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Cancer is a multifaceted global health issue and one of the leading causes of death
worldwide. In recent years, medical science has achieved great advances in the diagnosis
and treatment of cancer. Despite the numerous advantages of conventional cancer
therapies, there are major drawbacks including severe side effects, toxicities, and drug
resistance. Therefore, the urgency of developing new drugs with low cytotoxicity and
treatment resistance is increasing. Antimicrobial peptides (AMPs) have attracted attention
as a novel therapeutic strategy for the treatment of various cancers, targeting tumor cells
with less toxicity to normal tissues. In this review, we present the structure, biological
function, and underlying mechanisms of AMPs. The recent experimental studies and
clinical trials on anticancer peptides in different cancer types as well as the challenges of
their clinical application have also been discussed.

Keywords: cancer, antimicrobial peptides (AMPs), anticancer peptides (ACPs), apoptosis, angiogenesis,
exosome, mechanism
INTRODUCTION

Cancer treatment is still one of the biggest challenges in the public health system globally, with a
high mortality rate (1, 2). Current therapeutic strategies, including surgery, radiotherapy,
chemotherapy, or a combination of these treatments, will prolong a patient’s life expectancy (3,
4). However, several obstacles can affect or limit their effectiveness. For example, drug access is
restricted to the whole tumor volume due to the complexity and heterogeneity within the tumor or
the surrounding microenvironment that leads to chemotherapy resistance (1). Another unpleasant
problem is the lack of specificity of some anticancer drugs, which causes toxic side effects on healthy
cells (5, 6). With the advent of molecular biology, cancer treatment today has shifted from
chemotherapy and radiotherapy to molecular targeting of cancer, which prevents damage to
healthy tissue on the one hand and more effective treatment of cancer on the other (7, 8). In the
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quest for new anticancer strategies, some of the most attractive
compounds that have been tested in the laboratory and are
expected to go beyond the shortcomings of traditional medicines
are antimicrobial peptides (AMPs) (8).

These peptides are essential components of the host’s innate
immune system and have been found in almost all species of
bacteria, fungi, invertebrates, vertebrates, and plants. Virtually any
organism secretes AMPs to respond to various pathogens and
stress conditions (9, 10). The discovery of AMPs dates back to
1922 when Alexander Fleming discovered the antimicrobial
activity of human lysozyme in saliva. More than 5,000 AMPs
have been identified so far, either de novo or synthesized in the lab
(11). AMPs consist of varying lengths (up to 100) of amino acid
residues, and they possess broad-spectrum antimicrobial activities
against bacteria, viruses, fungi, and protozoa (8, 9). Antibiofilm,
anti-inflammatory, and immunomodulatory activities of AMPs
have also been reported (12). In addition, AMPs have wound
healing properties and can be used in tissue engineering and
regenerative medicine. Although most clinical studies focus on the
antimicrobial properties of AMPs, many recent pieces of research
suggest that they also have anticancer activity (Figure 1) (8).

The cytotoxic effects of numerous insect AMPs on different
cancerous cell lines, such as breast cancer, lung cancer,
melanoma, leukemia, and lymphoma, have been reported (13).
These cationic low-molecular-weight AMPs that are involved in
Frontiers in Oncology | www.frontiersin.org 2
both antimicrobial and anticancer activities are termed
anticancer peptides (ACPs) (14).

AMPs/ACPs share some common characteristics, including
cationicity (positive net charge), high hydrophobicity, and
amphipathic structure, giving them an increased affinity for cell
membranes (8). Given the very similar characteristics of AMPs/
ACPs, efforts have been made to understand why some AMPs have
antitumor activity, allowing the better design of ACPs. Due to their
features, ACPs could be considered a valuable resource, with a low
proclivity to develop cancer cell resistance. The outer membranes of
cancer cells have more negative charge molecules than normal cell
membranes (15). This feature facilitates the attachment of the ACPs
to cancer cells by electrostatic interactions, leading to selective
disruption of cancer cell membranes with inducing either necrosis
or apoptosis (15). However, ACPs have unique characteristics,
including biocompatibility, high therapeutic potency, low risk of
emergence in target cells, ease to synthesize and modify, and low
toxicity against normal mammalian cells (6, 16–18). Also, these
compounds are immunogenic with a short half-life in vivo that
makes them suitable for clinical applications (13). Considering the
molecular characteristics and observed properties, ACPs could be
identified or designed as a promising alternative to conventional
chemotherapy (19). This review presents the classification, source,
structure, biological function, and underlying mechanisms of
AMPs/ACPs. Furthermore, we have shed light on the recent
FIGURE 1 | Clinical applications of the antimicrobial peptides (AMPs) from wound healing and drug delivery to anticancer activity (Created with BioRender.com).
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experimental studies and clinical trials on ACPs in different cancer
types, the challenges and strategies of clinical applications of AMPs/
ACPs, and the role of computational approaches in their design.
THE CLASSIFICATIONS, STRUCTURES,
AND CHARACTERISTICS OF AMPs

Until now, thousands of AMPs have been discovered (20). These
peptides are small molecular weight oligopeptides, variable in
amino acid composition and host origin. However, they are
ubiquitous in nature and are expressed by specific genes.
According to the AMP database (http://aps.unmc.edu/AP),
there are 3,283 AMPs, of which approximately 259 peptides
are listed as anticancer peptides (21). AMPs can be classified into
different categories based on these peptides’ various amino acid
components, origin, structures, and biological roles (Figure 2).

According to the amino acid composition, AMPs are divided
into two major types: linear molecules with an a-helical structure
without cysteine (e.g., cecropin, magainin) and cysteine-
containing polypeptides with disulfide bridge(s) such as insect
defensin (22). In another classification, mammals’ AMPs are
categorized into cathelicidins and defensins according to their
structure and biological properties (23, 24). Natural synthetic or
ribosomal synthetic peptides and nonribosomal peptides are
other categories for antibacterial peptides (25). Moreover,
electrostatic charge is a significant feature for the AMP
classification. Therefore, they are classified into two groups
based on this feature: cationic peptides and noncationic
peptides (26, 27). Since the type, number, and composition of
amino acids of AMPs/ACPs play a critical role in their activity,
structural classification is currently the most common
classification method (28).

AMPs/ACPs can be classified into four categories based on
their secondary structures, including a-helical rod
Frontiers in Oncology | www.frontiersin.org 3
conformations, b-sheeted peptides, random coil, and extended
structures (29). The peptide chain is generally short and
straightforward in the a-helical ACPs (the most common type
of ACPs) found widely in the amphibian epidermis (30). They
are the most extensively studied type of ACPs at present. The
majority of b-pleated sheet ACPs have two or more disulfide
bonds and are relatively stable. These ACPs are more complex
than a-helical ACPs, and they are often present in plants and
animals (31). In random coil ACPs, proline and glycine residues
are generally abundant, lacking a typical secondary structure
(32). Cyclic ACPs are closed peptides, are more stable than linear
structures, and consist of a head-to-tail cyclization backbone or
S-S bonds that build cysteine knots (32, 33). Examples of ACPs
with different structures are summarized in Table 1.
THE BIOLOGICAL FUNCTION OF
ANTIMICROBIAL PEPTIDES

AMPs have a wide range of activities against various species,
including viruses, bacteria, fungi, and even mammalian cells;
however, the molecular mechanisms by which they act are
frequently not well known. In the literature, AMPs are often
referred to as a “promising alternative to antibiotics” that they
show a wider range of antibacterial effects than traditional
antibiotics (50). In addition to bacteria, they are also effective
against pathogens, fungi, and viruses (51). For instance, the
human cathelicidin peptide LL37 is cationic and a-helical that
possesses antimicrobial activity for bacteria, fungi, mold, protozoa,
and some enveloped viruses. The inhibitory effects of AMPs on
various DNA and RNA viruses such as influenza virus, HIV,
hepatitis B virus, and herpes virus have been demonstrated (52).
Moreover, different cationic AMPs can be applied in combination
with traditional antibiotics to boost the medicinal effects of each and
even expand the antibacterial scope of the latter (49, 51).
FIGURE 2 | Antimicrobial peptide classification.
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http://aps.unmc.edu/AP
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Jafari et al. Antineoplastic Effects of AMPs
AMPs/ACPs play their biological function in different
manners. One is the ability of AMPs/ACPs to bind directly
with bacterial membranes or cancer cell walls due to their
cationic and amphipathic nature (53). Generally, these cationic
AMPs/ACPs contain positively charged amino acids like lysine
and arginine and possess a net positive charge ranging from +2
to +9 at neutral pH (54, 55). Since normal eukaryotic cell
membranes are made of uncharged neutral phospholipids,
sphingomyelins, and cholesterol, AMPs/ACPs can exert
antimicrobial activity without harming normal cells. AMPs
bind to bacteria membranes in different models, including a
barrel-stave, carpet-like, toroidal pore model and a detergent-like
model (56) (Figure 3).

The interaction of AMPs with microbial membranes leads to
the killing of microbes through non-enzymatic membrane
disruption. Defensins and cathelicidins, the major families of
antimicrobial peptides, can destroy the integrity of the
membrane by forming pores in the bacterial membrane and
then peptide insertion, causing lysis of the targeted microbes
and leading to cell death (23, 58). Some AMPs like
phospholipase A2 (PLA2) disrupt bacterial membranes through
enzymatic digestion. Nevertheless, some peptides kill bacteria by
disturbing their normal physiological activity and inhibiting
intracellular functions, such as blocking enzyme activity, DNA
replication, RNA transcription, and suppressing protein synthesis
without damaging the cell membrane (50, 59). Some AMPs can
also prevent biofilm formation and disrupt current biofilms (60).
Frontiers in Oncology | www.frontiersin.org 4
THE ANTICANCER MECHANISMS
OF ACPs

Despite considerable achievements in treating tumors, there are
significant obstacles in controlling the tumor progression and fatal
consequences regarding special genetic features of cancerous
cells and the tumor microenvironment (TME) condition.
Mainly carcinogenesis initiates from alteration in genetic and/or
epigenetic cellular characteristics triggering some cellular pathways
that induce malignant features in affected cells such as immune
evasion, uncontrolled cell division, abnormal metabolism,
immortality, and alteration of the cellular structure (61).
Considering the fact that plasma membrane dresses the entire cell
content and is a representative component to external factors,
alteration in plasma membrane components is critical in
malignant processes. The plasma membrane structure obeys the
fluid-mosaic pattern in which proteins are flowing within a bilayer
of phospholipids. In this model, proteins can freely rotate, move
laterally, and ascend or descend between plasma layers (62).
Although both normal and malignant cells obey the fluid-mosaic
pattern in their plasma membrane, there are considerable
differences in the membrane composition between normal and
malignant cells. In fact, altered TME, such as elevated reactive
oxygen species (ROS) and hypoxia, dysregulates phospholipid
transporters, altering the regular pattern of plasma membrane
phospholipids (63). Particularly, anionic phospholipids such as
phosphatidylserine (PS) and phosphatidylethanolamine (PE)
TABLE 1 | Some anticancer peptides with different structures and sources.

ACPs name Structure Source Cancer type/cell line Dosage Refs

Magainin 2 (MG2) a-helical African clawed frog Bladder cancer/RT4,
Breast cancer/MDA-MB-231

198.1 mM,
120 mM

(34,
35)

Aurein a-helical Glandular secretions of green and golden bell
frogs and southern bell frogs

Glioblastoma/T98G 10−5−10−4 M (14,
36)

Buforin IIb a-helical Stomach tissue of the Asian toad Bufo bufo
garagrizans

Leukemia, breast, nonsmall cell lung cancer,
prostate, and colon cancer

7.2–23.9 mg/ml (37)

L-K6 a-helical Breast cancer/MCF-7 23 mM (38)
LL37 and FK-16 a-helical Neutrophils Colorectal cancer/LoVo and HCT116 ∼40 µM (39)
Brevenin-2R a-helical Skin of the frog Rana ridibunda Breast cancer/MCF-7, T-cell leukemia/Jurkat,

B-cell lymphoma/BJAB
10–15 mg/ml, 20–25 mg/

ml, 30–40 mg/ml
(40)

Polybia-MPI a-helical Venom of the social wasp Polybia paulista Prostate cancer/PC-3, bladder cancer/Biu87,
and EJ

64.68 mM, 52.16 mM,
75.51 mM

(41)

Dermaseptin B2 a-helical Phyllomedusa frog Prostate cancer/PC3, DU145 and LnCap 0.71-2.65 mM (42)
Bovine lactoferricin
(LfcinB)

b-pleated
sheet

Bovine milk Stomach cancer cell/SGC-7901 ∼100 mM (43)

MPLfcinB6 b-pleated
sheet

Designed T-leukemia cells/Jurkat and CEM ∼25 mM (44)

LfcinB-P13 b-pleated
sheet

Synthesized Liver cancer/SMMC772, L02 41.8 µg/ml, >100 µg/ml (45)

Human neutrophil
peptide (HNP-1)

b-pleated
sheet

Prostate cancer/PC-3 2.2 mM (6)

Alloferon Random
coil

Insects Herpes simplex virus, human papillomavirus NR (46)

KW-WK Random
coil

Designed Human kidney/293 cells 64 µM-128 µM (33)

PR-35 Random
coil

Designed 293T cells NR (47)

Diffusa Cytide 1 Cyclic Leaves and roots of H. diffusa Prostate cancer/LNcap, PC3, DU145 5.03 µM, 2.24 µM, 3.32
µM

(48)

H-10 Cyclic Mouse malignant melanoma Melanoma/B16 >10 µM (49)
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move from the inner side to the outer side, resulting in extra
membrane negative charge and increased transmembrane potential
(64). The membrane surface changes are not limited to enhanced
negative charge. It has been shown that the membranes of
malignant cells contain a more significant number of microvilli
that increase the anchoring area for peptide and other external
molecule adhesion (65).

Besides the cellular changes, tumor progression changes the
elements of TME. It has been shown that high and rapid
consumption of nutrients and oxygen along with the
accumulation of metabolic substances confront tumor
development; thus, cancer cells adopt compatible features to
overcome undesired TME conditions (66). Cancer cells
reprogram their metabolic pathways through altering
glycolysis-related proteins (GLUT1, GLUT3, LDHA, and
PKM2), in which tumor cells prefer fermentation to aerobic,
the so-called “Warburg effect” (67, 68). Additionally, oxygen
tension affects the expression pattern of slug, N-cadherin, snail,
E-cadherin, and vimentin and elevates the amounts of matrix
metalloproteinases (MMPs) in TME that finally enhances
epithelial–mesenchymal transition (EMT) as an essential factor
in tumor metastasis (69, 70). Hypoxia and other TME factors
Frontiers in Oncology | www.frontiersin.org 5
also increase angiogenesis by enhancing the expression of
angiogenin, vascular endothelial growth factor (VEGF), TGF‐b,
basic fibroblast growth factor (bFGF), focal adhesion kinase
(FAK), Src, MMP-2, MMP-9, and platelet-derived growth
factor (PDGF) (68, 71). Furthermore, TME contains several
infiltrated or resident inflammatory cells and mediators that
participate in all neoplasm progression stages, from tumor
initiation to cancer promotion and invasion to the near or
metastasis to distant tissues (72).

As another problem, chemotherapeutic drug resistance
remained a primary limiting factor to achieving desired
therapeutic outcomes in patients with cancer. Tumor
heterogeneity, immune evasion, condition of TME, expression of
efflux pumps, and presence of cancer stem cells are attributed to
drug resistance of cancer cells (73, 74). These drugs also affect
several body organs that produce undesirable side effects such as
fatigue, diarrhea, constipation, chest pain, mucositis, pain, rash,
vomiting, and anemia (75). Considering the challenges in cancer
therapy, proposing an appropriate and targeted treatment strategy
may improve outcomes and increase the life quality.

Recently, studies suggest using AMPs as a novel therapeutic
approach for cancer treatment. Many studies reported that
FIGURE 3 | Proposed models for the mode of action for extracellular AMP activity [modified from ref (57)].
February 2022 | Volume 12 | Article 819563
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AMPs selectively induce apoptosis and necrosis of cancer cells by
causing membrane lysis or pore formation (15, 76, 77). Negative
outer membrane charge due to anionic phospholipids increases
the interaction of cationic AMP and anionic cancer cells (78, 79).
In addition to the anionic phospholipids of the cancer cell
membrane, the concentration of some anionic glycoproteins
such as mucins and heparan sulfate proteoglycans increases in
the neoplastic situation, which results in the enhancement of
AMP–cancer cell membrane interaction (16, 80, 81). Besides, the
presence of more microvilli compared to normal cells facilitates
the interaction of AMPs and cell membrane (15). The next step
following AMP–membrane interaction is AMP penetration into
the targeted cancer cell. AMPs enter the cells in two distinctive
manners: energy-dependent or energy-independent. It has been
suggested that AMPs containing amino acids with a positive
charge, including arginine and lysine, select an energy-dependent
way, while the other AMPs, including MMGP1 and maganin,
reach inside the cancer cell via energy-independent direct cell
penetration (82–84). Following the attachment of AMPs to the
cancer cell membrane, they can induce antineoplastic effects via
altering the integrity of the cancer cell membrane, changing
some intracellular pathways, inhibiting angiogenesis pathway,
and affecting the immune system, which depends on the AMP
and cancer types (85, 86). Various mechanisms of action of ACPs
is shown in Figure 4. Considering the heterogeneous features of
Frontiers in Oncology | www.frontiersin.org 6
cancer cells in different malignancies, the effectiveness of AMPs,
action mechanisms, and possible use in cancer therapy in various
cancer types are discussed in the next section.
THE ANTINEOPLASTIC ROLES OF AMPs
IN VARIOUS CANCER TYPES

Urinary Bladder Cancer
Urinary bladder cancer (UBC) is a heterogeneous disease faced with
undesirable clinical outcomes due to insufficient research, poor
understanding of cancer biology, and lack of novel therapeutic
approaches (88). Almost 3.0% of all newly diagnosed cancer cases
and 2.1% of all cancer mortality are attributable to UBC (89).
Depending on the stage, the main chemotherapeutic regimes consist
of methotrexate, vinblastine, and cisplatin in addition to
anthracycline such as doxorubicin or epirubicin (90). However,
the therapeutic results and adverse effects are unsatisfactory.

Several AMPs have shown therapeutic effects against UBC by
interfering with intracellular pathways or disrupting cell
membranes. It has been demonstrated that Cecropin A and
Cecropin B can play an antineoplastic role by reducing tumor cell
proliferation, interrupting DNA synthesis, and lysing tumor cells
directly (91). One study indicated that Magainin II could repress
FIGURE 4 | Different mechanisms of anticancer peptide (ACP) function. ACPs can function through a variety of mechanisms, including apoptosis or necrosis
induction of cancer cells, activation/inhibition of proteins, and inhibition of angiogenesis [modified from ref (87)]. (Created with BioRender.com).
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bladder cancer cell proliferation in a dose-dependent manner
unaffected by the multidrug resistance (MDR) phenotype.
Magainin II induced cytotoxic effects against all bladder cancer
cell lines by an average IC50 of 198.1 mM (range, 52.4–484.03 mM)
based on the WST-1 assay and 75.2 mM (range, 31.0–135.3 mM)
based on the BrdU assay (34). Wang et al. demonstrated that
polybia-mastoparan I (MPI) derived from the venom of the social
wasp Polybia Paulista prevented the proliferation of bladder and
prostate tumor cells via cell membrane disrupting. The cytotoxic
effect was limited to the neoplastic cells, and the proteins showed cell
selectivity action (92).

In order to increase the efficacy, studies tried to optimize the
antineoplastic effects of AMPs and develop new therapeutic
application methods. It is indicated that polybia encounters
difficulties in transmucosal penetration when administered in an
intravesical way. The low penetration rate is attributed to the
bladder wall’s particular histology and the high molecular weight
and hydrophilicity of polybia-MPI that could limit the therapeutic
effect. Li et al. synthesized fluorinated polyethylenimine (F-PEI) to
design an effective formulation for polybia-MPI, which displayed
significant cross-membrane, transmucosal, and intratumoral
penetration ability due to hydrophobic and lipophobic features of
fluorinated chains in F-PEI. Intravesical administration of polybia-
MPI/F-PEI nanoparticles in mice with orthotopic bladder tumors
resulted in a prolonged lifetime within four weeks (survival rate of
83% for the MPI/F-PEI group compared to 33% for control groups)
and repressed tumor growth. In this regard, the tumor volume ratio
after and before the treatment (Vt : Vo) in the control group was 13,
while it was reduced to 2 in the treatment group (93). In another
study, Huang et al. designed a cancer vaccine using pardaxin (GE33)
as an effective antineoplastic peptide. They showed that in vivo
administration of pardaxin combined with inactivated mouse
bladder tumor cell lysates improves nitrous oxide (NO) secretion
(94). It has been indicated that NO can induce antitumorigenic
effects depending on the source, the level of production, and the
tumor microenvironment (95). Besides, immunized mice showed
prevented growth of the tumor and improved recruitment of
cytotoxic T cells, monocytes, T-helper cells, and NK cells. It
seemed that increased levels of monocyte chemoattractant
protein-1 (MCP-1), IL-6, and IL-12 in mouse macrophages
facilitated the increased immune response. In addition to the
influential inflammatory role of pardaxin, decreased VEGF
expression was also observed (94).

Collectively, promising preclinical results of using AMPs in
UBC encourage scientists to translate AMPs into clinical
practice. However, some critical questions on the safety and
efficacy of AMPs in UBC treatment and appropriate dosage
remained unsolved that should be evaluated before introducing
AMPs to clinical practice. Although modification of AMPs to
increase stability, efficacy, and bioavailability was assessed in
some studies, there is an essential requirement for developing
new approaches in AMP modification.

Breast Cancer
Based on the National Cancer Institute, breast cancer is the
second main reason for women ’s death in the USA.
Frontiers in Oncology | www.frontiersin.org 7
Different classification of breast cancer is used to specify
therapeutically and follow up approaches. Based on the stage of
disease and characteristics of the tumor, many chemotherapeutic
drugs such as cyclophosphamide, doxorubicin, taxanes, as well as
hormone-based and monoclonal antibody drugs have been
administered to treat breast cancer (96, 97). However, the
heterogeneous nature of breast cancer and impressive side effects
of therapeutic interventions have reduced the success rate of
the treatments.

AMPs induce antineoplastic features on breast cancer cells
through several mechanisms, including cell membrane
disruption, mitochondrial-dependent apoptosis, triggering
some intracellular pathways, and disrupting the nucleus. It has
been shown that mammal-derived AMPs can display cytotoxic
effects against breast cancer cells. For instance, peptides derived
from bovine lactoferricin (LfcinB), a peptide fragment of bovine
lactoferrin, were cytotoxic for breast cancer cells in a
concentration-dependent manner that was optimum in a
concentration of 22 µM (98). In a bioinformatics study,
E-kobon et al. evaluated the cytotoxicity of six HPLC-separated
fractions of the giant African snails, Achatina fulica, mucus
against the MCF-7 breast cancer cells. Their HPLC evaluation
showed that the mucous of giant African snails contains six
peaks (fraction) named F1, F2, F3, F4, F5, and F6. They found
that 16 proteins in F2 and F5 fractions induced significant
cytotoxicity on MCF-7 cell lines. They showed that these small
cationic amphipathic peptides could be hopeful agents for novel
anticancer drug development (99). Hsiao et al. showed that
peptide derivatives of Ixosin-B-amide, isolated from salivary
glands of the hard tick I, can induce cytotoxic effects on breast
cancer cells. They demonstrated that MAP-04-03 had
antiproliferative effects on breast cancer cells. Additionally, it
inhibited cancer cell migration at lower concentrations
(100, 101).

Previously, pore formation was considered the main underlying
reason for cell death, high membrane permeabilization, or bilayer
disruption, while recent studies suggest newmechanisms (64, 102).
It has been shown that defensin, derived from avocado, could alter
the gene expression pattern of the intrinsic apoptosis pathway
factors such as Apaf-1, cytochrome c, and caspase 7 and 9 (103).
Besides, defensin persuaded the loss of the inner mitochondrial
transmembrane potential and increased the phosphorylation of
MAPK p38, which resulted in cancer cell death (103). Another
study proved the role of intracellular cytotoxic mechanisms of
AMPs. The authors reported that tilapia piscidin 4 (TP4), derived
from Oreochromis niloticus, induces an activator protein-1 (AP-1)
protein named FosB through disrupting calcium homeostasis in
triple-negative breast cancer (TNBC) cells (104). FosB, a Fos family
member, can dimerize with proteins of the JUN family and
consequently forms AP-1 (104). Increased levels of Fos and JUN
proteins in cooperation with AP-1 have been stated in situations in
which cells undergo apoptosis (105, 106). Therefore, FosB
overexpression can increase TNBC cell apoptosis (104, 107).
Wang et al. reported that L-K6 as an AMP only amplified
membrane permeability while not disrupting the cancer cell
membrane. Proving the intact consistency of the membrane,
February 2022 | Volume 12 | Article 819563
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they suggested that L-K6 cytotoxicity might be attributed to the
intracellular biofunctions of this AMP. In this line, minor
mitochondrial membrane depolarization and no cytoskeleton
disruption were observed that exclude these reasons. However, it
was indicated that L-K6 translocated into the cell nucleus and
accordingly disrupted the cancer cell nucleus (33).

On the other hand, some AMPs affect cancer cells in caspase-
independent and -dependent manner. Wang and colleagues
showed that temporin-1CEa could induce cancer cell death in
caspase-independent and -dependent pathways. Temporin-1CEa
disrupts the cancer cell membrane, resulting in cell-surface
phosphatidylserine exposure, a rise of plasma membrane
permeability, and quick transmembrane potential depolarization.
This AMP also worked through mitochondrial-dependent
pathways, including uncontrolled intracellular calcium leakage,
alteration of mitochondrial membrane potential, and
overproduction of ROS. It seemed that higher concentrations of
AMPs induce cell membrane disruption, while lower
concentrations induce cell death via mitochondrial-dependent
pathways (108).

Administrating AMPs combined with chemotherapeutic
drugs can be used as a new therapeutic approach. In this way,
some studies have suggested that AMPs may show
chemosensitizing properties. It has been concluded that
sublethal doses of NRC-03 and NRC-07 meaningfully reduced
the half-maximal effective concentration (EC50) of cisplatin for
breast carcinoma cells. Pretreatment of NRC-03 and NRC-0
diminished the EC50 of cisplatin by 5.5- and 1.6-folds,
respectively. It seems that these AMPs destroy the integrity of
the nuclear membrane that provides facilitated access of cisplatin
and other DNA-related chemotherapeutic agents to the cancer
cell nucleus (109). In another study, administrating doxorubicin
(dose: 6 mg/ml) combined with nisin (dose: 10 mg/ml) at sub-
inhibitory concentrations resulted in threefold higher
cytotoxicity than drug or AMP alone. Increased doxorubicin
uptake by breast cancer cells has also been concluded due to the
instability of cell membranes or poration (110).

Controlling considerable complications of breast cancer needs
introducing new therapeutic approaches. Considering the fact that
surgeries, especially total mastectomy, significantly impress the life
quality of patients, taking nonsurgical interventions can be a
desirable approach (111). AMPs have shown potent antineoplastic
effects in breast cancers in both mitochondrial-dependent and
mitochondrial-independent manners. Besides, the combination
therapy of AMPs with chemotherapeutic drugs was studied by
several scientists (109, 110). Thus, using AMPs combined with
conventional therapeutic approaches such as radiotherapy and
chemotherapy may increase the hope for better patient outcomes.
However, further studies are required for determining possible side
effects and appropriate dosage and route of delivery.

Colorectal Cancer
Colorectal cancer is the second leading cause of cancer mortality in
the United States (112). Colorectal carcinomas are classified as
familial, sporadic, and inherited based on different mutations in
specific genes such as oncogenes, tumor suppressor genes, and
Frontiers in Oncology | www.frontiersin.org 8
DNA repair genes. The broad spectrum of involved gene
mutations and molecular pathways, as well as the heterogeneity
of colorectal cancer, makes its treatment challenging (113).

Antineoplastic effects of AMPs against colorectal cancer cells
have been widely studied. Different mechanisms are suggested for
AMP actions in colorectal cancer, including inducing cytotoxicity,
changing metabolic profile, cell cycle regulatory proteins, and
activity of microRNAs. It has been shown that the BmKn2
peptide from scorpion has a cytotoxic effect against human colon
cancer cells (114). In another study, intratumor administrating of 5
ng microcin E492 (MccE492), a bacteriocin released from Klebsiella
pneumonia, reduced the xenograft colorectal tumor cell mass in the
zebrafish model 3.5 times more compared to the control group
(115). Nisin, a potent bacteriocin and antibacterial peptide,
attenuated the proliferation of colon adenocarcinoma cells and
suppressed metastatic progression by downregulating
carcinoembryonic antigen (CEA), carcinoembryonic cell adhesion
molecule 6 (CEAM6), MMP2F, and MMP9F genes (116).

As another mechanism, analysis of the 177 intracellular
metabolites and 113 secretory metabolites of colorectal cancer
cells showed considerable alteration in their metabolic profile
(glycolysis, purine metabolism, and Krebs cycle) in FF/CAP18-
treated cells in a dose-dependent manner (117). It is widely
acknowledged that hypoxia plays a critical role in cancer
metabolism and dormancy that promotes the onset and
progression of cancer. Hypoxia is usually present in the TME
due to the fast tumor growth without sufficient blood. This
condition may affect the release of hypoxia-inducible factor
(HIF), which plays a critical role in tumor progression through
regulating genes involved in glycolytic metabolism, angiogenesis,
and other biological mechanisms. Tumor cells prefer glycolysis
to oxidative phosphorylation (OXPHOS) for generating ATP
(Warburg effect). As illustrated in Figure 4, HIF increases glucose
uptake via GLUT1 and lactate clearance via monocarboxylate
transporter (MCT) 4, reprogramming cancer metabolism toward
aerobic glycolysis. This altered energy metabolism of tumor cells is
ideal for anticancer agents (i.e., ACPs). It is reported that ACPs can
disrupt glycolysis and/or mitochondrial respiration to increase ROS
production within cancer cells, which leads to cell death through an
apoptotic pathway (Figure 5) (117, 118). In this sense, FF/CAP18
reduces the Warburg effect in tumor cells and shifts glucose
metabolism toward the pentose phosphate pathway (PPP) (119).
One study showed the ability of a synthetic antitumor peptide, CIGB-
552, to negatively modulate NF-kB and HIF-1 pathways in human
lung cancer cell lines. A proteomic approach performed on CIGB-
552-treated cancer cells identified major processes affected by this
peptide as oxidative damage, apoptosis, inflammatory response, cell
adhesion, and motility (120).

According to some studies, AMPs may display anticancer effects
through inducing cell cycle regulatory proteins. For instance, bovine
lactoferrin and LfcinB demonstrated proapoptotic activities via
triggering p53, p21, BRC1, CHK, and ATM pathways. Activation
of these pathways mainly results in cell cycle arrest in response to
DNA damage (121). In contrast, some studies suggest that AMPs
induce their antineoplastic effects independently from cell cycle
regulatory signaling pathways. For example, FF/CAP18 yielded
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antiproliferative effects on human colon cancer cells by depolarizing
the mitochondrial membrane. However, the antiproliferative effect
of FF/CAP18 was independent of the p53 signaling pathway (122).

MicroRNAs are small noncoding RNAs consisting of 21–25
nucleotides that can suppress messenger RNA (mRNA) translation
via inducing mRNA degradation. Thus, microRNAs alter gene
expression post-transcriptionally regulating mRNA translation
(123). It has been observed that LL-37 and its analog peptide, FF/
CAP18, upregulated miR-663a in colorectal cancer cells.
Upregulated miR-663a directly bound to the coding sequence of
chemokine receptor (CXCR) 4 mRNA that resulted in the
inhibition of CXCR4 translation and consequent decrease in
phosphorylated protein kinase B (Akt). This pathway finally led
to p21 activation and tumor cell growth suppression through cell
cycle arrest at the G2/M phase (124). In a similar mechanism, KT2
and RT2 derived from Crocodylus siamensis caused cell cycle arrest
through the upregulation of p21. They also inhibited cancer cell
Frontiers in Oncology | www.frontiersin.org 9
migration via the downregulation of PI3K/AKT/mTOR signaling
pathways (125).

Combination therapy with AMPs and chemotherapeutic drugs
also was evaluated in colorectal cancer. Raileanu et al. assessed the
efficiency of Gramicidin A and doxorubicin against the spheroids
from colorectal cancer cells. The assessment of cancer cell viability
confirmed that both doxorubicin (EC50: 15.31 mg/ml) and
Gramicidin A (EC50: 9.78 mM) induce cytotoxic effects against
the cancer cell spheroids separately, whereas their combination
reduces the cancer cell viability synergistically (5). In another study,
150 mg/ml of KT2 and RT2 inhibited the HCT-116 cell proliferation
by 70.65% and 69.01%, respectively. Additionally, the results
showed that KT2 and RT2 peptides induced faster growth
inhibition (3 h after treatment) on HCT-116 than 5-FU (6 h after
treatment), a chemotherapeutic drug used for metastatic colon
cancer. Thus, combining KT2 or RT2 peptides with 5-FU may
enhance the efficacy of 5-FU (125). As a new drug delivery platform
FIGURE 5 | The role of ACPs and HIF in regulation of glucose metabolism in cancer cells. HIF involves the induction of the Warburg effect and glucose transport.
ACPs inhibit the glycolysis pathway and induce reactive oxygen species (ROS) production, which leads to cancer cell death through the apoptotic pathway. Black
arrows show active glucose metabolic pathways. Green arrows and red T bars show positive and negative impacts on the pathways, respectively. GLUT1, glucose
transporter 1; MCT4, monocarboxylate transporter 4 (Created with BioRender.com).
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for colorectal cancer therapy, Fan et al. designed a biodegradable
and injectable nanoparticle–hydrogel composite of docetaxel and
LL37. The designed composite showed inhibitory effects on the
growth of colorectal tumors mainly by enhancing apoptosis in
neoplastic cells and reducing microvessel density in a colorectal
peritoneal carcinomatosis mouse model. By evaluating the platelet
endothelial cell adhesion molecule (PECAM-1), mainly found on
the endothelial cells, they showed that the nanoparticle–hydrogel
composite of docetaxel and LL37 dramatically inhibited
angiogenesis in the tumor of the mouse model compared to the
free combination of docetaxel and LL37 and pure docetaxel
(microvessel density (MVD) was 19.67 ± 3.98 for the
nanoparticle–hydrogel composite of docetaxel and LL37, 33.00 ±
7.40 for the free combination of docetaxel and LL37, and 65.50 ±
7.37 for pure docetaxel) (126).

Numerous preclinical in vitro studies, as well as insufficient in
vivo trials, have demonstrated that AMPs either alone or combined
with conventional chemotherapy would develop an efficient and
safe therapeutic alternative to present chemotherapeutic regimens
that are based on the high dose of nonspecific and harmful cytotoxic
agents (127). Considering the presence of microbiota in the
gastrointestinal tract as a valuable source of AMPs, using
engineered microorganisms might improve the prevention and
therapeutic role of AMPs in colorectal cancer.

Glioblastoma
Glioblastoma (GBM) or astrocytoma WHO grade IV is the most
aggressive type of primary brain cancer. Despite standard
treatments for newly diagnosed patients with GBM, such as
total surgical resection, radiotherapy, and temozolomide (TMZ),
it has faced the highest mortality rate with a postdiagnostic
median survival of 12 to 15 months (128, 129). The low survival
rate of GBM can be subjected to the infiltration ability of
neoplastic cells into adjacent and/or distant brain tissues and
TMZ chemotherapeutic drug resistance.

Studies have shown that AMPs can reduce GBM tumor
progression in different manners. Ranatuerin-2PLx (R2PLx),
cloned from pickerel frog skin secretions, induced apoptosis in
GBM neoplastic cells (103). Guo et al. found two new AMPs by
evaluating the cDNA library of the Brazilian yellow scorpion
venom, Tityus serrulatus. They named these AMPs Tityus
serrulatus Antimicrobial Peptide (TsAP)1 and TsAP2,
showing ineffective and moderate cytotoxicity against
glioblastoma cells. It seems that higher helical content and
hydrophobic moment in TsAP2 rather than TsAP1 have
resulted in more potency of TsAP2. In order to increase the
cationicity of these AMPs, they engineered TsAP1 and TsAP2
by replacing residues with neutral side chains with lysyl
residues that provided extra posit ive changes. The
intervention enhanced the antineoplastic effect of both TsAP-
S1 (EC50 from ineffective to 2.9 mM) and TsAP-S2 (EC50 from
15.4 to 2.0 mM) (130). In another study, dermaseptin-PD-1 and
dermaseptin-PD-2, derived from skin secretions of
phyllomedusine leaf frogs, showed synergistic interaction in
inhibiting the proliferation of GBM cancer cell line (131).
Epinecidin-1 (epi), an AMP from Epinephelus coioides,
Frontiers in Oncology | www.frontiersin.org 10
triggered cytotoxicity in GBM cells by inducing DNA damage
and necrosis (132).

Considering complex intracellular signaling pathways in
GBM cancer cells, finding the mechanisms of AMP
antineoplastic effects in GBM can improve the application of
these proteins in therapeutic approaches (133). It has been
shown that Tilapia piscidin 3 (TP3) reduced GBM cell
migration and metastasis through two different pathways. The
first one is preventing rat sarcoma virus (RAS) protein activity by
TP3 that subsequently inhibits the phosphorylation of ERK, p38,
and JNK. Activation and proper function of these factors are
necessary for matrix metalloproteinases 2/9 (MMP2/9)
production, which can degrade extracellular matrix (ECM)
structural components. ECM can play a crucial role as an
anchor to promote cancer cell migration by arranging protein-
like focal adhesions (FAs). In other words, TP3 inhibits focal
adhesion kinase (FAK), affecting paxillin and reducing FAs
(134, 135).

Antimicrobial peptide TP4 induced mitochondrial
dysfunction and elevated intracellular ROS production via
rapidly promoting mitochondrial hyperpolarization.
Mitochondrial hyperpolarization mainly results in cell necrosis,
whereas apoptosis results from mitochondrial polarization loss.
Thus, TP4 displays antineoplastic effects independent of p53
status, bringing them up as adequate antineoplastic protein
against both normal and mutant p53 GBM cancer cells (136–
138). In addition, LyeTx I-b promotes necrosis or programmed
necrosis in GBM cells (139). These necrotic GBM cancer cells
release high mobility group box 1 (HMGB1) and cyclophilin A
that enhance chemoattraction and maturation of dendritic cells
(DCs) as initiators of antitumor immunity (140, 141). Along with
inducing ROS production, TP4 reduces antioxidant defenses by
suppressing catalase and glutathione peroxidase (GPx) and
enhancing the cytotoxic in GBM cells (136).

The combination of AMPs with different antineoplastic
agents such as microRNAs and chemotherapeutic drugs has
also been considered in studies. Recently, Jana et al. reported
that miR210 promotes tumor progression through increasing
resistance to TMZ and decreasing the expression of NeuroD2. In
their research, Tachyplesin (Tpl) was used as a nanocarrier for
anti-miR210 (142). According to the results, P53 induced the
transcription of NeuroD2 while miR-210 reduced its amounts
post-transcriptionally. NeuroD2 inhibited cell proliferation and
migration and promoted apoptosis, weakening GBM
aggressiveness (143). In another study, administration of TP4
combined with p38 inhibitors (SB202190 and VX-745) increased
the efficacy of GBM treatment (144). Besides the mentioned roles
of p38 in GBM progression, this molecule plays a crucial role in
GBM chemoresistance due to increasing tumor promoters such
as runt-related transcription factor, vascular endothelial growth
factor (VEGF), MMP2/9, laminin g2, nuclear factor erythroid 2-
related factor 2 (NRF2), IL-6, and IL-8 (145–148). Meanwhile,
TP4 solely upregulates catalase and superoxide dismutase (SOD)
1 that reduces the effect of ROS in cancer cell death. However, the
combination of TP4 and SB202190 does not upregulate SOD1
that obviously induces ROS generation (144).
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Considering complex intracellular pathways of colorectal
cancer cells, AMPs have induced their antineoplastic effects not
only by the conventional disrupting cell membrane but also by
interfering with critical signalings such as ERK, p38, JNK, and
FAK (134, 135). Besides, TP4 has shown promising anticancer
effects independent of p53 status, making this AMP more
appropriate for treating GBM cancer cells with impaired p53
mutations. A new combination therapy insight in colorectal
cancer uses microRNAs with AMPs like TP4 (142). This
therapeutic approach will help the translation of epigenetic
alteration combined with AMP application in cancer treatment.

Lung Cancer
Lung cancer, including small-cell lung cancer (SCLC) and
nonsmall-cell lung carcinoma (NSCLC), is one of the most
important leading causes of cancer deaths worldwide, with a 5-
year survival rate of 20% (149). The 5-year survival rate for
NSCLC patients, especially at advanced stages III and IV, is
about 15–20% (www.cancer.net). Similar to other cancers, the
therapeutic strategies consist of surgery, chemotherapy,
radiotherapy, targeted therapy, immunotherapy, and palliative
therapy (150, 151).

AMPs have shown promising antineoplastic features such as
cytotoxicity, antiproliferation, reducing cell adhesion, interfering
with tubulins, and anti-angiogenesis in preclinical studies of lung
cancer treatment. Bombinin H4 (100–1.5 mM) and temporin A
(100–50 mM) induced cytotoxic effects in lung cancer cells.
Additionally, theses AMPs showed low hemolytic activity
compared to untreated cells that were 0.061% and 0.874% for
bombinin H4 and temporin A, respectively (152). Phylloseptin-
PC (PSN-PC), derived from the skin secretion of the
Phyllomedusa camba, displayed an antiproliferation effect on
the NSCLC cell line (NCI-H157) (153). Liu and coworkers
introduced two novel Phylloseptin: phylloseptin-PTa and
phylloseptin-PHa, which inhibited the proliferation of the
NSCLC line H157 (154). CB1a, an engineered modification of
Cecropin B, induced cytotoxicity in lung cancer cells at nontoxic
concentrations for normal lung cells in which the EC50 was 29 ±
4.3 for NSCLC and 4 ± 0.6 for SCLC. Also, CB1a prevented cell–
cell adhesion, inhibited tumor-like spheroid formation, and
significantly suppressed the growth of human lung tumor
xenograft model (155).

Based on the evidence, TP4 can induce microtubule
disruption and destabilization through specific interactions
between TP4 and tubulins. There are crucial residues in TP4
required for the antineoplastic interaction of TP4 and tubulin,
including Phe1 or Ile16 and Arg23 (156). It seems that
microtubule disruption is a result of FosB function. Activation
of FosB induces two significant antineoplastic effects; first, FosB
disturbs cytoskeletal and membrane consistency in NSCLC cells.
Second, FosB activates protocadherin beta-13 (PCDHB13),
which controls and disrupts the microtubule dynamics.
It correlates with clinical observation in which both FosB and
PCDHB13 expression were negatively associated with the clinical
course of patients with NSCLC (107, 157).

AMPs also have anti-angiogenic effects in lung cancer. It has
been indicated that LfcinB suppressed the transcription and
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translation of the VEGF gene in H460 cells. LfcinB
correspondingly increased the ROS generation and suppressed
the translation of antioxidant enzymes such as glutathione
peroxidase (GPX) 1/2, SOD3, and catalase. It also reduced the
growth of lung tumors in animal models (158).

The growing studies evaluating the effects of AMPs on lung
cancer have improved our understanding of the anticancer role
of AMPs in lung cancer. Preclinical results have shown the
cytotoxic, antiproliferative, and anti-angiogenic effects of
AMPs in lung cancer. However, more studies are required to
shed light on the other anticancer mechanisms as well as possible
combination therapeutic approaches.

Hematologic Malignancies
Hematologic malignancies are mainly caused by neoplastic
effects in the blood, bone marrow, and lymph nodes. The main
types of leukemia are acute myeloid (AML), chronic myeloid
(CML), acute lymphocytic (ALL), and chronic lymphocytic
(CLL). It also comprises myeloma and two types of lymphoma:
Hodgkin’s and non-Hodgkin’s (NHL) (159). Hematologic
malignancies have reduced the quality of life, especially in
developing and emerging countries (160).

AMPs have displayed considerable therapeutic effects in
hematologic malignancies. Considering various hematologic
malignancies, shedding light on the underlying mechanisms of
AMPs’ antineoplastic effects will improve our understanding of
new therapeutic methods. It has been shown that AMPs induce
antineoplastic effects through cell membrane disruption, DNA
damage, apoptosis-inducing factor (AIF), and calcium leakage
from the endoplasmic reticulum (ER). Smp24 and Smp43, novel
AMPs derived from the venom of the Egyptian scorpion (Scorpio
maurus palmatus), reduced the cell viability of acute myeloid and
lymphoid leukemia cell lines (161). Evaluation of NRC-03 and
NRC-07 cytotoxicity in multiple myeloma cells showed
considerable cell death mainly through extensive membrane
damage and DNA cleavage. Besides, intratumoral administration
of NRC-03 reduced the progression of multiple myeloma xenografts
in immune-deficient mice models (162). Jurkat T leukemia cells
generated ROS followed by caspase-2-induced impairment of
mitochondrial membrane potential as well as activation of
caspase-9 and caspase-3 after treatment with LfcinB (163).

LL-37 has been shown to induce apoptosis through a
mitochondria-related pathway, independent of caspase and
dependent on AIF. Exposure to LL-37 triggered the
translocation of AIF from cell mitochondria to the nucleus,
where it activates chromatin condensation and DNA
fragmentation that results in programmed cell death (164, 165).
It was demonstrated that AMP-induced intracellular calcium
leakage could trigger cancer cell death. Yudie Lv et al. showed
that PFR, a sort of AMP identified from the derivatives of
lactoferrin, could promote necroptosis via ER stress and
consequent elevated cytoplasmic calcium. They disclosed that
raised cytoplasmic calcium resulted from both the influx of
extracellular calcium and the release of intracellular calcium
from ER due to ER stress. In addition, it was indicated that
mitochondrial calcium played no role in the cytotoxicity of PFR in
AML cells (166).
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Administrating combination therapy and using AMP-based
vaccines have been studied in the area of hematologic
malignancies. Cytosine arabinoside (Ara-C) is a standard
chemotherapeutic drug used as a pharmacologic regime in
AML patients. Developing drug resistance and considerable
side effects are critical challenges in using Ara-C (167, 168). It
was observed that the combination of PFR and Ara-C
significantly suppressed the AML xenograft tumor growth in a
mouse model. Besides, there were no considerable general side
effects or toxicity in the liver and kidney (166).

Berge G and colleagues attempted to design an AMP-based
vaccine for B cell lymphomas. They injected LTX-302 (0.5 mg
LTX-302/50 ml saline) into the tumors of the animal cancer
model, which led to tumor necrosis and inflammatory cell
infiltration. The tumor rechallenge test showed specific
protection against B-cell lymphomas, which was both CD4+

and CD8+ T-cell dependent (169). The mechanism of LTX-
302-induced immunity seemed to reflect two exclusive
mechanisms. The first is that cell lysis and following release of
the intracellular content to the extracellular space could increase
the amount of tumor-associated antigen that stimulated T cells
through antigen-presenting cells (APCs) (170). The second is
that resultant danger signals from tumor necrosis could enhance
the maturation and performance of DCs that result in T-cell
activation (171).

A novel approach to using AMPs in cancer treatment is
designing vaccines. Besides the common antineoplastic features
of AMPs, which can be seen in various cancer types, utilizing
AMP-based vaccines against cancer may improve cancer
prevention and provide hopeful prospects in cancer treatment.
CLINICAL APPLICATIONS OF AMPs IN
ANTICANCER THERAPY

Following preclinical assessments, AMPs have entered clinical
trials and clinical practice. From the antimicrobial point of view,
AMPs have been widely studied in several clinical trials, and also
Frontiers in Oncology | www.frontiersin.org 12
there are several ongoing clinical trials on www.clinicaltrials.gov
(Table 2). Besides, many AMPs such as hLF1–11, pexiganan
acetate, CZEN-002, omiganan, and novexatin have obtained U.S.
Food and Drug Administration (FDA) approval for clinical use for
treating various infectious diseases (172–175). In this regard,
pexiganan acetate, a synthetic analogue of magainin 2 with 22
amino acids, was the first commercially developed AMP that has
been used in infected diabetic foot ulcers (173). Along with topical
administration, the safety of intravenous injection of some AMPs
was evaluated. In this regard, the safety and tolerability of human
lactoferrin 1-11 (hLF1-11) were assessed in the life-threatening
infections of patients with hematological malignancies who
received hematopoietic stem cell transplantation (HSCT). The
results showed that patients could tolerate up to 5-mg single dose
of hLF1-11 intravenously (174).

AMPs have recently been introduced to the field of anticancer
therapy; thus, safety and efficacy data are pretty limited. However,
some ongoing or completed clinical trials investigated the
antineoplastic effects of AMPs (www.clinicaltrials.gov). A
recently completed clinical trial (NCT02225366) has evaluated
the appropriate dose of LL37 that can be administered
intratumorally in patients with melanoma. In this regard, tumor
sizes were measured and photographed one week prior to
administrating LL37 and again after four weeks. Additionally,
the antineoplastic effects of LL37 on the immune response,
especially T-cell activity and interferon-alpha expression, were
evaluated. In this regard, a phase I multicentral study
(NCT01058616) aimed to assess the safety profile and
immunological response of LTX-315 (Oncopore™) administered
in patients with transdermal accessible tumors. Studies also have
assessed the antineoplastic effects of the combination of AMPs
with chemotherapeutic agents. Sarina Piha-Paul et al. administered
an intravenous infusion of LTX-315 in combination with
pembrolizumab, an immune checkpoint inhibitor, in melanoma
and TNBC (NCT04796194).

Wilm’s Tumor 1 (WT1) peptide is overexpressed in many
malignancies and solid cancers. A phase 1/2 study investigated
the effect of DSP-7888, a novel WT1-based peptide vaccine, in
patients with myelodysplastic syndrome (MDS). The finding of
TABLE 2 | Clinical trials of AMP administration in infectious diseases.

Phase AMP type Pathologic condition Route of administration Primary Purpose NCT number

1 TAPS-18 Periodontitis Topical Treatment NCT05125718
2 C16G2 Dental Caries Topical Prevention NCT02509845

C16G2 Dental Caries Topical Treatment NCT03004365
MBI 226 Acne Vulgaris Topical Treatment NCT00211523
C16G2 Dental Caries Topical Treatment NCT03196219
C16G2 Dental Caries Topical Prevention NCT02254993
C16G2 Dental Caries Topical Treatment NCT02594254
NVXT Onychomycosis Topical Treatment NCT02933879
PAC113 Oral Candidiasis Topical Treatment NCT00659971
Dalbavancin Osteomyelitis Intravenous Treatment NCT02685033
Brilacidin Skin Infections Topical Treatment NCT02052388
AB103 Necrotizing Soft Tissue Infections Topical Treatment NCT01417780

3 Pexiganan Diabetic Foot Infection Topical Treatment NCT01594762
CB-183,315 Clostridium difficile Infection Oral Treatment NCT01597505
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the study indicated that DSP-7888 is well tolerated in MDS
patients, although injection site reaction was observed in all
patients (176). A phase 2 clinical trial (NCT00433745) was
launched to assess the safety and immunogenicity of a
combined vaccine of 2 leukemia-associated antigenic
peptides, PR1 and WT1, for patients with high-risk
hematological malignancies. In this study, nine doses of
WT-1 were administered concomitantly with GM-CSF
(Sargramostim). Some parameters, including the numbers of
blood cells expressing WT1, decrease in bone marrow blast cells,
alteration in blood counts, dependence to transfusion, time to
disease progression, and survival rate, were assessed as disease
response indicators. Seven weeks after the last vaccination, the
possible side effects and circulating WT1-specific T-cell number
were evaluated. The results showed that this combined vaccine
approach is safe and can elicit immunologic responses associated
with a reduction in WT1 expression in patients.

Although studies are evaluating the possibility of AMP
translation into clinical practice, there is still a lack of strong
supporting evidence of administrating AMPs in patients with
cancer. In other words, finding optimal doses and routes of AMP
administration to achieve the desired therapeutic outcomes with
the lowest toxicity and proposing appropriate technical methods
to improve their specificity, stability, and pharmacokinetics are
considered essential questions that should be answered in
future studies.
THE CHALLENGES AND PROSPECTS
OF ANTICANCER PEPTIDES IN
CLINICAL APPLICATIONS

Many advantages of AMPs/ACPs, including broad-spectrum
activities, rapid onset of activities, low toxicity, and relatively
low risk of resistance, have made them attractive candidates in
clinical treatments. Although there is hope for translating AMPs
into clinical practice, some obstacles, including collateral toxicity
on normal mammalian cells, short half-life, severe immune
reaction, and high cost of production, impede the clinical use
of these antineoplastic agents. Some studies have reported that
long-term AMP administration can exert considerable collateral
toxicity on normal mammalian cells (177). Besides, some reports
of hemolytic activity of some AMPs such as indolicidin and
melittin prevented clinical use (178). It seems that more
lipophilic peptides and also the presence of some amino acids,
including tryptophan, lysine, and arginine, tend to be more
hemolytic (179). In order to surmount these problems, some
studies attempted to design AMPs’ analogs. Staubitz et al. altered
all of the five tryptophan residues of indolicidin to phenylalanine
that reduced the hemolytic activity, while the antimicrobial
activity against M. luteus remained intact (180). M.P. Smirnova
et al. synthesized 45 analogs of indolicidin, among which the
most efficient showed at least 1.8 times lower hemolytic activity
compared to indolicidin (181). As another concern, poor
pharmacokinetics described as short half-life, fast elimination,
instability, enzymatic degradation, poor distribution by binding
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to serum proteins, and poor GI absorption reduced the chance of
clinical translation of AMPs and drug development
pipelines (127).

The redesigning and modification of AMPs results in
preserving their advantages simultaneous to reducing their
collateral toxicities, thereby eliminating the aforementioned
bottlenecks and improving the antineoplastic activity of AMPs.
The design of an AMP with optimized characteristics and high
impact on the cancer treatment area requires accurate
information about the activity of peptides on the cell
membranes. Therefore, obtaining the optimal AMP depends
on manipulating some parameters such as its sequence,
secondary structure, net charge, and hydrophobicity (182).
Two main strategies can describe the reconstruction of AMPs:
1) main-chain alteration that is explained as replacing natural or
non-natural amino acids, and 2) side-chain alteration that
primarily includes phosphorylation, polyethylene glycol
modification, cholesterol modification, glycosylation, and
palmitoylation (183). The FDA-approved AMPs, e.g., Colistin,
Vancomycin, Oritavancin, and Dalbavancin, are small, with a
molecular weight range from 1,155 to 1,817. They have
elimination half-lives of 5 h, 7.5 h, 195.4 h, and 14 days,
respectively (184). Properties such as having several
unconventional amino acids and chemical changes or cyclic
structures have optimized the pharmacokinetics and resistance
of these peptides to enzymatic degradation.

The severe immune response is an additional obstacle to the
use of ACPs in cancer treatment. Introducing external ACPs into
the host can induce therapeutically neutralizing antibodies and/
or elicit harmful allergic reactions in cancer patients. Therefore,
several strategies have been considered to overcome this
drawback. To prevent harmful anti-ACP immune responses,
the introduction of host defense peptides (HDPs) or co-
administration of foreign ACP with immunosuppressants may
be a palliative strategy. Besides, encapsulation of ACP in
liposomes designed to deliver cargo directly to the tumor site
may be promising because it minimizes the chances of the host
acquiring anti-ACP immunity (185).

Utilizing chemical delivery vehicles is another approach to
improving these molecules’ stability, half-life, therapeutic
properties, and activity. Inorganic nanomaterials are among the
candidates for designing delivery platforms. These substances
protect AMPs from chemical and enzymatic digestion, regulate
drug release rate, enhance the bioavailability, and diminish
toxicity. Betides, these substances efficiently interact with
external factors such as magnetic field or light that can trigger
drug release or localize drug accumulation (186, 187). Polymeric
materials are also used in AMP delivery platforms that can be
designed to synergistically cooperate with AMP to induce
antineoplastic effects (188). As another point of view, using
biological carriers such as exosomes, nanosized biovesicles can
protect AMPs from external disturbances and also provide
enhanced efficacy by adding their antineoplastic effects.
Exosomes escape from immune rejection, work in a targeted
manner toward tumors, and are easily isolated from original
cells (68).
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Collectively, finding an ideal peptide and overcoming the
drug limitations of these exciting molecules is a great and
promising opportunity for their clinical applications shortly.
COMPUTATIONAL APPROACHES IN AMP
DESIGN AGAINST CANCERS

Computational biology is a rapidly progressing multidisciplinary
field (189). In addition to experimental approaches, computational
and bioinformatics strategies play an essential role in peptide
design and cancer therapeutics. Various challenges of practical
techniques, such as experimental manpower, time, and
environmental and safety issues, can be partially addressed by
computational methods (151). In the context of AMP design,
advanced rational design strategies have been used in combination
with computational approaches to develop more robust and
economical AMPs. The design of an AMP with optimized
characteristics and high impact on the cancer treatment area
requires accurate information about the anticancer activity of
peptides. The de novo computational method uses amino acid
frequency and position priorities to predict and generate low-cost
AMP sequences. Given the rapid development of computational
tools in recent years, these features will certainly assist an
increasing number of computationally designed AMPs to evolve
from database sequences to real, effective drug candidates that are
more likely to reach the market in upcoming years. A
computational method will help reduce production costs via
identifying the amino acid sequence in the complete sequence of
peptides that may be responsible for anticancer activity by
synthesizing shorter biologically active fragments. Therefore,
obtaining the optimal AMP depends on manipulating some
parameters such as its sequence, secondary structure, net
charge, and hydrophobicity (182, 190). In addition, many
pharmacological parameters such as bioavailability, stability, and
even immunogenicity will be improved (190).

Currently, several computational tools have been established
to design AMP variants, including empirical methods, machine
learning, and stochastic approaches (191). For instance, an
anticancer scanner (ACPS) has been demonstrated an effective
software package based on a nature-encouraged algorithm
(ANN) to consider anticancer target clinical information and
recognize possibly potent peptides. Tools like this are helpful for
clinicians and researchers in the field of oncology to employ in
personalized medicine exploration and structure-based
drug design.
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CONCLUSIONS

The urgent need to obtain new agents to prevent and treat
cancers has been driving the ACP research. In this light, ACPs
are considered promising agents for producing new anticancer
drugs and vaccines. Some ACPs have been demonstrated to be
antiproliferative and proapoptotic in numerous cancer cell types,
both in vitro and in vivo, leading to clinical trials evaluating
cancer treatment addressed in the present review. None of the
current known AMP-based trends are exempt from the
obstacles. In this regard, the continued development of
computational methods that helped better understand the
mechanism of action of ACP, including the discovery of new
molecular targets, will significantly influence the design of new
ACP agents.

Although many challenges to clinical applications need to be
overcome, natural and synthetic AMPs remain attractive sources
for pharmaceutical companies. Proteomic/genomic technologies
combined with data mining, ACP prediction, and virtual
screening can be beneficial in facilitating the commercial
development of anticancer peptides.

Taken together, ACPs could herald the emergence of a novel
strategy for developing anticancer drugs or vaccines to reduce
new cases and mortality rates in the future.
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111. Arroyo JMG, López MLD. Psychological Problems Derived From
Mastectomy: A Qualitative Study. Int J Surg Oncol (2011) 2011:132461.
doi: 10.1155/2011/132461

112. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC,
et al. Colorectal Cancer Statistics, 2020. CA: Cancer J Clin (2020) 70(3):145–
64. doi: 10.3322/caac.21601
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