of symptomatic infections. Evidence from numerous sources cite the difficulties in identification of asymp
tomatic cases, delayed symptoms, rapidly evolving variants and strains, efficacy of contract tracing, inchoate health systems, in
adequacies in serological testing, amongst others [7–12]. For these reasons, the total number of cases is unknown, yet the information 
on the spread of the epidemic is routinely based on the observed cases, which have been shown to be a fraction of the total number of 
cases [10,13–15]. While the pandemic appears to be contained, in most jurisdictions, practically all countries have been implementing 
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strategies against future outbreaks [16,17]. 
Capture-recapture methods, which originated in ecology with the aim of estimating the size of an unknown (possibly elusive) 

population [18], have now been extensively used in epidemiology and public health [19–23], and also the social sciences in measuring 
hard-to-count phenomena [24,25]. In public health settings, capture-recapture modelling has traditionally been used with two or more 
sources or lists. Another approach is based on a single source with repeated identifications (i.e. captures) of people in that source 
during a specified observational period [26–29]. In the latter case, the technique uses information on the number of people who have 
been identified once, twice, and so on during the study period to estimate the number of people not identified in the single source. 
Essentially the difference is that the former approach examines repeated identifications across multiple sources and the latter examines 
repeated identifications within a single source. 

Since the number of undetected COVID-19 cases is unknown, capture-recapture methods have increasingly been applied across the 
pandemic [1,2,30] to estimate the true number of cases (taking into account both the observed and unobserved cases). In this paper, we 
apply the capture-recapture approach to estimate the total number of COVID-19 cases in Australia and provide a measure of the 
precision through calculating upper and lower bounds of these estimates. Knowing these figures is important for assessing the extent of 
the unreported cases and critical for policy planning and healthcare delivery. 

While capture-recapture estimators have been applied in the estimation of COVID-19 prevalence, it is not a simple task to provide 
an accurate estimate of the true number of COVID-19 cases. Böhning et al., 2020 [1] set out an approach that provides an estimate of 
the total number of cases, including undetected cases. Their modelling framework is innovative in its use of cumulative time series 
distributions to incorporate differences in probabilities of being detected, and how this may vary over time. They also used a modified 
estimator proposed by Chao [31,32] to estimate the lower bound of the total number of cases, whose records may not have been 
collected. Rocchetti et al., 2020 [2] provided an extension which gives an upper bound of the total number of cases, accounting for the 
transmission and the rapid spread of the epidemic, and this has been important in designing a more effective public health response. 
Our analysis investigated both approaches to provide lower bound and upper bound estimates of the total number of cases. By doing so 
we can quantify the minimum and maximum levels of under-ascertainment of the recorded number of cases, which in turn enables a 
more reliable assessment of the true extent of the pandemic. 

Australia has been one of the few developed countries in the world that has successfully slowed down the spread of COVID-19. Its 
relative geographic isolation and country’s position as an island nation meant that it was effectively able to shut down its international 
borders, unlike in Europe [33]. Furthermore, the general population adherence to physical distancing measures, extended lockdown 
compliance and mask mandates have also been cited as contributing factors [34–37]. The political system in Australia devolved the 
response and management of the pandemic to the individual states (of which there are six – New South Wales, Victoria, Queensland, 
Western Australia, South Australia and Tasmania), and two territories (the Australian Capital Territory and Northern Territory). 
However, this meant that the respective states and territories varied in the implementation of public health protocols including 
state/territory border closures and entry/exit restrictions, quarantine rules for returning residents, lockdowns, social distancing rules 
and vaccination rollouts [33–37]. 

As a result, with a population of roughly 25 million, Australia has experienced lower infection and death rates than many com
parable developed countries, with 23,129 deaths out of over 11 million confirmed cases of the disease, as of October 6, 2023 [38]. 
However, these figures are only those reported and collected by the state/territory official health systems, do not include the 
potentially large number of asymptomatic infections, and mask remarkable heterogeneity in data, recording practices and population 
behaviour and distribution, and as such can under-estimate the true magnitude of the pandemic. To our knowledge, estimation of the 
true number of COVID-19 cases, particularly including the number of undetected cases using capture-recapture methods has not been 
undertaken. Our study has been designed to meet this goal. In addition to the ‘true’ estimates, we also provide information about the 
precision and reliability of these estimates through computing lower and upper bounds, and their corresponding confidence intervals. 

2. Methods 

2.1. Data source 

This study utilized data from public records sourced from Australian governments at federal, state and territory levels [39]. The 
data included records on cumulative counts of confirmed COVID-19 cases and deaths occurring in Australia on a daily basis. Similar 
information was available by states and territories. We analysed data over an observational period of 30 days starting from the day on 
which the first death was recorded. In Australia, the first 4 cases of COVID-19 were recorded on January 25, 2020 and the first death 
occurred on March 3, 2020. We calculated the estimates of a lower bound and upper bound and their respective confidence intervals 
for the total number of COVID-19 cases in Australia and across its states. 

2.2. Statistical approach 

We followed the capture-recapture framework described in Böhning et al. (2020) [1] and Rocchetti et al. (2020) [2] for the 
computation of the lower and upper bound estimators respectively. A summary of their mathematical formulation is provided below. 

Using their notations, let t0 and tm denote the start and end of an observational period respectively. Let N(t) and D(t) denote the 
cumulative count of observed cases and deaths respectively at day t (t = t0,⋯,tm). The number of new cases and deaths at day t is thus 
ΔN(t) = N(t) − N(t− 1) and ΔD(t) = D(t) − D(t− 1) respectively. 

The above situation can be related to a capture-recapture approach as follows. Each infected individual i can be identified x times 
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(x = 0, 1, 2, …) which is typically provided by the number of days that individual will remain infected. The corresponding frequencies 
are f0, f1, f2, … for the whole distribution of cases (i.e. symptomatic and asymptomatic infections). 

The unobserved frequency f0 can be estimated by using a lower bound estimator [40,41] of the form: 

f̂0 =
f 2
1

f2  

where f1 and f2 are the observed frequencies of those identified exactly once and twice respectively. 
This result is a standard formula in capture-recapture literature and relies on the counts following a counting distribution such as a 

geometric distribution. This means that we can find the frequency of missing a case as the ratio of the squared frequency of identifying 
a case exactly once divided by the frequency of detecting a case twice. While, this result is reliant on the validity of the geometric 
distribution, it typically allows an arbitrary unknown distribution to reflect the varying probabilities of detection in the population [1, 
40]. It is then a matter of connecting f1 and f2 with the data at hand. At day t, f1(t) is the number of infected people identified only once 
i.e. the new cases which is given by ΔN(t). Similarly, f2(t) is the number of infected people identified at day (t − 1) and those remaining 
infected at day t. This can be computed as ΔN(t − 1) − ΔD(t). In this instance, f0 the frequency of unobserved cases, is still unknown 
and has to be estimated as f̂0 . 

2.3. Lower bound estimator 

Böhning et al. (2020) [1] provided a lower bound estimator for the number of undetected cases at day t which is given by: 

f̂
LB
0 (t) =

|ΔN(t)|2

ΔN(t− 1) − ΔD(t)
(1) 

The global estimate of undetected cases is then obtained by summing over all days in the observational period: 

f̂
LB
0 =

∑tm

t=t0+1

|ΔN(t)|2

ΔN(t− 1) − ΔD(t)
(2)  

In practice, a bias-corrected form of the above estimator [32] is used. 

f̂
LB
0 =

∑tm

t=t0+1

ΔN(t)|ΔN(t)− 1|
1 + ΔN(t− 1) − ΔD(t)

(3) 

Note that ΔN(t− 1) − ΔD(t) is set to 0 if it becomes negative. The lower bound estimate of the total number of cases is given by: 

NLB = N(tm) + f̂
LB
0 (4)  

where N(tm) is the number of cases observed at the end of the observational period. 

2.4. Upper bound estimator 

Rocchetti et al. (2020) [2] provided an upper bound estimator for the number of undetected cases at day t which is of the form: 

f̂
UB
0 (t) = n∗

obs(t) ×
π̂UB

0 (t)
1 − π̂UB

0 (t)
=

n∗
obs(t)

1 − π̂UB
0 (t)

− n∗
obs(t) (5)  

where n∗
obs(t) = f1(t)+ f2(t)+ f3(t); f1(t) = ΔN(t); f2(t) = ΔN(t − 1) − ΔD(t); 

f3(t)=ΔN(t− 2) − ΔD(t− 1)− ΔD(t);  

π̂UB
0 (t)=

p2(t) − p1(t)(

1 −
π̂ 1(t)
π̂ 2(t)

)

+p2(t) − p1(t)
; p1(t) =

f1(t)
n∗

obs(t)
; p2(t) =

f1(t) + f2(t)
n∗

obs(t)
;  

π̂ j(t)= π̂0(t)+ [1 − π̂0(t)] pj(t); π̂0(t) =
f̂ 0(t)

f1(t) + f2(t) + f̂ 0(t)
;  

f̂ 0(t) is defined in its bias-corrected form (see above section on lower bound estimator). 
The global estimate of undetected cases is then obtained by summing over all days in the observational period: 

f̂
UB
0 =

∑tm

t=t0+2

n∗
obs(t)

1 − π̂UB
0 (t)

− n∗
obs(t) (6) 
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The final upper bound estimate of the total number of cases is given by: 

NUB =N(tm) + f̂
UB
0 (7)  

where N(tm) is the number of cases observed at the end of the observational period. 
We also summarised the computations described above by the following steps. 

Step 1. Prepare a table of values as shown in Table 1. The date, N(t), and D(t) columns should be available in a database. 

Step 2. Construct the columns t, ΔN(t), and ΔD(t). t is an incremental count with t = 0 as the starting value, ΔN(t) = N(t) - N(t-1), and 
ΔD(t) = D(t) - D(t-1). 

Step 3. Calculate a lower bound estimator for the number of undetected cases at day t by using equation (1). 

Step 4. Calculate a global estimate of undetected cases by summing over all days in the observational period by using equation (2). 

Step 5. Calculate the bias-corrected form of that global estimator by using equation (3). 

Step 6. Calculate the lower bound estimate of the total number of cases by using equation (4). To obtain the upper bound estimator, 
follow the same steps as those described above but using equations (5)–(7). 

While these lower and upper bounds provide us with a better picture of the total number of cases, including the unobserved cases, 
we still need to address the uncertainty involved in those estimators. Böhning el al. (2020) [1] extended previous work by Niwitpong 
et al. (2013) [41] to formulate a closed form solution for the variance of the lower bound estimator and corresponding confidence 
intervals (see Böhning el al. (2020) [1] for details). Reduced bootstrap methods were used to estimate the variance of the upper bound 
estimator and corresponding confidence intervals (see Rocchetti et al. (2020) [2] for details). 

We produce estimates of not only the total number of cases (adjusted for the unreported cases), but also provide upper and lower 
bounds of these estimates which characterise the relative reliability of the analysis. Taken together this allow us to make more robust 
inferences accounting for the underlying uncertainty of the results. 

3. Results 

The results showed that the estimates using only the observed number of COVID-19 cases vastly under-estimated the ‘true’ total 
number of cases (including the unreported number of cases). We found that this varied geographically (i.e. by state). Fig. 1 shows the 

Table 1 
Cumulative counts of confirmed COVID-19 cases (N(t)) and deaths (D(t)) from COVID-19 in Australia starting from t0 = March 3, 2020 to tm = April 1, 
2020.  

Date t N(t) D(t) ΔN(t) ΔD(t) 

March 3, 2020 0 40 1   
March 4, 2020 1 51 2 11 1 
March 5, 2020 2 59 2 8 0 
March 6, 2020 3 63 2 4 0 
March 7, 2020 4 73 2 10 0 
March 8, 2020 5 80 3 7 1 
March 9, 2020 6 92 3 12 0 
March 10, 2020 7 112 3 20 0 
March 11, 2020 8 127 3 15 0 
March 12, 2020 9 157 3 30 0 
March 13, 2020 10 198 4 41 1 
March 14, 2020 11 249 4 51 0 
March 15, 2020 12 297 6 48 2 
March 16, 2020 13 376 6 79 0 
March 17, 2020 14 454 6 78 0 
March 18, 2020 15 567 7 113 1 
March 19, 2020 16 709 7 142 0 
March 20, 2020 17 847 8 138 1 
March 21, 2020 18 1072 8 225 0 
March 22, 2020 19 1352 8 280 0 
March 23, 2020 20 1680 8 328 0 
March 24, 2020 21 2050 9 370 1 
March 25, 2020 22 2430 10 380 1 
March 26, 2020 23 2809 14 379 4 
March 27, 2020 24 3180 14 371 0 
March 28, 2020 25 3640 15 460 1 
March 29, 2020 26 3984 17 344 2 
March 30, 2020 27 4250 19 266 2 
March 31, 2020 28 4561 20 311 1 
April 1, 2020 29 4864 21 303 1  
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evolution of the pandemic in the first wave (March 2020 to May 2020) in Australia. There was a sharp increase in the cumulative 
counts of confirmed COVID-19 cases between end of March 2020 and start of April 2020. After that period, the increase appeared to 
plateau. This observation guided our choice for selecting the study period of March 3, 2020 to April 1, 2020. As an illustration, the 
cumulative counts of confirmed COVID-19 cases and deaths, and the number of new cases and deaths in Australia were provided for 
our chosen period of study (Table 1). 

Table 2 shows the lower and upper bound estimates of the total number of COVID-19 cases respectively for Australia and five of its 
states: New South Wales; Victoria; Queensland; Western Australia; Tasmania. The number of deaths recorded in the observational 
period of 30 days (starting from the day on which the first death was recorded) was very small (under 5 deaths in total) in South 
Australia, Australian Capital Territory, and Northern Territory. We thus did not report on the estimates of undetected COVID-19 cases 
in the latter three jurisdictions. 

In general, the total number of cases were at least twice (Table 2) and at most four times (Table 2) the observed cases recorded in 
Australia. A ratio (total/observed) of 2 and 4 implied that for every observed patient there were 2–4 undetected people respectively. 
These unseen cases might be those who were asymptomatic or experienced very mild symptoms of infection. There were differences at 
the state levels with New South Wales having the highest ratio and Victoria the lowest ratio (Fig. 2). 

While point estimates provide a reasonable indication of the extent of COVID-19 outbreak in the chosen time period, there is some 
uncertainty associated with using only point estimates. We calculated 95 % Confidence intervals (CIs) for the lower bound estimator of 
the total number of cases (Table 2). These CIs provide a range of values that allow us to express how sure we are about the derived 
estimates. They measure the uncertainty in our estimates and provide a sense of reliability, with narrower CIs indicating better 
precision and wider CIs indicating poorer precision. 

All CIs included their respective point estimates and were narrow. Bootstrapped 95 % CIs were also computed for the upper bound 
estimator of the total number of cases (Table 2). Similar patterns were observed in those latter CIs compared to those of the lower 
bound estimator. However, for smaller states, such as Tasmania, we had wider CIs. Our estimation of the total of cases of COVID-19 
using both approaches was thus valid. 

4. Discussion 

The capture-recapture approach used in this study is a computationally easy and low cost method for estimating the true number of 
COVID-19 cases in Australia and across its states. This information can be useful in health policy planning for evaluating localised 
development of pandemics and allows for informed data driven decisions in pandemic response. In our study, we provided a lower 
bound and upper bound estimates of the true number of people having had COVID-19 in Australia during the first wave of the 
pandemic as well as reliable confidence intervals around those estimates. Our lower bound estimate for Australia is consistent with that 
of Phipps, Grafton and Kompas (2020) [42] who followed a backcasting approach. Their estimated number of people having had 
COVID-19 was 9000 (95 % CI: 6000–15,000) at March 28, 2020 whereas ours was 10,160 (95 % CI: (9781–10,538) at April 1, 2020. 
With these two estimates, public health policy makers are now able to (a) be aware of the minimum number of cases required for health 

Fig. 1. Cumulative counts of confirmed COVID-19 cases during the first wave (March 2020 to April 2020) of the pandemic in Australia.  
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care demand, and (b) the possible true extent of the epidemic for the worst-case scenario planning. 
We also provided estimates at the state-level to show regional variation across Australia given that states and territories have 

jurisdiction on reporting and health decision making. The state estimates showed that New South Wales had the highest number of 
undetected cases while Victoria had the lowest. This can be explained by differences in the measures implemented to curb the spread of 
the disease with Victoria having the strictest rules in place. 

Our analysis utilized simple time series of cumulative data which are available to the general public or the academic sector to shed 

Table 2 
Estimated total cases of COVID-19 for Australia and its states/territories, April 2020.     

Lower bound Upper bound  

Observational 
perioda 

Observed 
cases 

Total cases (95 % 
CI) 

Ratio of total/observed 
(95 % CI) 

Total cases (95 % 
CI) 

Ratio of total/observed 
(95 % CI) 

Australia** 03/03/20 to 01/04/ 
20 

4864 10160 
(9781,10538) 

2.09 (2.01,2.17) 21748 
(21607,22014) 

4.47 (4.44,4.53) 

NSW 07/03/20 to 05/04/ 
20 

2580 5334 (5057,5611) 2.07 (1.96,2.17) 11524 
(11406,11765) 

4.47 (4.42,4.56) 

Vic 28/03/20 to 26/04/ 
20 

1349 2113 (1820,2405) 1.57 (1.35,1.78) 3569 (3293,3903) 2.65 (2.44,2.89) 

Qld 25/03/20 to 23/04/ 
20 

1024 1640 (1491,1790) 1.60 (1.46,1.75) 2957 (2886,3122) 2.89 (2.82,3.05) 

WA 24/03/20 to 22/04/ 
20 

546 930 (795,1064) 1.70 (1.46,1.95) 1762 (1660,2069) 3.23 (3.04,3.79) 

Tas 30/03/20 to 28/04/ 
20 

220 419 (304,535) 1.91 (1.38,2.43) 781 (694,985) 3.55 (3.15,4.48)  

a 30 days from first death recorded; ** Australia included all states and territories (NSW, Vic, Qld, WA, SA, Tas, ACT, NT). 

Fig. 2. Ratio (with confidence intervals) of total number of infections versus observed number of infections for Australia and its states, April 2020.  
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light on the undetected cases of COVID-19 across Australia. In contrast, individual data are not publicly available which thus did not 
allow us to provide age or sex-specific estimates. Future work could explore this aspect if individual data becomes available. Another 
advantage is that the estimators incorporate the heterogeneity in the detection probability, by using the time series information to 
adjust for variations in reporting. In addition, the true number of cases is bounded (in theory) by the total number of observed cases (at 
the minimum) and positive infinity (at the maximum), and as such the confidence intervals of the upper bound are rarely symmetric. A 
bootstrap routine (as implemented here) has the advantage of producing non-symmetric confidence intervals, unlike one using 
normalisation. 

While capture-recapture methods are recognised for providing valuable insights, it should be acknowledged that they can 
potentially lead to incorrect conclusions, in particular when the modelling assumptions are unmet [43]. In addition, capture-recapture 
studies can be resource-intensive when the population of interest is large. Ethical and privacy concerns may also arise as the identi
fication of cases relies on handling sensitive information such as names, date of births, and addresses. While our research provides a 
practical contribution to understanding the spread of newly developing infectious diseases, we are not stating that this approach can be 
implemented into other healthcare settings without due consideration being given to the research question of interest and the 
availability of reliable data. In our application of this approach to assessing the true number of COVID-19 cases in Australia during the 
first wave of the pandemic, we are assuming that all data collected by each state and territory in Australia are accurate. 

Our study focused on the first wave of COVID-19 in Australia. The main result is the number of people with COVID-19 in the 
population at that time was clearly under-diagnosed. The undetected number of cases is in fact more important than the observed cases 
as they are those who are more likely to transmit the disease and should thus be in self-isolation. In this study, we did not attempt to 
undertake estimation in different waves of the pandemic. Future work could focus on this aspect and would employ time series 
techniques to smooth the data and subsequently apply the statistical approaches investigated in the current work. We also did not 
provide estimates for the states/territories that reported under 5 deaths (i.e., South Australia, Australian Capital Territory, and 
Northern Territory). Capture-recapture methods for population estimation with small counts [32] will be important in this regard, but 
are currently under-developed. 

The present study demonstrated the need to investigate alternative methods to direct counting when a new pandemic that is 
unknown to the society emerges. Traditional methods to counting such as testing and contact tracing though useful are costly and time 
consuming. The capture-recapture method was low-cost, straightforward, and can be easily replicated in other countries, and at other 
timeframes. Public health systems would benefit to use this technique to inform the public of the true number of cases on a daily basis. 
This approach can be of significant value for surveillance and the management of infectious diseases in future. Measuring the gap 
between the recorded and actual number of cases is important to reduce uncertainty of numbers that feed into all modelling and 
predictions of the COVID-19 pandemic in Australia. Accurate predictions of how big or when the next wave will occur is necessary for 
government policy, planning, and the general public. Accurate case numbers would also assist in making informed decisions regarding 
which strategies to adopt during peaks such as vaccine booster campaign, mask rules as well as to assess whether those strategies will 
work. While the interest in COVID-19 research may have subsided recently, the importance of knowing the actual numbers could 
quickly arise if a new and more deadly variant emerges. By applying novel statistical methods, we might be able to provide sound 
information to address the unknown in a relatively short period, and perhaps save lives in the process. 
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