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Abstract: Many successful variational regularization methods employed to solve linear inverse
problems in imaging applications (such as image deblurring, image inpainting, and computed
tomography) aim at enhancing edges in the solution, and often involve non-smooth regularization
terms (e.g., total variation). Such regularization methods can be treated as iteratively reweighted
least squares problems (IRLS), which are usually solved by the repeated application of a Krylov
projection method. This approach gives rise to an inner–outer iterative scheme where the outer
iterations update the weights and the inner iterations solve a least squares problem with fixed
weights. Recently, flexible or generalized Krylov solvers, which avoid inner–outer iterations by
incorporating iteration-dependent weights within a single approximation subspace for the solution,
have been devised to efficiently handle IRLS problems. Indeed, substantial computational savings
are generally possible by avoiding the repeated application of a traditional Krylov solver. This paper
aims to extend the available flexible Krylov algorithms in order to handle a variety of edge-enhancing
regularization terms, with computationally convenient adaptive regularization parameter choice. In
order to tackle both square and rectangular linear systems, flexible Krylov methods based on the
so-called flexible Golub–Kahan decomposition are considered. Some theoretical results are presented
(including a convergence proof) and numerical comparisons with other edge-enhancing solvers show
that the new methods compute solutions of similar or better quality, with increased speedup.

Keywords: flexible Golub–Kahan decomposition; iteratively reweighted least squares; edge
enhancement; image deblurring; image inpainting; computed tomography

1. Introduction

In this paper, we consider the solution of large-scale linear systems of the form

Axtrue + e = btrue + e = b . (1)

We are interested in problems (1) associated with the discretization of linear inverse
problems, where b ∈ Rm represents the measured data, A ∈ Rm×n represents the forward
mapping, xtrue ∈ Rn is the desired solution, and e ∈ Rm is unknown Gaussian white noise.
In this setting, A is typically ill-conditioned with ill-determined rank (i.e., the singular
values of A decay and cluster at zero without an evident gap between two consecutive
ones). Systems such as (1) are central in many imaging problems, including image de-
blurring, image inpainting, and computed tomography, where the matrix A represents
convolution, a combination of undersampling and convolution, and discrete Radon trans-
form, respectively; see [1–3]. In this framework, xtrue ∈ Rn is a vectorialization of a 2D
image Xtrue ∈ RN×N , with N =

√
n, obtained, for instance, by stacking the columns

of Xtrue; we compactly denote this operation by xtrue = vec(Xtrue) and its inverse by
Xtrue = vec−1(xtrue).

Due to the ill-conditioning of A and the presence of noise e in (1), some regularization
must be applied in order to compute a meaningful approximation of xtrue. Although many
efficient iterative methods are routinely used to regularize (1) by early termination of the
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iterations (see, e.g., [4–7] and the references therein), in this paper, we consider a variational
regularization method to compute

xreg = arg min
x∈Rn

‖Ax− b‖2
2 + λ̂Ω(x) , (2)

where Ω(x) is a problem-specific regularizer, chosen to enforce a priori information about
xtrue onto the regularized solution xreg, and λ̂ > 0 is regularization parameter that specifies
the amount of regularization to be imposed. Common and somewhat basic choices for the
penalty term include Ω(x) = ‖x‖2

2 and Ω(x) = ‖Lx‖2
2 with L ∈ Rp×n, corresponding to

standard and generalized Tikhonov regularization, respectively. Although such choices
reduce (2) to a quadratic problem, two drawbacks arise when 2-norm regularization is
applied to solve inverse problems in imaging, where A is typically unstructured and
large-scale: firstly, an iterative solver must be employed to compute xreg (see [1,4,5,8] and
the references therein); secondly, xreg may be inherently over-smoothed and therefore
unsuitable when edge information should be accurately recovered (see [2]). To overcome
the second drawback, one should resort to functionals Ω(x) involving some q-(quasi)norm,
0 < q ≤ 1, and solve (2) using appropriate optimization methods: there is a rich body of
literature about this, and we point to [9] for a recent survey.

In this paper, we consider the edge information that is revealed by computing the gra-
dient of an image, and, in this setting, one of the most popular edge-enhancing regularizers
is total variation (TV) [10]. In its original form and in a discrete setting, the TV of a vector
x measures the magnitude of the discrete gradient of x in the `1 norm; recall that, in this
paper, x = vec(X). Therefore, considering TV as a regularizer has the effect of allowing
a few (possibly steep) changes in the gradient of xreg or, equivalently, solutions with a
sparse gradient. TV-like functionals, which may penalize the gradient in the horizontal
and vertical directions separately, or use a variety of norms for evaluating the gradient to
enforce even more sparsity, have also been considered. Among the most popular solvers
for TV regularization, we list proximal gradient methods, hybrid primal–dual methods,
split Bregman methods, and iteratively reweighted norm methods; we refer to [11–16].

In this paper, we focus on the class of iteratively reweighted least squares (IRLS)
solvers, also called iteratively reweighted norm (IRN) solvers, associated with TV-like and
edge-enhancing functionals. IRLS methods solve (approximately) a sequence of reweighted,
penalized, least squares (LS) problems that are increasingly improved approximations of
(2). Consider the reformulation of (2) as a nonlinear optimization problem of the form

xreg = arg min
x∈Rn

‖Ax− b‖2
2 + λ‖W(Lx)Lx‖2

2 , λ =
λ̂

2
, (3)

where L ∈ Rp×n and W(Lx) ∈ Rp×p is a diagonal weighting matrix whose entries depend
on Lx. Formulating (2) (or a smooth approximation thereof) as (3) is quite straightforward
when, e.g., Ω(x) = ‖Lx‖q

q; see [17]. Starting from an initial approximation x0,? of xtrue,
the IRLS method solves (approximately) a sequence of quadratic problems of the form

xk,? = arg min
x∈Rn

‖Ax− b‖2
2 + λ‖WkLx‖2

2 , k = 1, 2, . . . , where Wk = W(Lxk−1,?), (4)

and convergence of xk,? to xreg is guaranteed under mild assumptions; see, e.g., [18,19]
and the references therein. All but one of the methods considered in this paper can be
reformulated as (3). The specific expressions of the matrices W(Lx), Wk, and L appearing
in (3) and (4) depend on the choice of TV-like regularizer, and will be detailed in Section 2.
We also mention that some IRLS schemes (4), including one considered later in this paper,
are not necessarily associated with a variational formulation of the kind in (2) and (3);
see [20,21] for more details. If the null spaces of A and WkL intersect trivially, problem (4)
has the unique solution

xk,? = (AT A + λLTWT
k WkL)−1 ATb .
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However, as hinted at the beginning of this section, for large-scale unstructured prob-
lems (1), it is too demanding to compute xk,? directly and, therefore, an iterative method
(usually a Krylov projection method, which relies on the computation of matrix–vector
products with A, WkL, and often their transposes) should be employed to approximate
xk,?. As a consequence, classical IRLS methods unavoidably rely on inner–outer iterative
schemes, where the outer iteration updates the weights Wk, while the inner iteration solves
each (iteratively reweighted) least squares problem. To the best of our knowledge, an IRN
approach for TV was first proposed in [22], where an expression for the edge-enhancing
weights was first derived; more specifically, the authors of [22] consider a fixed regular-
ization parameter and solve each least squares problem in the sequence by the conjugate
gradient method. In a similar setting (stemming from the lagged diffusivity fixed point
iteration [11]), the authors of [12] propose to use the so-called ‘modified’ LSQR method to
solve efficiently each least squares problem in the sequence after performing a change of
variable that involves the ‘inversion’ of the matrix LTWT

k WkL, with the added benefit of
adaptive regularization parameter choice.

Recently, novel solvers for IRLS have been proposed, which approximate the solution
of (2) by avoiding nested iteration cycles. This is possible by updating the weights Wk as
soon as a new approximate solution becomes available—namely, immediately after a new
iteration of a solver for the iteratively reweighted LS problem (4) is computed—and by
employing modified Krylov projection methods that can handle changes in the LS prob-
lem (specifically, changes in the weights). Such solvers are based either on generalized
Krylov subspace (GKS) methods (see [19,23]), or on flexible Krylov subspace (FKS) meth-
ods (see [17,24,25]). Rather than computing the solution xk,? as in (4), the kth iteration of
a GKS method computes an approximation x(k) to xreg by projecting problem (4) onto a
so-called ‘generalized Krylov subspace’ of dimension k, which is then extended in the
direction of the residual (AT A + λLTWT

k WkL)x(k) − ATb. Such methods can be efficiently
applied to a variety of regularization terms of the form Ω(x) = ‖Lx‖q

q, provided that
matrix–vector products with L are cheap to compute. To project problem (4) onto the
current approximation subspace, it may be necessary to compute economy-size QR de-
compositions of m× k and p× k matrices, but this is not demanding when k� min{n, p}.
Flexible Krylov methods can be applied only after problem (4) has been transformed into
standard form [26]—namely, after a change of variables has been applied and (4) has been
reformulated as an equivalent Tikhonov problem with a regularization term of the form
Ω(x) = ‖x‖2

2 and with A replaced by an operator that includes the action of the (‘inverted’)
matrix WkL. Sometimes, the ‘inversion’ of the matrix WkL is referred to as ‘priorcondition-
ing’ because of its connection with a Bayesian approach to inverse problems [27]. More
details about this process are provided in Section 3. In particular, the kth iteration of a
flexible Krylov method generates an approximation subspace of dimension k that incorpo-
rates the action of the ‘inverted’ weights Wi, i = 1, . . . , k, and its efficiency depends on the
considered regularizer and the cost associated with the ‘inversion’ of WkL. For a variety of
regularization terms (see, e.g., [24,25,28]), this can be done with negligible computational
overhead. Convergence of both GKS and FKS methods can be proven by resorting to the
framework of majorization–minimization (MM) methods [29]. Both GKS and FKS methods
allow adaptive (i.e., iteration-dependent) regularization parameter choice, which is crucial
in the common scenario where a good value of λ is not known a priori. Indeed, allowing
some heuristic arguments, a suitable value of the regularization parameter can be efficiently
chosen at the kth iteration by manipulating a reduced-size projected problem, rather than
having to solve the original problem (2) multiple times, one for each value of λ (preset
by the user or dictated by the application of some parameter choice rule); more details
about these approaches are provided in Section 4. A review of GKS and FKS methods for
regularization is available in [18].

This paper aims at introducing new solvers for (2) based on the flexible Golub–Kahan
(FGK) decomposition [24], introducing significant elements of novelty with respect to
available solvers based on either FKS or GKS methods. Firstly, while ways of handling
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‘sparsity under transform’ regularizers within a FKS framework were already presented
in [24], these require an orthogonal ‘sparsity transformation’ (e.g., some choices of wavelets).
The edge-enhancing regularizers considered in this paper are more general and more
challenging to apply, as often the ‘sparsity transformation’ associated with the gradient of
an image is rank-deficient and suitable strategies have to be devised to perform efficient
computations, leading to a unified treatment of both the isotropic and anisotropic TV
regularization terms, as well as other heuristic edge-enhancing regularizers. Similarly to
the methods described in [24], convenient strategies to set the regularization parameter
can be applied, resulting in inherently parameter-free solvers. We refer to Section 4 for
more details. Secondly, although the idea of incorporating an edge-enhancing regularizer
within a flexible Krylov method based on the flexible Arnoldi algorithm (i.e., FGMRES)
was already proposed in [30], this is limited to the case of isotropic TV and a square matrix
A; moreover, it is well-known that iterative solvers based on the Arnoldi algorithm are
not general-purpose regularization methods and are only successful for matrices A close
to normal or when the generated approximation subspace is favorable for a particular
solution; we refer to [31] for more details about GMRES, which can be extended to FGMRES.
We also note that, when adopting the method in [30], the regularization parameter should
be set to 0 in the projected problem—this is not the case anymore when the new FGK-based
solvers are considered. Lastly, while TV regularizers can be naturally handled by GKS-
based methods [19,23], the approximation subspace for the solution generated by the new
FGK-based solvers is potentially more efficient than the approximation subspace generated
by GKS-based solvers, meaning that a high-quality solution can be recovered in smaller
approximation subspaces; this is clearly visible in the numerical comparisons presented in
Section 5.

The new FGK-based solvers are analyzed theoretically. Namely, a convergence proof
is provided for the isotropic and anisotropic TV cases, and insight into the efficient approxi-
mate ‘inversion’ of all the considered regularizers is provided. Finally, extensive numerical
experimentation (some of which is reported in this paper) shows that the new solvers are
always able to compute regularized solutions of comparable or better quality, often with a
great speedup, with respect to other edge-enhancing methods, such as the IRN and GKS
strategies, and the proximal gradient solver. We refer to Section 5 for detailed comparisons.

This paper is organized as follows. Section 2 presents the regularization terms consid-
ered in this paper and the expressions for the edge-enhancing weighting matrices. Section 3
contains some background material, including a summary of the procedure for transform-
ing problem (4) into standard form, and some details about FKS methods based on the
flexible Golub–Kahan decomposition (FGK). Section 4 introduces the new edge-enhancing
solvers based on FGK, and describes their properties and implementation details. Section 5
contains numerical experiments performed on three different imaging problems (involving
deblurring, inpainting, and tomography). Section 6 presents some concluding remarks and
possible future research directions.

2. Edge-Preserving Regularization via IRLS

As discussed in Section 1, to obtain a suitable reconstruction of xtrue, we require a
problem-specific regularization term Ω(x) in (2) that enforces prior information on xreg.
When xtrue represents an image and when its edges should be preserved in xreg, a common
choice for Ω(x) is the q-norm of (a function of) the gradient of x evaluated in some some
q-(quasi)norm, 0 < q ≤ 1. We therefore open this section by defining a discrete gradient
operator D2d for 2D images X ∈ RN×N , building upon the corresponding 1D operator. Let

D1d =

1 −1
. . . . . .

1 −1

 ∈ R(N−1)×N
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be a scaled finite difference approximation of the first derivative operator. Then, the
2D arrays

D1dX ∈ R(N−1)×N and (D1dXT)T ∈ RN×(N−1)

contain the scaled first derivatives of X in the vertical and horizontal directions, respec-
tively; see, e.g., [1]. These can be reshaped as 1D arrays using the vec(·) operation, and cor-
responding expressions for the discrete first derivative operators in the vertical and horizon-
tal directions are obtained by exploiting well-known properties of the Kronecker product
⊗; see, e.g., [2]. Namely,

vec(D1dX) = (I ⊗ D1d)vec(X) = (I ⊗ D1d)x,
vec(XDT

1d) = (D1d ⊗ I)vec(X) = (D1d ⊗ I)x ,

so that

D2d =

[
Dv

Dh

]
=

[
I ⊗D1d

D1d⊗ I

]
∈ R2ñ×n

is the scaled discrete 2D gradient operator, where ñ := N(N − 1); the superscripts v and h
stand for ‘vertical’ and ‘horizontal’ directions, respectively.

Before going into the specifics of the weights associated with the IRLS methods
considered in this paper, we highlight that the following equalities and approximations
will be extensively used. Let 0 < q ≤ 1, and let us consider the function fq,τ defined for
any vector v ∈ R`, ` ≥ 1, and a fixed τ (independent of q), as

fq,τ(v) =
(
‖v‖2

2 + τ2
) (q−2)

4 . (5)

Given a vector u ∈ Rn, whose jth entry is denoted by [u]j, we write

‖u‖q
q = ∑

j

∣∣[u]j∣∣q '∑
j

f 2
q,τ([u]j)︸ ︷︷ ︸
=:[w(u)]2j

([u]j)2 = uT(W(u))2u = ‖W(u)u‖2
2 . (6)

Note that, in the expression above, fq,τ([u]j) = ([u]2j + τ2)q−2/4 avoids potential di-
vision by 0 and introduces some smoothness in the q-norm. The matrix W(u) ∈ Rn×n

appearing in (6) is diagonal, and its (j, j)th entry is

[W(u)]j,j := [w(u)]j := fq,τ([u]j) ;

The dependency on the vector u and its kth entry is highlighted in the notations. In
the following, we focus on the case q = 1 and we describe the different edge-enhancing
regularizers considered in this paper.

2.1. Isotropic Total Variation

As hinted in Section 1, isotropic total variation (TV) is a popular choice of regulariza-
tion that penalizes the magnitude of the gradient in the `1-norm. We adopt the following
definition of discrete isotropic total variation:

TV(x) :=
∥∥∥∥((Dvx)2 + (Dhx)2

)1/2
∥∥∥∥

1
' ‖WTV(D2dx)D2dx‖2

2, (7)

where the squaring and square root operations are applied entry-wise. Note that TV(x) as
defined above is not invariant with respect to horizontal and vertical flips, nor for rotations
of ±90◦, of the 2D image X = vec−1(x); see [32]. The weighting matrix for the rightmost
smooth approximation in (7) reads
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WTV(D2dx) =

[
(W̃TV(D2dx)) 0

0 (W̃TV(D2dx))

]
∈ R2ñ×2ñ,

where W̃TV(D2dx) = diag
(

f1,τ

(
[Dvx; Dhx]

))
∈ Rñ×ñ .

(8)

Such weights are employed within an IRLS scheme as explained in (3) and (4),
with L = D2d.

2.2. Anisotropic Total Variation

Discrete anisotropic total variation (aTV) is defined as

aTV(x) :=
∥∥∥∥[Dv

Dh

]
x
∥∥∥∥

1
' ‖WaTV(D2dx)D2dx‖2

2 , (9)

where the weighting matrix for the rightmost smooth approximation is defined as

WaTV(D2dx) =
[

diag(wv(D2dx)) 0
0 diag(wh(D2dx))

]
∈ Rñ×ñ,

where
[wv(D2dx)]j := f1,τ([Dvx]j)
[wh(D2dx)]j := f1,τ([Dhx]j)

, j = 1, . . . , ñ.
(10)

Such weights are employed within an IRLS scheme as explained in (3) and (4),
with L = D2d.

2.3. Edge-Enhancing Weights

A further choice of weighting matrix is related to the one originally introduced in [20],
which is not associated with a variational formulation of the kind (2) nor to an analytical
expression of the weights as in (7) or (9). Rather, such a weighting matrix relies on the
cumulative effect of iteration-specific weights, whereby information from all previous
iterates is retained. Specifically, assume that an estimate xk−1,? to xtrue is obtained by
(approximately) solving the (k− 1)th instance of a IRLS problem that reads similarly to (4),
with Wk = Wdiag

k and L = D2d. Here,

Wdiag
k = diag

(
1−

( ∣∣∣Wdiag
k−1 D2dxk−1,?

∣∣∣∥∥∥Wdiag
k−1 D2dxk−1,?

∥∥∥
∞

)a

+ τ

)
Wdiag

k−1

=: diag(wdiag
k )

, a > 0, τ > 0 fixed. (11)

In the above expression, 1 is a vector of all ones, and both the absolute value |·| and
exponentiation are performed component-wise. The first weighting matrix Wdiag

0 may
be either defined with respect to a sufficient initial guess x0,? (where at least one edge
is visible), or simply taken to be the identity. The first diagonal term in Wdiag

k updates
the weights in such a way that the components of Wdiag

k−1 D2dxk−1,?/
∥∥∥Wdiag

k−1 D2dxk−1,?

∥∥∥
∞

close to a
dominant edge exclusively visible in the (k− 1)th approximate solution are not penalized,
while the oscillating components (i.e., those components that currently display spurious
oscillations around a constant value) are penalized. The second diagonal term in Wdiag

k
encodes the edge information recovered at the previous iterations, so that also the dominant
edges in the previous approximate solutions are not penalized, either. The parameter a > 0
affects the amount of smoothness in the reconstructions; namely, choosing a� 1 results
in more penalization of the supposedly smooth regions. The parameter τ > 0 prevents
singularities in the matrix Wdiag

k (i.e., it has the same purpose as the parameter τ appearing
in (5)).
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3. Background Material: Standard Form Transformation and (Flexible) Krylov Solvers

As discussed in Section 1, when dealing with large-scale unstructured problems (1),
each least squares problem of the form (4) arising within an IRLS method needs to be solved
by an iterative method, resulting in an overall inner–outer iterative scheme for the solution
of (2). Since the regularization parameter λ needs to be chosen, we adopt a so-called hybrid
method [5,6], which typically projects the original problem (1) onto Krylov subspaces of
increasing dimension and applies regularization to the projected problem, allowing for an
efficient, adaptive (iteration-dependent) choice of λ. More details on the projection process
are given in the next paragraph.

For particular instances of (2), e.g., for standard Tikhonov with Ω(x) = ‖x‖2
2, first

projecting (1) and then applying standard Tikhonov to the projected problem is equivalent
to first applying standard Tikhonov (2) and then projecting the regularized problem; see [1]
(Chapter 6). The application of hybrid methods to Tikhonov regularized problems in
general form, such as the ones in the sequence (4), is usually not straightforward and
one possible approach is to first perform a transformation into standard Tikhonov form,
and then apply a hybrid method to the transformed problem; see, e.g., [1,33]. In the follow-
ing, we will tailor our discussions to the case Ω(x) = ‖WkD2dx‖2

2, where Wk = WTV(xk−1,?)

as in (8), Wk = WaTV(xk−1,?) as in (10), or Wk = Wdiag
k as in (11). We remark that, since all

these diagonal weighting matrices are nonsingular, the null spaces of both WkD2d and D2d
are spanned by the constant vectors, i.e., multiples of 1. Problem (4) specifically formulated
for these cases reads

xk,? = arg min
x∈Rn

‖Ax− b‖2
2 + λ‖WkD2dx‖2

2 , k = 1, 2, . . . . (12)

Let us assume that the null spaces of A ∈ Rm×n and WkD2d ∈ R2ñ×n intersect trivially;
this is a reasonable assumption, as the null space of A is typically spanned by highly
oscillatory vectors; see [1] (Chapter 2). Then, problem (12) has a unique solution xk,∗, which
can be equivalently expressed by computing

ȳk,? = arg min
ȳ∈R2ñ

‖Āȳ− b̄‖2
2 + λ‖ȳ‖2

2 , where
Ā = A(WkD2d)

†
A

b̄ = b− Ax0
xk,? = (WkD2d)

†
Aȳk,? + x0

. (13)

In the above formulation, the matrix (WkD2d)
†
A is the so-called A-weighted pseu-

doinverse of WkD2d, and xk,? is expressed as the sum of two components: the first term
belongs to the range of (WkD2d)

†
A, while the second term x0 belongs to the null space of

WkD2d. We refer to [26,34] for detailed derivations. In practice, following [33] and letting
K = (n)−1/2 1 ∈ Rn×1 be the ‘matrix’ whose orthonormal column spans the null space of
WkD2d, we can rewrite

(WkD2d)
†
A = E(WkD2d)

† ∈ Rn×2ñ, where E = (I − K(AK)† A) ∈ Rn×n (14)

and (WkD2d)
† is the Moore–Penrose pseudoinverse of (WkD2d). We also have

x0 = (A(I − (WkD2d)
†(WkD2d)))

†b = K(AK)†b . (15)

Computing x0 as in (15) and performing matrix–vector products with the matrix
E defined in (14) is computationally very cheap. Indeed, by letting v = AK ∈ Rm, it
follows that

v† = vT/‖v‖2
2 and K(AK)† = (n)−1/2‖v‖−2

2 1 vT . (16)

Computing (WkD2d)
† is nontrivial, and strategies to deal with this are explained in

Section 4.
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We now describe how problem (13) can be efficiently solved via a Krylov projection
method based on the Golub–Kahan bidiagonalization (GKB) algorithm [35] applied to Ā
and b̄, whose ith iteration updates partial factorizations of the form

ĀVGKB
i = UGKB

i+1 B̂GKB
i , ĀTUGKB

i+1 = VGKB
i+1 (BGKB

i+1 )T , (17)

where VGKB
i = [vGKB

1 , . . . , vGKB
i ] ∈ Rn×i and UGKB

i+1 = [uGKB
1 , . . . , uGKB

i+1 ] ∈ Rm×(i+1), with
uGKB

1 = b̄/‖b̄‖2, are matrices whose orthonormal columns span the Krylov subspaces
Ki(ĀT Ā, ĀT b̄) and Ki(ĀĀT , b̄), respectively; B̂GKB

i ∈ R(i+1)×i and BGKB
i+1 ∈ R(i+1)×(i+1) are

lower bidiagonal matrices, and B̂GKB
i coincides with BGKB

i+1 without its last column. We refer
to [1] (§ 6.3) for more details. The cost of updating factorizations (17) is dominated by four
matrix–vector products (namely, with A, AT , (WkD2d)

†
A, ((WkD2d)

†
A)

T) at each iteration.

We impose that the ith approximation ȳ(i)k,? of ȳk,? belongs to the space Ki(ĀT Ā, ĀT b̄),
i.e., we compute

ȳ(i)k,? = VGKB
i si, where si = arg min

s∈Ri
‖B̂GKB

i s− ‖b̄‖2e1‖2
2 + λ‖s‖2

2 (18)

and where e1 denotes the first canonical basis vector of R(i+1). The projected Tikhonov
problem in (18) is of size O(i) and it is obtained by exploiting decomposition (17) and
the properties of the matrices appearing therein. The regularization parameter λ can be
efficiently set at each iteration, using well-known parameter choice strategies; see, e.g., [6]
(§ 3). The corresponding ith approximation x(i)k,? to problem (12) is computed by taking

x(i)k,?= x0 + (WkD2d)
†
Aȳ(i)k,? = x0 + (WkD2d)

†
AVGKB

i si

∈ x0+Ki((WkD2d)
†
A((WkD2d)

†
A)

T AT A, (WkD2d)
†
A((WkD2d)

†
A)

T AT(b− Ax0)) .
(19)

We see that x(i)k,? defined above is computed by a hybrid projection method applied to
problem (12), after transformation into standard form; we refer to [6] for more details. We
remark that, when a Krylov projection method (and, in particular, a GKB-based method)
is applied to approximate the solution to (13), the regularization matrix WkD2d affects the
approximation subspace for the solution (typically improving it), and (WkD2d)

†
A can be

formally regarded as an appropriate preconditioner for the linear system in (1) (although
usually it does not speed up the convergence of the Krylov solver); we refer to [1,33]
(Chapter 8) for more details.

Although hybrid projection methods applied to (12) can, in general, be very efficient
(meaning that, for each k = 1, 2, . . . a suitable approximation x(i)k,? of xk,? in (19) is computed
for i � min{m, n}), they are still employed within an inner–outer iterative scheme that
can become computationally demanding; see the results of the numerical tests reported
in Section 5. In particular, the approximation subspace (19) for the solution of the kth
problem is discarded when solving the (k + 1)th problem in the sequence (12). Hybrid
flexible Krylov methods have been introduced to bypass the inner–outer iterative scheme
associated with (12) and generate only one solution subspace for approximating xtrue by
updating the weights as soon as a new approximation is computed. To apply flexible
Krylov projection methods, problem (12) must first be transformed into standard form (13),
so that the interpretation of (WkD2d)

†
A as a preconditioner can be exploited. In general,

the ith iteration of a hybrid flexible Krylov method computes

x̄(i) = arg min
x̄∈Zi
‖Ax̄− b‖2

2 + λ‖Mi x̄‖2
2 , i = 1, 2, . . . , x(i) = x̄(i) + x0 , (20)

where the approximation subspace Zi has dimension i and depends on
Wj = W(D2dx(j−1)), j = 1, . . . , i, and where different (more or less theoretically moti-
vated) choices for an iteration-dependent regularization matrix Mi∈ Rpi×n are possible;
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see [17,24,25] for more details. Here, we focus on hybrid methods based on the flexible
Golub–Kahan (FGK) decomposition [24], whose ith iteration updates partial factorizations
of the form

AZi = Ui+1Hi and ATUi+1 = Vi+1Ti+1. (21)

Here, Hi ∈ R(i+1)×i is upper Hessenberg, Ti+1 ∈ R(i+1)×(i+1) is upper triangular, and
Ui+1 ∈ Rm×(i+1) and Vi+1 ∈ Rn×(i+1) have orthonormal columns, with

Zi = [(W1D2d)
†
A((W1D2d)

†
A)

Tv1, ..., (WiD2d)
†
A((WiD2d)

†
A)

Tvi] ∈ Rn×i. (22)

Similar to standard preconditioned GKB (17), the cost of updating factorizations (21) at
the ith iteration, i = 1, 2, . . . , is dominated by four matrix–vector products (namely, with A,
AT , (WiD2d)

†
A, ((WiD2d)

†
A)

T). However, differently from GKB-based methods, the approxi-
mation subspace Zi, spanned by the columns of Zi, is no longer a Krylov subspace. Despite
these differences, the FGK-based projected problem associated with (20) computes

x̄(i) = Zisi ∈ Zi, where si = arg min
s∈Ri

∥∥His− ‖b̄‖2e1
∥∥2

2 + λ‖Nis‖2
2, x(i) = x̄(i) + x0 , (23)

where Ni is a projected version of the regularization matrix Mi appearing in (20); see
also (25) for more details. Problem (23) is formally similar to (18) and (19). As in (18),
allowing some heuristics, the regularization parameter λ in (23) can be efficiently set at
each iteration. We conclude this section by remarking that formulations (18) and (23) can
be regarded as regularized LSQR and FLSQR solvers applied to (1), respectively, and, even
if not considered in this paper, other regularization methods based the on the GKB and
FGK algorithms are possible. For instance, one may adopt strategies linked to LSMR and
FLSMR, which result in formulations similar to (18) and (23), respectively, and which have
also been proven successful for large-scale problems; see [24,36].

4. Edge-Preserving Hybrid FGK-Based Solvers

In this section, we present more details about the new edge-preserving hybrid FGK-
based solvers: we first introduce the regularization matrices Mi and Ni to be employed
in (20) and (23), respectively, and we analyze the convergence of the new solvers in the
isotropic and anisotropic total variation cases, as introduced in Section 2. We then present
some implementation details, mainly dealing with the computation of pseudoinverses
(WkD2d)

†.

4.1. Problem Setup and Convergence Analysis

Following the arguments originally presented in [17] for a simpler FGK-based solver
for `p regularization, to derive formulation (20), we should start by establishing links to
the GKB-based solver (18) applied to the transformed problem (13), whose approximate
solution needs to be further manipulated (i.e., multiplied by (WkD2d)

†
A and added to x0) to

approximate the solution to the original problem (12). In contrast, the approximate solution
obtained by solving (20) only needs to be added to x0 to approximate the solution to the
original problem (12). Furthermore, if we assume that Wj = Wk, j = 1, . . . , i in (22), then

the space Zi spanned by the columns of Zi coincides with the Krylov subspace (19) for x(i)k,?.
Therefore, the regularization term considered in (20) should regularize the solution (12),
i.e., (20) should be formulated as

x̄(i) = arg min
x̄∈Zi
‖Ax̄− b‖2

2 + λ‖WiD2d x̄‖2
2 , i = 1, 2, . . . , x(i) = x̄(i) + x0 . (24)

Correspondingly, substituting x̄ = Zis in (24), we obtain that the regularization term
to be used in the projected problem (23) has the form

‖Nis‖2
2 = ‖WiD2dZis‖2

2 = ‖QiRis‖2
2 = ‖Ris‖2

2, where WiD2dZi = QiRi (25)
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which is the economy-size QR factorization of WiD2dZi. The cost of computing Ri is of
order O(ñi2) and, therefore, it is negligible when i � min{n, m}. The above derivations
ensure that problem (23), with the regularizer set as in (25), can be regarded as a projection
of the ith full-dimensional reweighted Tikhonov problem (i.e., (12) with k = i). In other
words, we are adopting a “first-regularize-then-project” framework (see [1] (Chapter 6)):
this remark is pivotal when proving convergence results, which we present next.

Let us fix a point xl ∈ Rn and define the quadratic functional of x

Q(x; xl) = ‖Ax− b‖2
2 + λ

(
‖Wl D2dx‖2

2 + Ω(xl)
)

,

where

Wl = WTV(D2dxl) and Ω(x) = ‖WTV(D2dx)D2dx‖2
2 as in (7),

Wl = WaTV(D2dxl) and Ω(x) = ‖WaTV(D2dx)D2dx‖2
2 as in (9),

(26)

for the (smoothed) TV(x) and aTV(x) cases, respectively. Recalling that λ̂ = 2λ, it is
immediate that

Q(xl ; xl) = ‖Axl − b‖2
2 + λ̂Ω(xl) =: F(xl),

so that Q(x; xl) is tangent in xl to the objective function F(x) in (2). It is also possible to
prove that

∇Q(xl ; xl) = ∇F(xl) and F(x) ≤ Q(x; xl) for all x ∈ Rn ,

so that Q(x; xl) is a quadratic tangent majorant in xl to the original function F(x), where
Ω(x) is chosen as in (26). We refer to [16] for full derivations in the TV(x) case, which also
hold for the simpler aTV(x) case; see, for instance, [19,23].

Now, consider the sequence {Q(x(i); x(i))}i≥1, where x(i) is the solution of the ith
hybrid FGK problem (23), with ‖Nix‖2

2 chosen as in (25): one can prove that such a sequence
is monotonically decreasing and that it is bounded below by zero, using the same arguments
as in [17] (Lemma 3.3). As a consequence, such a sequence has a stationary point and, using
the same arguments as in [19] (Theorem 5), it can be proven that limi→∞ ‖x(i)− x(i−1)‖2 = 0
and {x(i)}i≥1 converges to the unique solution of (2), with Ω(x) chosen as in (26).

Although it is clear that the arguments presented in this section only hold when the
regularization parameter λ is fixed, an iteration-dependent choice of λ can be naturally and
heuristically implemented within the new FGK-based solvers (see Section 4.3 for a possible
strategy), following the common practice established for other hybrid Krylov projection
methods [6,18]. Numerical experimentation shows that the new solvers are robust with
respect to adaptive parameter choice; see Section 5 for more details.

4.2. Standard Form Transformation Computations

As already hinted in Section 3, the cost of each iteration of new edge-enhancing hybrid
FGK-based solvers is dominated by matrix–vector products with A, AT , (WkD2d)

†
A, and

((WkD2d)
†
A)

T ; the latter are dominated by the cost of performing matrix–vector products
with (WkD2d)

† and ((WkD2d)
†)T , respectively (see Equations (14)–(16)). Unfortunately,

computing (WkD2d)
† is not straightforward. Indeed, as already highlighted in [30], it is

not possible to exploit the structure of WkD2d for efficient computations: this would be
possible if only the D2d term was considered but, because D2d is overdetermined,

(WkD2d)
† 6= D†

2dW−1
k =: L̃† . (27)

As suggested in [30], to keep the computations cheap, we run the hybrid FGK solver
by performing matrix–vector products with the approximation L̃† of (WkD2d)

†, and with
(L̃†)T . As shown below, L̃† can be regarded as the pseudoinverse of WkD2d computed in
the W−2

k norm. Namely, recalling the characterization
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(WkD2d)
†s = arg min

t∈Rn
‖(WkD2d)t− s‖2, (28)

we have that

L̃†s = arg min
t∈Rn

∥∥∥D2dt−W−1
k s
∥∥∥

2
= arg min

t∈Rn
‖WkD2dt− s‖W−2

k

= (WkD2dt− s)TW−2
k (WkD2dt− s) .

Following the derivations in [33], once the singular value decomposition (SVD) of
D1d ∈ R(N−1)×N , namely D1d = U1dΣ1dVT

1d, is computed, matrix–vector products with D†
2d

and (D†
2d)

T can be performed by first computing the SVD of D2d as follows:

D2d =

[
D1d ⊗ I
I ⊗ D1d

]
=

[
U1d ⊗V1d 0

0 V1d ⊗U1d

]
Q̃T D̃

[
V1d ⊗V1d

]T ,

where Q̃D̃ = Σ̃ =

[
Σ1d ⊗ I
I ⊗ Σ1d

]
,

and where Q̃ ∈ R2ñ×2ñ is an orthogonal matrix implicitly obtained by applying a set of
Givens rotations to the sparse matrix Σ̃, and D̃ ∈ R2ñ×n is a nonnegative diagonal matrix
of rank n− 1. By using standard properties of pseudoinverses,

D†
2d =

[
V1d ⊗V1d

]
D̃†Q̃

[
UT

1d ⊗VT
1d 0

0 VT
1d ⊗UT

1d

]
.

The procedure outlined above to compute L̃† costs O(n3/2) flops. Alternatively, as
suggested in [30], one can employ a (preconditioned) iterative method to solve the least
squares problem (28).

Inverting the nonsingular diagonal weighting matrices as in (27) is straightforward
and costs O(n) flops. However, when considering the weights (11), the results obtained
by computing (Wdiag

k )−1 = diag((wdiag
k )−1) are consistently poor: this may be related to

the fact that wdiag
k is expressed as the product of k diagonal matrices defined with respect

to all the previous approximate solutions. To circumvent this problem, we consider the
first-order approximation of the entries of (Wdiag

k )−1 around 0, and take

(Wdiag
k )−1 ' diag

(
1 + wdiag

k

)
.

We remark that all the weights (8), (10) and (11) are dependent on the latest available
approximate solution and on τ; the latter is fixed for all the iterations and does not have
an impact on the computed solutions, provided that its value is reasonably small. In our
implementation, τ = 10−10; see Section 5 for more details. Finally, we note that the
quantities x0 and E defined in (14)–(16) are independent of the weighting matrix Wk: they
are easy to compute and this can be done ahead of the iterations.

4.3. Choosing λ and Stopping the Iterations

The new hybrid FGK-based solvers, as with all the hybrid solvers, are effective
only when the regularization parameter λ and a stopping criterion for the iterations are
properly chosen; see, e.g., [6] (§ 3). The regularization parameter λ can be adaptively
and automatically set at each iteration, i.e., a value λ = λi can be heuristically set for
the ith projected problem (23). Strategies to set λi are well-established, and can often be
regarded as the projected versions of popular parameter choice rules for 2-norm Tikhonov
regularized problems similar to (12). The upside of applying these strategies to the projected
problem (23) is that, at the ith iteration, only computations with matrices of size O(i) need
to be performed, which results in negligible computational overhead when i� min{m, n};
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see [17,18,23]. To better highlight the dependence of the computed solution x(i) and si on
λ, in this section, we use the notation x(i)(λ) and si(λ), respectively.

Assuming that a good approximation of the 2-norm of the noise vector e appearing
in (1) is available, at each iteration, we apply the discrepancy principle, i.e., we compute
λ = λi such that

‖b− Ax(i)(λ)‖2 = η‖e‖2 , (29)

where η is a user-specified ‘safety’ factor (typically slightly larger than 1) that prevents
overfitting the noise. The equation above is guaranteed to have a solution as soon as
‖b− Ax(i)(0)‖2 ≤ ‖e‖2, which is typically the case after a few FGK iterations. Under this
assumption, a zero finder is applied to approximate λi working with the projected quanti-
ties, since, from (21) and (23),

‖b− Ax(i)(λ)‖2 = ‖b− A(x0 + Zisi(λ))‖2 = ‖‖b̄‖2e1 − Hisi(λ)‖2 . (30)

If ‖e‖2 is overestimated (resp. underestimated), the solution x(i)(λ) satisfying (29) is
typically over-regularized (resp. under-regularized); we refer to [1] (Chapter 5) for more
details. An estimate of ‖e‖2 may be obtained from, e.g., the highest coefficients of the noisy
data under some transformation, such as wavelets; see [37]. If a good estimate of ‖e‖2 is
not available, alternative parameter choice strategies that do not require this quantity can
be used; see, e.g., [6].

We stop the FGK iterations when some stabilization of the regularization parameter is
detected, i.e., at the first iteration k such that

|λk − λk−1|
λk

< ξ and
|λk−1 − λk−2|

λk−1
< ξ , (31)

where k > 2 and ξ > 0 is a user-specified threshold. We also stress that, if a suitable value
of λi is set at each iteration, the quality of the reconstructions computed as the iterations
proceed does not significantly deteriorate.

The main steps of the new FGK-based methods are summarized in Algorithm 1.

Algorithm 1 Edge-enhancing FGK-based methods.

1: Input: initial guess x0,?, r0,? = b− Ax0,?, thresholds τ, η, ξ > 0,
2: Take u1 = r0,?/‖r0,?‖, U1 = [u1], V0 = [], Z0 = []
3: Compute x0 and E as in (14)–(16)
4: for i = 1, 2, . . . until (31) is satisfied do
5: Expand the approximation subspace, by updating the FGK factorization (21)

v̄i = ATui, v = (I −Vi−1VT
i−1)v̄i, vi = v/‖v‖2, Vi = [Vi−1, vi]

zi = (WiD2d)
†vi (using(27)), Zi = [Zi−1, zi]

ūi+1 = Azi, u = (I −UiUT
i )ūi+1, ui+1 = u/‖u‖2, Ui+1 = [Ui, ui+1]

6: Choose λ = λi such that (30) holds
7: Solve problem (24) with λ = λi
8: Update Wi+1
9: end for

5. Numerical Experiments

In this section, we present the results of some numerical experiments that demonstrate
the performance of the new edge-preserving FGK-based solvers, applied with the regular-
ization terms and weightings described in Section 2. We consider test problems modelling
image deblurring of a piecewise constant image with low TV, inpainting combined with
image deblurring for an image with high TV, and an undersampled computed tomography
problem. To validate the new methods, we provide comparisons with the IRN methods [16]
equipped with the same regularization terms as the FGK-based methods, the GKS method
for TV [19,23], a forward–backward solver for TV (FBTV) [13], and an LSQR-based hybrid
Krylov method for (2), with Ω(x) = ‖D2dx‖2

2 [6]. The acronyms used to denote the dif-
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ferent methods considered in this section, as well as a common color code employed in
most figures, are summarized in Table 1. When comparing with IRN (4), we take W1 as
the identity matrix, L = D2d, and compute each xk,?, k = 1, 2, . . . using an LSQR-based
hybrid Krylov method. When considering weights, the value τ = 10−10 is chosen as a
smoothing parameter in (5) and (11). When running the new FGK-based solvers, as well as
the IRN, GKS, and LSQR-based hybrid methods, λ is chosen at each iteration according
to the discrepancy principle (29), with η = 1.01; the stopping criterion is given by (31),
with ξ = 0.9 (note that, in the IRN case, this holds only for the inner IRN iterations). The
(fixed) regularization parameter used by the FBTV method is chosen for all the experiments
as λ = λFB = 2× 10−3

∥∥D2d ATb
∥∥

∞, which is found experimentally to perform well; FBTV
also requires the choice of a step-size τFB, which is determined either according to the
forward–backward theory (i.e., τFB = σ1(A)−2, where σ1(A) is the largest singular value of
A approximated by running a few LSQR iterations) or in an optimal way (i.e., by initially
running 30 iterations of the FBTV method for different values of τFB logarithmically equis-
paced between 10−5 and 102, and then selecting the parameter τFB that realizes the smallest
residual norm). Unless otherwise stated, all algorithms run for 200 iterations, even if the
stopping criterion (31) is satisfied, to observe their long-term behavior; we indicate the iter-
ation that satisfies the stopping criterion with a diamond marker in the relevant plots. In all
experiments, the quality of the reconstructions is measured by both the relative restoration
error (RRE)

∥∥∥x(k) − xtrue

∥∥∥
2
/
∥∥xtrue

∥∥
2 and the structure similarity (SSIM) index between

x(k) and xtrue [38], where x(k) is the solution computed at the kth iteration of each solver.
All experiments were performed in MATLAB R2020a and utilized functions from the IR
Tools [39] package; our codes are publicly available (MATLAB functions implementing
the new FGK-based edge enhancing solvers and some test scripts are available on github,
https://github.com/silviagazzola/EdgeEnhancingFGK, accessed on 25 September 2021).

Table 1. Summary of the acronyms denoting various solvers considered in Section 5, and coherent
marker and color codes used in most of the figures.

Solver Acronym Marker

‘priorconditioned’ LSQR with L = D2d LSQR-L dashed blue
fast gradient-based TV FBTV magenta
generalized Krylov subspace method with isotropic TV GKS purple
FLSQR with isotropic TV utilizing approximation L̃† F-TV red
FLSQR with isotropic TV utilizing (WKD2d)

† F-TV(p) –
FLSQR with anisotropic TV F-aTV circled purple
FLSQR with edge-enhancing weights F-diag light blue
IRN LSQR with isotropic TV IRN-TV yellow
IRN LSQR with anisotropic TV IRN-aTV green
IRN LSQR with edge-enhancing weights IRN-diag maroon

5.1. Experiment 1—Image Deblurring

The first experiment involves deblurring a piecewise constant test image displaying
geometric patterns. We consider two versions of the test image, one of size 32× 32 pixels
and one of size 256× 256 pixels. The images are corrupted by Gaussian blur and additive
Gaussian white noise e with relative noise level ‖e‖2/‖btrue‖2 = 0.01. This test problem
can be generated using the IR Tools package with

PbOpt = PRset(’trueimage’,’pattern1’,’BlurLevel’,’blevel’);

[A, btrue, xtrue, ProbInfo] = PRblur(N, PbOpt);

b = PRnoise(btrue,1e-2);

The choices N = 32 and blevel = ’mild’, and N = 256 and blevel = ’medium’, are
made. The ground truths and the corrupted images are displayed in Figure 1.

https://github.com/silviagazzola/EdgeEnhancingFGK
https://github.com/silviagazzola/EdgeEnhancingFGK
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Figure 1. Experiment 1. Simple geometric pattern that has been blurred by some Gaussian blur and
corrupted by some Gaussian noise. From the left, the first and second frames are for the N = 32 case,
and the third and fourth frames are for the N = 256 case.

First of all, we compare the RREs achieved by different methods for the test problem of
size N = 32. We run the new FGK method F-TV(p) with true pseudoinverse L† = (WkD2d)

†

computed directly, as well as the new F-TV method, wherein the alternative pseudoin-
verse L̃† = D†W−1 is used in lieu of L† at each iteration of the flexible framework. We
also consider FBTV, with a regularization parameter λFB = 0.0014 and optimal step-size
τFB = 1.8330. The graphs of the RREs versus iteration number are shown in Figure 2 (left
frame). For this test problem, the solvers are run for 300 iterations and we can clearly see
that each of the F-TV, F-TV(p), and LSQR-L methods terminate early due to the stopping
criterion (31). The RREs in Figure 2 show that both F-TV and F-TV(p) follow very similar
error histories, and terminate close to one another at iterations 48 and 52, respectively
(highlighted by diamond markers), with an RRE around 0.25. This behavior provides ex-
perimental evidence supporting the use of the approximate pseudoinvese L̃† = D†W−1 in
the following test problems. FBTV sees steady improvement of the RRE over all iterations,
and achieves an RRE similar to F-TV at iteration 150. Plots of the regularization parameter
automatically selected when solving the projected problem are provided in the right-hand
frame of Figure 2. We see that no Tikhonov regularization is enforced in the projected
problem (23) until iteration 46; however, since the projected problem (23) is associated
with the standard-form transformed problem (13), even if λ = 0, the regularization matrix
WkD2d affects the transformed coefficient matrix Ā, thus influencing the solutions x(k) at the
kth iteration. Although not shown in the following, the adaptively chosen regularization
parameter exhibits a behavior similar to the one displayed in Figure 2, i.e., it is initially zero
and then quickly stabilizes around a suitable value. The reconstructions achieved when the
stopping criterion is satisfied are displayed in Figure 3; corresponding surface plots are also
displayed to better indicate their ideally piecewise-constant features. The iteration number
and associated RRE are also reported. Since the geometric pattern test image is piecewise
constant, total variation is a suitable choice of regularizer as it promotes such a property
in the reconstructions. Indeed, the reconstructions computed by FBTV, F-TV, and F-TV(p)
reproduce such features, whereas LSQR-L, which uses a fixed regularization matrix D2d,
does not (e.g., it yields a reconstruction that has a distinct valley in the rectangular shape).
The reconstruction from FBTV has the smallest RRE out of the presented reconstructions.
However, we see in Figure 2 that, while the RREs of both F-TV and F-TV(p) temporarily
stagnate after the stopping criterion is satisfied, they then continue to decrease to levels
comparable with that of the presented FBTV reconstruction.
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Figure 2. Experiment 1, with N = 32. (Left frame): History of the relative error norms, comparing
FBTV, F-TV, F-TV(p), and LSQR-L. (Right frame): History of the automatically selected regularization
parameter for the projected problem (for the F-TV, F-TV(p), and LSQR-L methods), according to the
discrepancy principle (29). Diamond markers indicate the iteration at which the stopping criterion (31)
is satisfied.
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Figure 3. Experiment 1, with N = 32. Reconstructed solutions from LSQR-L, FBTV, F-TV, and F-TV(p)
when the respective stopping criterion has been satisfied. The RRE and corresponding stopping
iteration are displayed in the frame titles.

Next, we consider the test problem of size N = 256; in this setting (as well as for
all the other experiments), it is no longer feasible to compute (WkD2d)

†. Figure 4 shows
the reconstructions computed by the FKS-based methods and LSQR-L at the stopping
iteration, the IRN methods at the final iteration, and the FBTV and GKS methods at the
iteration with the lowest RRE. We can see that both the IRN and GKS methods struggle
to distinguish the corners of geometrical objects, which appear flat and truncated. GKS
performs exceptionally well in recovering the correct pixel intensity scale, whereas the
IRN-diag reconstruction has some pixels with intensities as low as −1 and as high as 1.8,
due to spurious oscillations around the edges of the imaged objects. The reconstruction
by LSQR-L has many ringing artifacts, which are removed when more sophisticated
regularizers, such as isotropic total variation, are utilized. The values of the relative errors
versus number of iterations for all the considered methods are plotted in Figure 5, in the
upper frames. In both frames, we can clearly see that the IRN methods are affected by
periodic sudden jumps in the RRE values: this is due to the fact that, in accordance with
common practice (see, e.g., [40]), the IRN methods are implemented with ‘cold’ restarts,
i.e., x0,? = 0 at the beginning of each iteration cycle. The frame in position (2,2) also
displays the progress of the relative errors versus computational time (as measured by
MATLAB’s tic toc command) for a few selected methods, where both F-TV and LSQR-L
are run till the stopping criterion is statisfied and all the other solvers run for 200 iterations.
We can clearly see that the running time of the new F-TV methods exceeds the running
times of FISTA and GKS by approximately 20 s, and the running time of IRN-TV by
approximately 10 s. However, the new F-TV method also achieves a lower RRE and it is
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likely that, if FISTA, GKS, and IRN-TV are run for more iterations, they will reach the same
RRE, taking additional computational time. Moreover, according to the standard practice,
FISTA may be run several times for different values of the regularization parameter λ
before finding an appropriate one: for this numerical experiment, running FISTA for three
different values of λ would be enough to exceed the F-TV computational time. The quality
of the computed solutions versus the number of iterations is also displayed in the frames
in the third row of Figure 5, where the SSIM is used as a quality measure. According
to this metric, the reconstructions computed by F-TV, GKS, and FBTV have similar high
quality, which agrees with the pictures displayed in Figure 4. As already remarked in the
previous sections, one advantage of the new FGK-based solvers is that the regularization
parameter λ can be adaptively and heuristically chosen at each iteration: the frame in
position (2,1) of Figure 5 displays the behavior of the F-TV RRE with iteration-dependent
regularization parameter λ(k), k = 1, 2, . . . , set according to the discrepancy principle (30),
and fixed regularization parameter λ = λ(200). We can clearly see that the two approaches
are almost identical, providing experimental validation for the adaptive regularization
parameter choice. Although not reported, such behavior is common to F-TV and F-aTV and
it is observed in all the performed numerical experiments. The history of the total variation
of the reconstructions is plotted in the bottom row of Figure 5, where the total variation of
the ground truth image is also included. Excluding those of IRN-diag, F-diag, and LSQR-L,
the total variation of the reconstructions stabilizes at a level adherent to that of the ground
truth, with the IRN-aTV, IRN-TV, and GKS reconstructions performing particularly well.

Figure 4. Experiment 1, with N = 256. Reconstructions achieved by various methods at the stopping
iteration (if a stopping criterion is used, else the maximum iteration). The RRE and stopping iteration
for each reconstruction are displayed in the frame titles.
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Figure 5. Experiment 1, with N = 256. (Top row): History of the relative error norms, com-
paring F-TV, F-aTV, F-diag, FBTV, and LSQR-L. Diamond markers indicate the iteration at
which the stopping criterion (31) is satisfied. (Second row, left): history of the relative error
for the new F-TV method implemented with iteration-dependent regularization parameter λ(k),
k = 1, 2, . . . , set according to the discrepancy principle (30), and fixed regularization parameter
λ = λ(200). (Second row, right): progress of the F-TV, LSQR-L, FBTV, GKS and IRN-TV relative
errors versus elapsed computational time. (Third row): SSIMs values versus iteration number for
the methods listed in Table 1. (Bottom row): history of the total variation of the reconstructions
computed by each method.



J. Imaging 2021, 7, 216 18 of 24

5.2. Experiment 2—Image Inpainting and Deblurring

In this experiment, we consider restoring a 256× 256 pixel image of high total variation
that has been corrupted by both blur (associated with a known blurring operator Ablur) and
undersampling (associated with a known operator S), in this order. The uncorrupted test
image, blurred data, and undersampled data are shown in Figure 6. The blurring operator
Ablur is generated using the following IR Tools function:

Ablur = PRblurshake(’CommitCrime’,’on’,’BlurLevel’,’mild’),

which models random shaking blur of mild intensity. Here, the ’CommitCrime’ option
relates to whether the reflexible boundary conditions, imposed by the blurring operator,
should be regarded as how the exact data precisely behave outside the frame of reference;
see [39] for details. The known undersampling operator S picks clusters of pixels at random:
approximately 40% of the pixels are retained. The forward operator associated with this
test problem is therefore A = SAblur, of size 27, 395× 65, 536. Gaussian white noise e of
relative noise level 0.01 is added to the data. Figure 7 displays the reconstructions obtained
by the considered methods, with a similar format to Figure 4. We can see that the IRN
methods yield reconstructions that are more blocky and piecewise than the F-TV and the
F-diag methods. LSQR-L performs well for this problem, with a reconstruction similar to
those obtained by both F-TV and F-diag. This may in part be due to the original picture
having piecewise constant features along with smoothly and rapidly varying features, so
that penalization of the TV norm may not be as competitive an option as simply penalizing
the (not necessarily sparse) gradients. We remark that it takes LSQR-L almost twice as
many iterations as F-TV and F-diag to terminate via the stopping criterion (31), despite
the three methods having similar RRE histories (this is visible in Figure 8). FBTV (with
λFB = 0.5584, τFB = 1.8330) attains a reconstruction of quality similar to those of IRN-TV
and IRN-aTV. Both F-aTV and GKS perform poorly for this problem, with some pixels in
the respective reconstruction dominating the scaling of the image and far exceeding the
true pixel value range. Along with the RRE history, Figure 8 displays the SSIM history,
the values of the RREs versus the elapsed computational time, and the values of the total
variation of the reconstructions at each iteration.

5.3. Experiment 3—Computed Tomography

We consider an undersampled computed tomography test problem, with a ground
truth image (phantom) of size 256× 256 pixels, based on random Voronoi cells and simu-
lating grains in a crystalline material. The forward operator represents a 2D equidistant
parallel X-ray beam geometry, with data taken from angles 0 to 179 degrees in increments
of 2, leading to an underdetermined matrix A of size 32, 580× 65, 536. The data (sinogram)
are corrupted by Gaussian white noise of level 0.01. Such a test problem can be generated
from IR Tools with the following instructions:

PbOpt = PRset(’angles’, 0:2:179, ’phantomImage’, ’grains’);

[A, btrue, xtrue, ProbInfo] = PRtomo(256, PbOpt);
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Figure 6. Experiment 2. Test problem involving shaking blur followed by inpainting operator.
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Figure 7. Experiment 2. Reconstructions achieved by various methods. The RRE and stopping
iteration for each reconstruction are displayed in the frame title.

The phantom and sinogram for this test problem are displayed in Figure 9. The top
row of Figure 10 displays the history of RREs of the considered methods, in which not
only do IRN-based methods achieve the lowest RREs, but they also terminate inner loops
early—leading to around half as many overall iterations being performed. FBTV (with
fixed λFB = 12.5881, τFB = 6.1585 · 10−5), F-TV, and LSQR-L have similar RRE histories for
the first 30 iterations; however, FBTV exhibits semi-convergent properties whereas LSQR-L
and F-TV stabilize due to the automatically selected regularization parameter. The GKS
method exhibits inconsistent improvement of RRE between iterations, and settles at an
RRE larger than the FKS and the IRN ones. The smallest RRE out of all the considered
methods is achieved by IRN-diag on the third outer loop. Subsequent outer loops of
IRN-diag, however, lead to an increase in RRE—an issue that could be remedied, should a
stopping criterion for the outer iterations be imposed. The F-aTV method yields a poor
reconstruction of the phantom, with lots of artifacts and incorrect scaling of the pixel
intensities. Excluding FBTV and F-aTV, all the methods realize, on their final iteration,
a reconstruction that has total variation similar to that of the true phantom’s (as can be
seen in the bottom row of Figure 10).

The reconstructions achieved when the stopping criterion is satisfied are displayed in
Figure 11.

All the experiments considered in this section show that the new FGK-based solvers
are indeed competitive with other popular edge-enhancing solvers: in particular, they
achieve results of similar or improved quality with an increased speedup when it comes to
the number of performed iterations. In all the examples, the reconstructions recover the
edges and piecewise constant features of the exact images; the iteration-dependent weights
are also able to recover rapidly changing and smooth features whenever they are present.
The quality of the reconstructed solutions depends on the considered regularization terms
and weightings, too: the performance of TV, aTV, and the edge-enhancing weights is
obviously not the same across the considered test problems, but there is at least one such
regularizer that, when considered within the FGK-based solver, delivers excellent results.
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For all these methods, the regularization parameters and stopping iteration are adaptively
selected, leading to reliable parameter-free solvers.
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Figure 8. Experiment 2. (Top row): history of the relative error norms, comparing F-TV, F-aTV,
F-diag, FBTV, and LSQR-L. Diamond markers indicate the iteration at which the stopping criterion
(31) is satisfied. (Second row, left): progress of the F-TV, LSQR-L, FBTV, GKS and IRN-TV relative
errors versus elapsed computational time. (Second row, right): SSIMs values versus iteration
number for F-TV, LSQR-L, FBTV, GKS and IRN-TV. (Bottom row): history of the total variation of the
reconstructions computed by each method.
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Figure 9. Experiment 3. Computed tomography test problem: the true object to be imaged (phantom)
is displayed on the left and the collected data (sinogram) are displayed on the right.
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Figure 10. Experiment 3. (Top row): history of the relative error norms, comparing F-TV, F-aTV,
F-diag, FBTV, and LSQR-L. Diamond markers indicate the iteration at which the stopping criterion
(31) is satisfied. (Second row, left): progress of the F-TV, LSQR-L, FBTV, GKS and IRN-TV relative
errors versus elapsed computational time. (Second row, right): SSIMs values versus iteration
number for F-TV, LSQR-L, FBTV, GKS and IRN-TV. (Bottom row): history of the total variation of the
reconstructions computed by each method.
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Figure 11. Experiment 3. Reconstructions achieved by various methods. The RRE and corresponding
stopping iteration are displayed in the frame titles.

6. Conclusions and Future Work

This paper introduced new solvers, based on a hybrid FGK iterative scheme, that
can be efficiently employed to regularize and recover edges in inverse problems arising in
imaging applications. The new solvers leverage an MM optimization approach and can
handle different regularization terms expressed as iteratively reweighted 2-norms—namely,
TV, anisotropic TV, and some heuristic edge-enhancing weights. The new solvers share
the same theoretical framework as IRLS or IRN methods, and experimentally produce
reconstructions of similar or better quality; however, they are inherently more efficient than
IRN, since the inner–outer iterative schemes employed by IRN for solving the quadratic
problems and updating weights are replaced by flexible Krylov methods that allow weights
to update at each iteration, i.e., while the quadratic problems are solved. The regularization
parameter can be set adaptively at each iteration, with negligible computational cost.
The results of extensive numerical tests show that the new FGK-based solvers deliver
solutions of similar or better quality even when compared with other state-of-the-art
solvers for TV regularization, such as the forward–backward method.

Future work will focus on performing further theoretical analysis to provide alterna-
tive justifications for the use of the approximate pseudoinverse L̃†, as well as building a
solid theoretical framework for adaptive regularization parameter choice within flexible
Krylov methods. Possible extensions will include handling high-order or fractional-order
TV regularization terms [41,42], even in a 3D or tensorial framework [43], as well as
regularized functionals that involve more than one regularization term. Such future in-
vestigations, if successful, may provide an efficient alternative to current regularization
methods incorporating infimal convolutions of total-variation-type functionals [44], which
are especially relevant when spatial and temporal regularization should be employed,
e.g., in video processing.
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