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Abstract: This work presents a study of photoconductive (PC) terahertz (THz) emitters based upon
varied bow-tie (BT) antenna structures on the semi-insulating (SI) forms of GaAs and InP. The BT
antennas have electrodes in the form of a Sharp BT, a Broad BT, an Asymmetric BT, a Blunted BT, and
a Doubled BT. The study explores the main features of PC THz emitters for spectroscopic studies
and sensors application in terms of THz field amplitude and spectral bandwidth. The emitters’
performance levels are found to depend strongly upon the PC material and antenna structure. The
SI-InP emitters display lower THz field amplitude and narrower bandwidth compared to the SI-GaAs
emitters with the same structure (and dimensions). The characterized Doubled BT structure yields
a higher THz field amplitude, while the characterized Asymmetric BT structure with flat edges
yields a higher bandwidth in comparison to the sharp-edged structures. This knowledge on the
PC THz emitter characteristics, in terms of material and structure, can play a key role in future
implementations and applications of THz sensor technology.

Keywords: photoconductive THz emitter; semi-insulating THz emitter; bow-tie antenna

1. Introduction

Terahertz (THz) radiation lies within a distinct region of the electromagnetic spectrum,
with frequencies spanning 0.1 to 10.0 THz, placing it between microwave and infrared
spectra [1]. The resultant THz applications in fields such as spectroscopy and sensing are
of growing interest with a trend seen towards THz on-chip sensors.

However, such miniaturization can sacrifice performance, as seen through effects such
as charge carrier screening and saturation—and so it becomes necessary to optimize (and
understand) the THz emission process [2]. Ultimately, an effective means of generating
THz radiation is needed to meet the demands of such systems. The two most common
means are photoconductive (PC) THz emission and optical rectification [3,4], and of these
PC THz emission is found to yield both strong performance and an ease of integration
within sensors.

Photoconductive THz emission was introduced by Auston et al. several decades
ago [5] and since then many studies have put it to use [6,7]. The THz radiation is formed
by a PC THz emitter when an ultrashort laser pulse with above-bandgap photon energy is
incident upon its biased PC antenna, causing the photoexcited charge carriers to accelerate
under the bias field [8]. The characteristics of the emitted THz radiation rely heavily upon
the PC THz emitter’s features—and so there is an ongoing struggle to understand the
photoexcitation process and optimize the emission. This is often done with thought to the
PC THz emitter’s material and structure. The PC material for the THz emitter will ideally
have a high carrier mobility, high breakdown voltage, and suitable bandgap for the pump
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laser’s photon energy [8]. A variety of semiconductors have been considered for this PC
material, including InAs [9], InGaAs [10], GaSb [11], GaNAsSb [12], and the semi-insulating
(SI) forms of GaAs [13] and InP [14]. The antenna structure has also been found to influence
the PC THz emission. Specifically, the polarization dependence from different structures
has been found to yield differing electric field components, which impacts the direction of
charge carrier transport and the effectiveness of PC THz emission [15]. Various antenna
structures have been studied in the past—and progress has been made in optimizing
these structures for PC THz emitters [16]. However, such studies have also found that
the characteristics of PC THz emission from the differing structures are impacted by the
underlying PC material.

In this work, PC THz emitters based upon bow-tie (BT) antennas are studied with
varying structures, including Sharp BT, Broad BT, Asymmetric BT, Blunted BT, and Doubled
BT, on the two most forms of PC material, SI-GaAs and SI-InP. The THz field amplitude
and bandwidth are found to depend upon the structure (and dimensions) as well as the
material, yielding insight on the optimal implementations. Such findings can support the
realization of high-performance PC THz emitters in future THz sensor technologies.

2. Methods

The theoretical and experimental characteristics of PC THz emitters are considered in
this section with thought to the antenna structure and the underlying PC material.

2.1. Theoretical Characterization of Photoconductive Terahertz Emitters

The functioning of a PC THz emitter can be understood in terms of charge carrier
transport in its PC material, due to the acceleration of the photoexcited charge carriers, and
charge redistribution on its electrodes, as voltage on the electrodes varies to accommodate
the evolving electric field in the PC gap. These effects can be modelled by a conduction
current, according to a time-varying gap conductance of G(t), and a displacement current,
as defined by a gap capacitance of C, respectively. Such a construct leads to the equivalent
circuit of a PC gap shown in Figure 1 with a bias voltage of Vb and a parallel connection
of its conductor and capacitor. For the conduction current, the photoexcitation yields a
time-varying conductivity of

σ(t) = ns(Φp)qeµn(Φp) (1)

where ns(Φp) is the electron surface charge density at a pump fluence (i.e., energy per unit
area) of Φp, qe = 1.602176634 × 10−19 C is the electronic charge, and µn(Φp) is the pump-
fluence-dependent electron mobility. The gap conductance, G(t), can then be approximated
by integrating this conductivity over the transverse width and depth of photoexcitation in
the PC gap. The gap conductance, G(t), and the gap capacitance, C, can be linked to the
resistance-capacitance (RC) time constant of

τRC = 2ZEC/(2ZECG(t) + 1) (2)

where ZE is the antenna/transmission line impedance. It can be seen here that the con-
ductivity, conductance, and conduction current all increase in proportion to the mobility.
For the displacement current, the evolving electric field in the PC gap causes a redistribu-
tion of charge on the electrodes, yielding the transient incident, vi(t), reflected, vr(t), and
transmitted, vt(t), voltage waveforms shown in the inset of Figure 1. This redistribution
will ideally occur on a subpicosecond timescale, to allow the antenna to radiate into the
THz spectrum, but this can only manifest if the structure has a sufficiently small gap
capacitance, C. The τRC defines the shape and duration of the THz pulse, with shorter τRC
values producing shorter pulse durations (in the time-domain) and wider bandwidths (in
the frequency-domain). Ultimately, it can be concluded that both the structure and material
of the PC gap play a role in defining the THz field amplitude and spectral bandwidth. The
bandwidth is defined in the frequency-domain with respect to the noise floor. It is the
difference between the highest measurable frequency (when the signal drops down into
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the noise floor) and the lowest measurable frequency (where the signal rises up out of the
noise floor).
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shows its equivalent circuit with a gap conductance of G(t), gap capacitance of C, and electrodes with
transient incident, reflected, and transmitted voltage waveforms of vi(t), vr(t), and vt(t), respectively.

2.2. Experimental Characterization of Photoconductive Terahertz Emitters

The PC THz emitters analysed in this work were fabricated via sputtering as Cr/Au
metallization at a thickness of 25/75 nm. Conventional photolithography was then used to
pattern the metal via bilayer lift-off with a mask aligner (OAI Model 204). The structures
were implemented with a fixed 10-µm PC gap and a fixed 100-µm outer spacing between
the two electrodes in the form of Sharp BT, Broad BT, Asymmetric BT, Blunted BT, and
Doubled BT antenna structures, as shown in Figure 2. The fabricated BT antennas were
characterized using an SEM system (Tescan Mira 3 XMU Scanning Electron Microscope)
with Backscattered-Electron (BSE) imaging, at 1000× magnification and 20.0 kV.

Characterizations of the PC antennas were carried out using a THz-time-domain
spectroscopy (THz-TDS) system shown in Figure 3. An ultrafast pulsed laser (Spectra
Physics-Mai Tai HP) was used with an 800-nm wavelength, a 70-fs pulse duration, and
an 80-MHz reputation rate. The ultrashort laser pulses delivered by the system were
split into separate pump and probe beams. The pump beam (with an average power of
PP = 0.6 W) was focused on the biased PC gap (with a bias voltage of Vb = 7.5 V), such
that the focal spot roughly covered the 10-µm gap. In this way, the pump-induced charge
carriers would accelerate in the bias field to produce the desired THz radiation. The THz
radiation was then sampled by the probe beam in an electro-optic (EO) crystal, in the form
of a 0.5-mm-thick ZnTe <110> crystal. The THz-induced polarization rotation on the probe
beam was then extracted via polarization-sensitive optics [4]. The THz field amplitude,
ETHz(t), was recorded as a function of the pump-probe delay time, t, with the result Fourier
transformed to obtain the THz spectral amplitude, ETHz(f ), as a function of frequency, f. In
general, the spectrum can be subject to absorption and dispersion via phonon modes in
the EO crystal [17]. However, for this study on relative differences in THz amplitudes and
bandwidths, for the various structures and materials, the absorption and dispersion are
common to all of the measurements and are therefore of little consequence.
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Figure 3. Illustration of THz-TDS used to characterize the PC THz emitter, pump beam (1) is focused
onto the PC THz emitter (2), the generated THz beam (yellow) is focused and steered via parapolice
mirror-(3). The probe beam (4, red) is overlapped with the THz beam via pellicle beam-splitter
(5), modulated via electro-optic crystal (6) and quarter waveplate (7), separated by a polarizing
beam-splitter (8) into two orthogonal polarizations beams, and the power difference between these
two beams is measured by a differential photodetector (9).

3. Results and Discussion

Results for the THz spectral amplitude as a function of frequency, f, are shown in
Figure 4 for the BT antennas with (a) Sharp BT and (b) Broad BT antenna structures. The
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spectra are given for SI-GaAs (black line) and SI-InP (dotted line) as the PC material, with
the THz spectral amplitudes shown on a log scale in the upper insets and the scanning elec-
tron microscope (SEM) images of the structures shown in the lower insets. Each structure
can be envisioned as two isosceles triangles, with their tips meeting at the PC gap, where
each triangle has a base width of w (the longest dimension of the triangle) and an overall
height of h (from the tip to the electrode). Thus, the Sharp BT and Broad BT structures
have height-to-width ratios of h/w ≈ 1.8 and 0.28, respectively, at roughly a factor of six
difference. For the Sharp BT structure, with SI-GaAs and SI-InP, the (maximum normal-
ized) THz field amplitudes are 0.66 and 0.49 respectively, and the bandwidths are 3.4 and
2.5 THz, respectively. For the Broad BT structure, with SI-GaAs and SI-InP, the (maximum
normalized) THz field amplitudes are 0.83 and 0.62, respectively, and the bandwidths are
3.5 and 2.6 THz, respectively. The results show that the Broad BT has a larger amplitude
and bandwidth compared to the Sharp BT. The improvement of the radiated THz field with
respect to BT antenna dimensions was reported by Yang et al. [18] when the authors found
a correlation between BT tip-length and the radiated THz field strength and bandwidth.
We attribute this to the greater photocurrent in the transverse direction of the Broad BT,
which results in a larger amplitude. The bandwidths resulted from these two structures are
related to the broader THz pulse width as described by Tani et al. [16]. The improvement of
the bandwidth is associated with the smaller capacitance of the Broad BT over the Sharp BT,
which results in a shorter τRC according to (2) and producing shorter THz pulse durations
and ultimately wider bandwidth.

Results for the THz spectral amplitude as a function of frequency, f, are shown in
Figure 5 for the bow-tie antennas with (a) Asymmetric BT, (b) Blunted BT, and (c) Doubled
BT structures. The spectra are given for SI-GaAs (black line) and SI-InP (dotted line) as the
PC material, with the THz spectral amplitudes are shown on a log scale in the upper insets
and the scanning electron microscope (SEM) images of the structures shown in the lower
insets. For the Asymmetric BT structure, with SI-GaAs and SI-InP, the normalized THz
field amplitudes are 0.85 and 0.63, respectively, and the bandwidths are 3.7 and 3.2 THz,
respectively. For the Blunted BT structure, with SI-GaAs and SI-InP, the normalized THz
field amplitudes are 0.89 and 0.72, respectively, and the bandwidths are similar to those of
the Asymmetric BT structure at 3.5 and 2.8 THz, respectively. To accentuate the effects of
electric field singularities, the Doubled BT structure is considered. It has four sharp edges
coming together within the PC gap. For the Doubled BT structure, with SI-GaAs and SI-InP,
the (maximum normalized) THz field amplitudes are 1.0 and 0.75, respectively, and the
bandwidths are 3.4 and 2.8 THz, respectively. The normalized THz field amplitude then
increases from 0.85 for the Asymmetric BT structure to 1.0 for the Doubled BT structure.
It is proposed here that the increase in bias field, due to its localization, raises the THz
field amplitude, in agreement with Cai et al. [15]. However, the spectral bandwidth for the
Asymmetric BT is greater than those of the Blunted BT and Doubled BT structures, which
we attribute to its lower capacitance.
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Figure 4. The THz spectral amplitude as a function of frequency, f, for PC THz emitters incorporating
SI-GaAs (solid lines) and SI-InP (dotted lines) in the form of the (a) Sharp BT and (b) Broad BT. The
THz spectral amplitudes are shown on a log scale in the upper insets, and the two structures are
shown as SEM images in the lower insets, with lighter colour denoting metal.
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It worth noting that these results were obtained with a pump laser spot diameter of
roughly 10 µm, which matches the size of the PC gap. Spot sizes that are far larger than the
PC gap yield fewer charge carriers in the gap, reducing the photogenerated current and PC
THz emission. In contrast, spot sizes that are far smaller than the PC gap do not allow for
full conduction across the gap, preventing the photocurrent from coupling to the antenna
and reducing the PC THz emission.

The overall results for the THz field amplitude of the all PC THz emitters are shown
in Figure 6a for the varying forms of BT antennas with SI-GaAs (black) and SI-InP (grey)
materials. Clearly, the THz field amplitudes for SI-GaAs are higher than those of SI-InP for
each of the structures. We attribute this improved performance for SI-GaAs to its higher
electron mobility and thus its greater conduction current. (The THz field amplitude, ETHz,
is proportional to the integral of the conduction current density across the PC gap, as
described in our prior work [19,20].) We also note that the bandgap energies of SI-GaAs
and SI-InP are 1.43 eV and 1.34 eV, respectively, such that the pump photons, with energies
of 1.55 eV, deposit charge carriers closer to the conduction band minimum of SI-GaAs,
as compared to SI-InP. This decreases the excess energy of the hot electrons in SI-GaAs
and lessens their pump-induced reduction in electron mobility [20]. For SI-InP, the hot
electrons are deposited higher in the conduction band, which demands time (typically on a
picosecond duration) for energy relaxation to the conduction band minimum where they
attain their maximal mobility.

The overall results for the THz bandwidth of the all PC THz emitters are shown in
Figure 6b. Notably, all the obtained results exhibit a wider bandwidth of SI-GaAs over
SI-InP. We attribute this difference (again) to the greater mobility of SI-GaAs. The greater
mobility increases the conductivity in (1), and thus the conductance, G(t), which reduces
the τRC in (2).
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Figure 5. The THz spectral amplitude as a function of frequency, f, for PC THz emitters incorporating
SI-GaAs (solid lines) and SI-InP (dotted lines) in the form of (a) Asymmetric BT, (b) Blunted BT, and
(c) Doubled BT structures. The THz spectral amplitudes are shown on a log scale in the upper insets,
and the three structures are shown as scanning electron microscope (SEM) images in the lower insets,
with lighter colour denoting metal.
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Figure 6. The (a) THz field amplitude and (b) THz bandwidth for PC THz emitters based upon
SI-GaAs (black) and SI-InP (grey) with BT antennas having the Sharp BT, Broad BT, Asymmetric BT,
Blunted BT, and Doubled BT structures.

The presented results of the PC THz emitters were obtained using a pulsed laser sys-
tem with an 800-nm pump wavelength, a 70-fs pulse duration, and an 80-MHz reputation
rate. The 800-nm pump laser wavelength was chosen here due to our studies of PC THz
emitter performance versus pump laser wavelength spanning 790–870 nm. The THz field
amplitude was found to be relatively high and flat for wavelengths below 830 nm and
850 nm in SI-GaAs and SI-InP, respectively, with a sharp drop above these wavelengths
(due to the photon energies dropping below the conduction band edge). In this work, the
800-nm laser wavelength was chosen to be sufficiently far from this drop, while having
a common wavelength for all of the characterizations. With respect to the laser pulse
duration, the presented results were found to be limited by charge carrier transport and
capacitance in the gaps. Thus, we do not expect significant changes in the results for
shorter pulse durations. In contrast, longer pulse durations could ultimately slow the
charge carrier photoexcitation and reduce the bandwidth. With respect to the repetition
rate, we would not expect significant changes in the results for lower repetition rates. This
is because lower repetition rates have periods between laser pulses that are longer than
the charge carrier lifetimes of SI-GaAs and SI-InP. In contrast, higher repetition rates could
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leave pre-populated/steady-state charge carriers within the PC THz emitter, which would
increase its ohmic loss and lessen its amplitude.

4. Conclusions

In this work, a variety of BT antenna structures with different characteristics, based
upon SI-GaAs and SI-InP were investigated as PC THz emitters. It was found that the
SI-GaAs emitters provide higher THz field amplitude over SI-InP due to their higher carrier
mobility. The Doubled BT structure, with its pronounced electric field singularities, yielded
the highest THz field amplitude. However, this came at the expense of a greater capacitance
and lower bandwidth. The greatest THz bandwidth resulted from the Asymmetric BT
structure as a result of its lower capacitance. Such findings can support the understanding
and optimization of PC THz emitters in future realizations of THz sensor technologies.
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