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Background: Nano drug delivery system (NDDS) can significantly improve the

delivery and efficacy of drugs against pancreatic cancer (PC) in many ways. The

purpose of this study is to explore the related research fields of NDDS for PC

from the perspective of bibliometrics.

Methods: Articles and reviews on NDDS for PC published between 2003 and

2022 were obtained from the Web of Science Core Collection. CiteSpace,

VOSviewer, R-bibliometrix, and Microsoft Excel were comprehensively used for

bibliometric and visual analysis.

Results: A total of 1329 papers on NDDS for PC were included. The number of

papers showed an upward trend over the past 20 years. The United States

contributed the most papers, followed by China, and India. Also, the

United States had the highest number of total citations and H-index. The

institution with the most papers was Chinese Acad Sci, which was also the

most important in international institutional cooperation. Professors Couvreur P

and Kazuoka K made great achievements in this field. JOURNAL OF

CONTROLLED RELEASE published the most papers and was cited the most.

The topics related to the tumor microenvironment such as “tumor

microenvironment”, “tumor penetration”, “hypoxia”, “exosome”, and

“autophagy”, PC treatment-related topics such as “immunotherapy”,

“combination therapy”, “alternating magnetic field/magnetic hyperthermia”,

and “ultrasound”, and gene therapy dominated by “siRNA” and “miRNA” were

the research hotspots in the field of NDDS for PC.

Conclusion: This study systematically uncovered a holistic picture of the

performance of NDDS for PC-related literature over the past 20 years. We

provided scholars to understand key information in this field with the

perspective of bibliometrics, which we believe may greatly facilitate future

research in this field.

KEYWORDS

pancreatic cancer, nano-drug delivery system, bibliometric analysis, CiteSpace,
R-bibliometrix, VOSviewer

OPEN ACCESS

EDITED BY

Peisheng Xu,
University of South Carolina,
United States

REVIEWED BY

Haiyang Wu,
Tianjin Medical University, China
Huali Chen,
Chongqing Medical University, China

*CORRESPONDENCE

Rong-Fa Yuan,
yuanrf7788@163.com

SPECIALTY SECTION

This article was submitted to
Pharmacology of Anti-Cancer Drugs,
a section of the journal
Frontiers in Pharmacology

RECEIVED 23 August 2022
ACCEPTED 22 September 2022
PUBLISHED 18 October 2022

CITATION

Zhao J-F, Zou F-L, Zhu J-F, Huang C,
Bu F-Q, Zhu Z-M and Yuan R-F (2022),
Nano-drug delivery system for
pancreatic cancer: A visualization and
bibliometric analysis.
Front. Pharmacol. 13:1025618.
doi: 10.3389/fphar.2022.1025618

COPYRIGHT

© 2022 Zhao, Zou, Zhu, Huang, Bu, Zhu
and Yuan. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 18 October 2022
DOI 10.3389/fphar.2022.1025618

https://www.frontiersin.org/articles/10.3389/fphar.2022.1025618/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1025618/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1025618/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.1025618&domain=pdf&date_stamp=2022-10-18
mailto:yuanrf7788@163.com
https://doi.org/10.3389/fphar.2022.1025618
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.1025618


Introduction

As an extremely malignant digestive system tumor,

pancreatic cancer (PC) has atypical clinical symptoms (Strobel

et al., 2019), progresses rapidly, and lacks sensitive biomarkers

for early diagnosis (Siegel et al., 2019), resulting in more than

80% of PC patients being in advanced stage at the initial diagnosis

and missing the opportunity of surgical resection (Xie et al.,

2018). At present, the efficacy of commonly used chemotherapy

schemes, such as FOLFIRINOX and gemcitabine plus nab-

paclitaxel, is still limited (Kielaite-Gulla et al., 2022). The

main reasons that hinder these chemotherapy drugs from

significantly improving the prognosis of the patients are the

biological complexity and heterogeneity of PC (Fan et al., 2017),

the poor specificity of chemotherapy drugs, uneven distribution

in the body, and side effects on normal tissues and organs (Peng

et al., 2017), and chemotherapy resistance of PC (Stott et al.,

2022). The clinical application of immunotherapy also faces

challenges: first, the human immune system is difficult to

accurately distinguish tumor cells from normal cells, resulting

in “targeted extra tumor” toxicity (Yilmaz et al., 2020); Secondly,

the complex immunosuppressive microenvironment of solid

tumors prevents intravenous infusion of immune cells or

cytokines from reaching the tumor site (Lu et al., 2021).

Therefore, finding an ideal biocompatible targeted drug

delivery system to overcome the above difficulties has become

a research hotspot (Lammers et al., 2012). Nanomaterial has a

small volume, large surface area (Rai et al., 2021), high

permeability, can be effectively combined with a variety of

biological materials to improve their biocompatibility, and can

effectively control drug release (Chen et al., 2016). Therefore, a

nano-drug delivery system (NDDS) can protect encapsulated

drugs from blood circulation degradation, target drug delivery,

reduce systemic toxicity, improve drug solubility, and improve

drug pharmacokinetics and therapeutic efficacy (Kaushik et al.,

2022). NDDS works best in areas where many limitations exist

with molecular targeted therapy, and a need exists to push

treatment boundaries for PC (Kokkinos et al., 2020).

Currently, bibliometrics has become a very important

methodology for scholars to effectively identify the latest

progress in a certain research field, predict research hotspots,

and evaluate the development trend of this field. In recent years,

bibliometrics has been applied to the research field related to

nanomaterials (Huang et al., 2015; Zhu et al., 2021; Huang et al.,

2022). However, there is still a lack of bibliometric analysis of the

application of nanomaterials in oncology in the face of the

research trend of oncology, materials science, pharmacology,

and other disciplines gradually interpenetrating. As far as we

know, there was no bibliometric analysis of NDDS for PC at

present. In this study, based on the Web of Science Core

Collection (WOSCC) database, we used CiteSpace,

VOSviewer, and R-Bibliometrix to conduct bibliometric and

visual analysis on the number of publications, citations, and

research trends of countries/regions, institutions, authors, and

keywords in NDDS for PC related literature, and sorted out the

research hotspots and predicted the development trends in this

field.

Methods

Data sources and search strategies

We comprehensively searched publications related to

NDDS for PC in the WOSCC database from 2003 to 2022

(as of September 8).Reasonable use of wildcards makes retrieval

strategies more organized and scientific (Cheng et al., 2022a;

Cheng et al., 2022b). The retrieval strategy of this study was as

follows: [TS=((Nanoparticle* OR Nanocrystalline Material* OR

Nanocrystal* OR Nano Particle*) AND (Drug Delivery System*

OR Drug Targeting* OR Drug Delivery))] AND

[TS=((Pancreas OR Pancreatic) NEAR/1 (cancer* OR

tumo$r* OR neoplasm* OR carcinoma* OR oncology))].

Only English language publications were included; the data

category was limited to “article” and “review”. After excluding

the publications that meet the language and article type

requirements, further, we evaluated the title and abstract

articles to determine whether the literature meets the theme

of NDDs for PC. For the uncertain literature, the full text was

downloaded and evaluated in more detail. Figure 1 showed the

research flow chart.

Bibliometric analysis

CiteSpace (6.1.R3) was used to analyze the included

literature, including co-citation analysis performed on

countries/regions and institutions, dual-map overlay of

citations, timeline view, co-cited references analysis, and

references with the strongest citation burst.

VOSviewer (1.6.16) was used to visualize the co-citation

network of authors and journals, and the co-occurrence of

keywords. In the visual map, different nodes represented

authors, journals, or keywords, etc; The node size indicated

numbers or frequency; The thickness of the line represented

the strength of the link; The colors of nodes represented different

clusters or times.

R-Bibliometrix was used to analyze the theme evolution

based on keywords over time, visualize the cooperation

network between countries, and make a descriptive analysis of

the publishing characteristics of journals. In addition, we used R

software and R-Bibliometrix to generate the distribution map of

high-frequency keywords over time.

Moreover, the scientometric online platform (https://

bibliometric.com/) was used to conduct international

cooperation networks between countries.
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Results

Annual publications and trend

A total of 1329 publications regarding NDDS for PC were

included. As shown in Figure 2, in general, since 2008, the annual

number of publications has exceeded 10 and increased over time.

The number of publications of NDDS for PC was the highest in

2021, although there was a slight decline in volatility in some

years (2011 and 2018). 1329 publications had a total of

57,431 citations, with an average of 43.21 citations per paper,

and an H-index of 102.

Countries/regions

A total of 71 countries/regions contributed to the

publications included. The United States had the largest

number of publications (n = 456, accounting for 34.312%

of the total; 25,009 citations, with an average of

54.84 citations per paper, and an H-index of 79), followed

by China (n = 446, accounting for 33.559%; 15,117 citations,

with an average of 33.89 citations per paper, and an H-index

of 62), and India (n = 108, accounting for 8.126%;

4,071 citations, with an average of 37.69 citations per

paper, and an H-index of 37) (Figure 3A). Although the

total number of publications in France ranked fourth, its

total number of citations was second only to the United States

and China, and its average number of citations was higher

than that of the United States. Figure 3B summarized the

annual output trend of the top 3 productive countries from

2003 to 2021. Figures 3C,D showed international cooperation

among countries. Figure 3C was generated by CiteSpace: The

thickness of the lines between countries showed the strength

of cooperation. Among the top 20 countries with the most

papers, the United States and China had the closest

cooperation with other countries/regions; The

United States, European countries (e.g., Italy and France),

and Asian countries (e.g., China, India, and Saudi Arabia)

were still the most important part of the national cooperation

map, and extensive cooperative relations have been

established between them, but the cooperation of other

developing countries was still weak. In addition,

cooperation in neighboring regions (e.g., the United States

and Canada; China and Japan, South Korea), intra-

continental cooperation (e.g., Germany and Spain,

England, and Italy), and inter-continental cooperation

(e.g., China and the United States) were also observed.

FIGURE 1
The research flow chart of this study.
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Institutions

A total of 1,600 institutions worldwide contributed to the

1329 publications related to NDDS for PC. CiteSpace

generated a cooperation network of institutions, as shown

in Figure 4. The top 5 institutions with the most papers were

Chinese Acad Sci, Fudan Univ, Zhejiang Univ, Shanghai Jiao

Tong Univ, and Univ Chinese Acad Sci. The betweenness

centrality (BC) value was an index to evaluate the importance

of nodes in a collaborative network, and a BC value >0.1 was

considered a vital node (Cheng et al., 2022b). Among the top

22 institutions with the most publications, institutions with

BC values greater than 0.1 included Chinese Acad Sci (0.27),

Harvard Med Sch (0.11), and Univ Sci and Technol China

(0.11). Among these 22 institutions, China had 10 institutions,

and the United States had 8 institutions (Table 1).

Authors and co-cited authors

In terms of an author analysis, the total citations (×100),

average citation per paper (×10), and H-index of the top five

most prolific authors were shown in Figure 5A. Couvreur P

contributed the most publications, followed by Kataoka K and

Yong KT. The publications of Couvreur P had the highest total

and average citations (4976 and 248.8, respectively), and the

H-index is 14; The total and average citations of publications

by Kataoka K ranked second (3784 and 189.2 respectively),

with the highest H-index (n = 19); Although the number of

publications by Meng H ranked fifth, the total and average

number of citations of which ranked third (1918 and

137 respectively). Figure 5B showed the number of

publications by the top five most prolific authors in

different years and the total citations per year: It could be

seen that the total citations of the six papers by Couvreur P in

2013 exceeded 1000 (n = 4,306), the total citations of two

papers by Kataoka K in 2011 exceeded 1000 (n = 1,870), and

one article by Meng H in 2009 was cited 687 times in total.

Figure 5C showed the cluster density map of author co-

authorship analysis. Only 158 authors with more than

5 papers were included, forming a total of 9 author

clusters. By analyzing the co-citation network of authors,

85 authors who have been cited more than 45 times were

defined as key researchers (Figure 5D): The connection

represented the cooperation between authors, and the size

of the circle represented the number of citations. Total link

strength (TLS) indicated the impact of authors’ published

papers on other authors involved in the studies. Meng H had

the greatest TLS (n = 2134), followed by Von Hof DD (n =

1597), and Maeda H (n = 1582).

FIGURE 2
Number of annual publications regarding NDDS for PC from 2003 to 2021. Each bar shows the number of publications per year. The dotted line
represents the curve fitting for this trend. Abbreviation: NDDS, Nano-drug Delivery System; PC, pancreatic cancer.
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FIGURE 3
(A) The number of publications, total citations (×100), average citation per paper, and H-index of the 10 most productive countries/regions. (B)
Annual output trend of the top 3 productive countries. (C) The country cooperation network generated by Citespace. Each node reprent a country,
and the size of each node is proportional to the number of publications. The links between countries reflect co-occurrence relationships, while line
thickness reflects the strength of cooperation. (D) The international cooperation networks between countries. Line thickness between
countries reflects the intensity of the closeness.

FIGURE 4
The cooperation network of institutions generated by Citespace. In the visualization map, one node represents an institution, and its size is
proportional to the number of publications. The links between nodes represent the strength of cooperation.
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Journals

329 journals published 1329 publications regarding NDDS

for PC, and 66 journals published more than 5 publications.

Among the top 16 journals in terms of the number of papers,

JOURNAL OF CONTROLLED RELEASE ranked first

(58 papers), followed by BIOMATERIALS and

INTERNATIONAL JOURNAL OF NANOMEDICINE (52 and

44 papers, respectively) (Table 2; Figure 6A). Among these

16 journals, 5 were published in the Netherlands, 5 were

published in England, and 3 in the United States. The papers

of ACS NANO had the highest total number of citations (n =

4,110), followed by BIOMATERIALS (n = 3,294), and JOURNAL

OF CONTROLLED RELEASE (n = 2,577). According to the latest

JCR division in 2021, 13 journals were in JCR Q1 and 3 journals

were in JCR Q2, and ACS NANO was the journal with the highest

impact factor. In addition, we also conducted the map of annual

occurrences of the top 16 journals, to more specifically

understand the changing trend of the number of publications

of these journals in different years (Figure 6B). As shown in

Figure 6C, the network visualization diagram of journal co-

citation analysis was created by VOSviewer. Only visually cite

journals at least 300 times. Among the 59 journals that met the

standard, the top 5 journals commonly cited were JOURNAL OF

CONTROLLED RELEASE, BIOMATERIALS, ACS NANO,

CANCER RESEARCH, and ADVANCED DRUG DELIVERY

REVIEWS.

Dual-map overlays of nano drug delivery
system for pancreatic cancer

The superposition of dual-map overlays revealed the overall

scientific contribution. The left side was the citing journal, the

right side was the cited journal, and the colored line path

represented the citation relationship, indicating the citation

trajectory and knowledge flow of knowledge (Chen and

Leydesdorff, 2014). The result indicated that the citing papers

regarding NDDS for PC were mainly focused on journals in the

field of molecular, biology, immunology, and physics, materials,

chemistry, whereas most of the cited articles were published in

journals in the field of molecular, biology, genetics, and

chemistry, materials, physics (Figure 7).

Co-cited references and the strongest
citation burst

Table 3 summarized the top 10 highly co-cited references of

NDDS for PC research. The visualization network of co-cited

TABLE 1 Ranking of the top 22 institutions with the most publications.

Rank Institutions Country No. of publications Centrality

1 Chinese Acad Sci Peoples R China 50 0.27

2 Fudan Univ Peoples R China 47 0.05

3 Zhejiang Univ Peoples R China 47 0.05

4 Shanghai Jiao Tong Univ Peoples R China 36 0.02

5 Univ Chinese Acad Sci Peoples R China 33 0.1

6 Univ Calif Los Angeles United States 25 0.04

7 Univ Nebraska Med Ctr United States 24 0.04

8 Harvard Med Sch United States 22 0.11

9 Sichuan Univ Peoples R China 21 0.02

10 Shenzhen Univ Peoples R China 18 0.07

11 Univ Paris 11 France 17 0.03

12 Univ Tokyo Japan 16 0.07

13 Univ Texas MD Anderson Canc Ctr United States 15 0.02

14 Emory Univ United States 15 0.02

15 Sun Yat Sen Univ Peoples R China 15 0

16 Nanyang Technol Univ Singapore 14 0.08

17 Mayo Clin United States 13 0.06

18 Peking Univ Peoples R China 13 0.01

19 Univ Sci and Technol China Peoples R China 11 0.11

20 Northeastern Univ United States 11 0.03

21 CNR Italy 11 0.02

22 Univ Tennessee United States 11 0.01
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references by CiteSpace were shown in Figure 8A. In the

visualization network of co-cited references, all nodes

representing the references were clustered into 17 specific

clusters with the highest K values, including “#0 tumor

penetration”, “#1 gemcitabine”, “#2 exosome”, and

“#3 pancreatic stellate cells”, and so on. The timeline view

could help us understand the evolution track of this field (Liu

et al., 2021b). Visualized timeline for these 17 clusters was further

performed (Figure 8B), and we found that “half generation

PAMAM dendrimer” and “lipid polymer hybrid nanoparticle”

were earlier fields on NDDS for PC. In addition, we also applied

CiteSpace to identify the top 30 references with the strongest

citation burst. References citation burst refers to references that

have been widely cited by other studies over a period of time,

which meant that they have received special attention in a certain

period (Min et al., 2022). As shown in Figure 8C, since 2008, the

strongest citation burst came from the paper of Von HOFFDD

et al. (Von Hoff et al., 2013) in 2013, followed by the article of

Bray F et al. on CA-CANCER J CLIN in 2018 (Bray et al., 2018),

and the article of Siegel RL et al. on CA-CANCER J CLIN in 2015

(Siegel et al., 2015).

Keywords

Figures 9A,B show the network visualization of keywords

generated by VOSviewer. Among 2713 keywords, the frequency

of occurrence was set to at least 8, and finally, 82 keywords were

included in the analysis. Figure 9B showed the overlay

visualization of author keywords. Earlier keywords were

displayed in blue, while orange represented the most recent

keywords. For example, keywords such as “angiogenesis”,

“EGFR”, and “controlled release” were the main topics in the

early stage, and the keywords of “exosome”, “hypoxia”,

“autophagy”, “tumor penetration”, and “immunotherapy” were

hot topics in recent years. In addition, the distribution map of

35 high-frequency keywords over time was conducted by R

software (Figure 10A), in which each cell represented the

occurrence frequency of a keyword in a year, and the

corresponding value was formed after standardizing these

occurrences frequencies (0–1). The value of the black cell was

the smallest, which represented the lowest occurrence frequency

of the keyword this year, with the change of color, the value of the

yellow cell was the biggest, and its corresponding keywords

appeared the most frequently this year. For example, from

2002 to 2022 (as of September 8), “Magnetic resonance

imaging” appeared more frequently in 2017, while in

2020 and 2021, the frequency decreased for two consecutive

years.

The trend topic analysis was an important mapping tool that

helped to portray the seed of trend integration rooted in the

previous stream (Dai et al., 2022). The trend topics map was

generated by R-Bibliometrix based on the occurrence frequency

FIGURE 5
(A) The total citations (×100), average citation per paper (×10),
and H-index of the top five most prolific authors. (B) The number
of publications by the top five most prolific authors in different
years and the total citations per year. Different color of each
cell reflects different number of TC per year, and the number in the
cell represents the number of publications each year. (C) Author
co-authorship analysis by VOSviewer. One color reprents a
cluster, and authors with close relationship are allocated to the
same cluster. (D) Author co-citation analysis by VOSviewer. One
node represents an author, and the lines between nodes represent
the co-citation relationship. Abbreviation: TC, total citations.
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of author keywords and set word minimum frequency = 15 and

the number of words per year = 6 (Figure 10B). The results

showed that the duration of “apoptosis”was the longest (8 years),

followed by “magnetic nanoparticle” (7 years).

“Immunotherapy” began to appear in the field of NDDS for

PC in 2020, and “exosome” began to appear in the field in 2019.

“Immunotherapy” had the highest frequency in 2021, while

“exosome”, “tumor microenvironment”, and “photodynamic

therapy” had the highest frequency in 2020.

Finally, the keywords thematic map was generated by

R-Bibliometrix (Figure 10C), and a total of 260 keywords

were examined where a minimum cluster frequency was

6 and the number of labels for each cluster was 10. The upper

right quadrant (motor theme), which was characterized by a high

density and centrality, showed probably the well-developed and

important themes for the structuring of the NDDS for PC

research field. The cluster included “tumor

microenvironment”, “siRNA”, “combination therapy”,

“targeted therapy”, “drug resistance”, “immunotherapy”,

“hyaluronic acid”, “tumor targeting”, “miRNA”, and “cancer

stem cell”. The upper-left quadrant (niche theme) contained

two clusters, cluster one included “cancer-associated fibroblasts”

and “extracellular matrix”; cluster two included “anticancer

activity”, “pegylation”, and “reactive oxygen species”. The

cluster in the third quadrant (emerging or declining theme)

was characterized by low centrality and density, which means

that it was weakly developed and marginal, including “erlotinib”

and “hypoxia” as the major themes. The fourth quadrant (basic

themes) contained two clusters, cluster one included “pancreatic

cancer”, “nanoparticle”, “drug delivery system”, “gemcitabine”,

“nanomedicine”, “cancer”, “cancer therapy”, “liposome”,

“targeted drug delivery”, and “chemotherapy”; cluster two

included “magnetic nanoparticle”, “mesoporous silica

nanoparticle”, “photodynamic therapy”, “magnetic resonance

imaging”, “photothermal therapy”, “theranostics”,

“nanomaterial”, “active targeting”, “EGFR”, and “cisplatin”.

They concern general topics that were transversal to different

research areas of the field.

Discussion

In this study, we used CiteSpace, VOSviewer, and

R-Bibliometrix to conduct a bibliometric and visual analysis

of 1329 publications related to NDDS for PC published

between 2003 and 2022 (as of September 8), to sort out the

research status of global publications related to this field,

summarize research hotspots and predict future research trends.

The change in the number of academic publications is an

important indicator of the development trend of a field (Cheng

et al., 2022a). Over the past 20 years, publications related to

NDDS for PC have shown a significant growth trend (Figure 2).

From 2002 to 2007, the number of publications related to NDDS

for PC was still small (no more than 10) and the trend was

unstable; From 2008 to 2011, although there were more than

10 publications per year, the trend was still unstable, and the

number of publications decreased slightly in 2011; Since 2012,

the number of the publications increased steadily, and the annual

number of publications has exceeded 100 since 2016, although

there was a slight decline in 2018. 86.3% of the papers (n = 1,174)

TABLE 2 The top 16 journals with the most publications regarding NDDS for PC.

Rank Journals Publications Citations IF (2021) JCR (2021) Country

1 JOURNAL OF CONTROLLED RELEASE 58 2,577 11.467 Q1 Netherlands

2 BIOMATERIALS 52 3,294 15.304 Q1 Netherlands

3 INTERNATIONAL JOURNAL OF NANOMEDICINE 44 1,754 7.033 Q2 New Zealand

4 ACS NANO 37 4,110 18.027 Q1 United States

5 INTERNATIONAL JOURNAL OF PHARMACEUTICS 35 1,023 6.51 Q1 Netherlands

6 ACS APPLIED MATERIALS INTERFACES 34 870 10.383 Q1 United States

7 MOLECULAR PHARMACEUTICS 31 1,141 5.364 Q1 United States

8 PHARMACEUTICS 30 252 6.525 Q1 Switzerland

9 JOURNAL OF MATERIALS CHEMISTRY B 23 490 7.571 Q1 England

10 CANCERS 23 431 6.575 Q1 Switzerland

11 NANOMEDICINE NANOTECHNOLOGY BIOLOGY AND MEDICINE 22 1,066 6.458 Q2 Netherlands

12 THERANOSTICS 22 740 11.6 Q1 Australia

13 NANOSCALE 21 520 8.307 Q1 England

14 SCIENTIFIC REPORTS 21 494 4.996 Q2 England

15 SMALL 18 1,162 15.153 Q1 Germany

16 BIOMATERIALS SCIENCE 18 319 7.59 Q1 England

Abbreviations: PC, pancreatic cancer; NDDS, Nano-drug Delivery System ; IF, impact factor; JCR, Journal Citation Reports.
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FIGURE 6
(A) The top 16 journals with the most publications generated by R-Bibliometrix. (B) Annual occurrences of the top 16 journals with the most
publications generated by R-Bibliometrix. (C) The network visualization diagram of journal co-citation analysis generated by VOSviewer. One node
represents one journal, and the area means the citation frequency. Sizes of the nodes are reflected with co-citations.
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were published in the past 10 years (2012–2021). These results

showed that in the past 10 years, the research on NDDS for PC

has begun to develop rapidly.

The number of publications in a country is an important

indicator of a country’s output. Figure 3A showed that the

United States, four Asian countries (China, India, Japan, and

South Korea), and European countries (France, Italy, Spain, and

England) almost accounted for the top 10 contributions to NDDS

for PC. The United States had the highest total number of

citations and H-index. These results reflected that the

United States had made great contributions and established its

leading position in the field of NDDS for PC. In addition to the

research topic of NDDS for PC, similar results were also obtained

in the bibliometric analysis of other topics such as “pancreatic

cancer” (Wang and Herr, 2022), “pancreatic stellate cells” (Yang

et al., 2022b), and “inhalable nanosystems” (Huang et al., 2021).

As for the cooperation among countries, it could be seen from

Figure 3C that among the 20 countries with the most

publications, the United States and China had the closest

cooperation with other countries/regions; The United States,

European countries (e.g., Italy and France), and Asian

countries (e.g., China, India, and Saudi Arabia) were still the

most important parts of the national cooperation landscape, and

extensive cooperation had been established between them, but

the cooperation of other developing countries was still relatively

weak, and these countries needed to further cooperate to

promote the development of NDDS for PC research field

worldwide.

Among the top 22 institutions with the most publications,

Chinese Acad SCI, Harvard Med Sch, and Univ Sci and Technol

FIGURE 7
The dual-map overlay of journals contributed to publications regarding NDDS for PC from 2003 to 2022. The left side was the citing journal, the
right side was the cited journal, and the colored line path represented the citation relationship. In order to display the local area more precisely, the
local area is magnified (the area enclosed by the box). Abbreviation: NDDS, Nano-drug Delivery System; PC, pancreatic cancer.

Frontiers in Pharmacology frontiersin.org10

Zhao et al. 10.3389/fphar.2022.1025618

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1025618


China had BC values greater than 0.1 (0.27, 0.11, and 0.11,

respectively), indicating that these institutions were at the core of

international cooperation in the field of NDDS for PC. It could be

seen from Figure 4 that although some institutions had

cooperation with other national institutions, such as Chinese

Acad SCI’s cooperation with Univ Calif Los Angeles of the

United States, it mostly cooperated with Zhejiang Univ, Fudan

Univ, Shanghai Jiao Tong Univ, Sun Yat Sen Univ and other

domestic institutions of China, which revealed a phenomenon,

that was, in the field of NDDS for PC research, there was

relatively little cooperation and exchange of results between

institutions in different countries, and most of the cooperation

institutions were limited to the domestic. Considering that

nanomedicine was more and more widely used in oncology

and other medical fields, and the research was gradually in-

depth, this situation has greatly hindered the development of

related research fields. Therefore, it is imperative to strengthen

the cooperation between international institutions and jointly

promote the development of research in this field.

Among the top 5 authors who published the most papers,

Couvreur P of Paris-Saclay University contributed the most

papers, with the highest total and average number of citations

(4,976 and 248.8, respectively); Although the total and average

number of citations of the publications by Kazuoka K ranked

second (3,784 and 189.2, respectively), the H-index was the

highest (n = 19); Although Meng H’s number of publications

ranked fifth, the whose total and average number of citations

ranked third (1,918 and 137, respectively). As could be seen from

Figure 5B, among the top 5 authors, Kataoka K carried out

research in this field first, starting in 2005, with the largest annual

number of publications in 2014 (n = 4), and the highest total

citations per year in 2011 (n = 1,870); Among the 2 articles

published by Kataoka K in 2011, the total number of citations for

one article was as high as 1,727, the authors compared the

accumulation and effectiveness of different sizes of long-

circulating, drug-loaded polymeric micelles (with diameters of

30, 50, 70 and 100 nm) in both highly and poorly permeable

tumors. All the polymer micelles penetrated highly permeable

tumors in mice, but only the 30 nm micelles could penetrate

poorly permeable tumors to achieve an antitumor effect, and they

found that the penetration and efficacy of the larger micelles

could be enhanced by using a transforming growth factor-beta

inhibitor to increase the permeability of PC (Cabral et al., 2011a).

Meng H carried out research in this field first, starting in 2009,

with the largest annual number of articles in 2017 and 2021 (n =

3), and the highest total citations per year in 2009 (n = 687): This

highly cited paper showed that polyethyleneimine (PEI)

polymers could enhance the cellular uptake of mesoporous

silica nanoparticles (NPs) and improved the delivery of the

hydrophobic anticancer drug paclitaxel to pancreatic cancer

cells (Xia et al., 2009). Couvreur P started research in this

field in 2011. The author’s annual output of articles (n = 6)

and total citations per year (n = 4,306) reached the highest in

2013, and one of the six articles had high scientific influence in

the field of NDDS for PC research: In the review (Mura et al.,

2013), the authors discussed recent advances in the design of

nanoscale stimuli-responsive systems that were able to control

drug biodistribution in response to specific stimuli, either

exogenous (variations in temperature, magnetic field,

ultrasound intensity, light or electric pulses) or endogenous

TABLE 3 Top 10 highly co-cited references.

First
authors

Title Journals Citations

1 Von HOFF DD Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine NEW ENGLAND JOURNAL OF
MEDICINE

121

2 Cabral H Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on
size

NATURE NANOTECHNOLOGY 97

3 Burris HA Improvements in survival and clinical benefit with gemcitabine as first-line therapy for
patients with advanced pancreas cancer: a randomized trial

JOURNAL OF CLINICAL
ONCOLOGY

96

4 Matsumura Y A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of
tumoritropic accumulation of proteins and the antitumor agent smancs

CANCER RESEARCH 85

5 Conroy T FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer NEW ENGLAND JOURNAL OF
MEDICINE

80

6 Peer D Nanocarriers as an emerging platform for cancer therapy NATURE NANOTECHNOLOGY 79

7 Meng H Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine
and paclitaxel delivery to human pancreatic cancer in mice

ACS NANO 73

8 Olive KP Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of
pancreatic cancer

SCIENCE 67

9 Jain RK Delivering nanomedicine to solid tumors NATURE REVIEWS CLINICAL
ONCOLOGY

59

10 Patra CR Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a
targeting agent

CANCER RESEARCH 58
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FIGURE 8
(A) The visualization network of co-cited references generated by Citespace. Each circle represents a reference, and circles with the same color
represent a cluster with the same topic. (B) The timeline view map of references co-cited analysis generated by CiteSpace; This map implies the
differences in the appearance time point of 17 clusters (2003–2022). The position of each circle on the horizontal axis indicates the time point of the
first appearance, the size of the circle represents the total number of it was cited, and the circle on the same line represents a cluster with the
same topic; The lines connecting the nodes represent co-cited relationships. (C) Top 30 references with the strongest citation bursts. The strength
value represents the strength of citation bursts. The red bars indicate the durations of the bursts.
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FIGURE 9
Keywords regarding NDDS for PC. (A) Network visualization of keywords generated by VOSviewer. (B) Overlay visualization of keywords
generated by VOSviewer. Earlier keywords were displayed in blue, while orange represented the most recent keywords. In order to display the local
area more precisely, the local area is magnified (the area enclosed by the box). Abbreviation: NDDS, Nano-drug Delivery System; PC, pancreatic
cancer.
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FIGURE 10
(A) The distributionmap of 35 high-frequency keywords over time generated by R software. Each cell represented the occurrence frequency of
a keyword in a year, and the corresponding value was formed after standardizing these occurrences frequencies (0–1). (B) Trend topics. The X-axis
represents the year, while the Y-axis is the cumulate occurrences of the keywords. (C) The keywords thematicmap generated by R-Bibliometrix. The
X-axis represents the centrality indicating the importance of a theme; The Y-axis symbolizes the densityindicating the development of a theme.
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(changes in pH, enzyme concentration or redox gradients).

However, from 2020 to 2021, Couvreur P did not publish any

research on NDDS for PC. Kataoka K made contributions to

nano polymer micelles, nano gene delivery targeting PC, and

nano mediated sonodynamic therapy, etc, and Meng H mainly

contributed to silicasome nanocarrier delivery system of

chemotherapeutic drugs for PC, nano-enabled PC

immunotherapy, and the targeting strategies for the

carcinogenic molecular mechanism of PC, etc, while Couvreur

P made contributions to squalene-based nanosystems for

controlled drug release, and stimuli-responsive nanocarriers

for drug delivery, etc.

As for the author co-citation analysis, 85 authors cited at least

45 times were included. As shown in Figure 5D, the top three

authors with the largest TLS were Meng H, Von Hof DD, and

Maeda H. At the same time, it was worth noting that although

only 7 papers on NDDS for PC were published, Cabral H from

Univ Tokyo still occupied an important position in the co-

citation map, which might be related to several highly cited

papers they have published, especially the article published on

Nature Nanotechnology in 2011 contributed as the first author,

which was cited 1,727 times (Cabral et al., 2011b). This result

showed that the number of publications was not the only

indicator of the author’s academic influence in this field.

Analyzing the characteristics of international peer-reviewed

journals is helpful to understand the current trend, which is

directly reflected in helping scholars understand the important

journals related to the field of NDDS for PC, and select the most

appropriate published journals for their research. In this study,

the 16 journals with the highest productivity were all JCR Q1 or

Q2 journals, among which JOURNAL OF CONTROLLED

RELEASE, BIOMATERIALS, and INTERNATIONAL

JOURNAL OF NANOMEDICINE were the three journals with

the highest productivity in the field of NDDS for PC. It could be

seen from Figure 6B that since 2017, the annual publications on

NDDS for PC published by PHARMACEUTICS increased

significantly, and PHARMACEUTICS published the most

papers among the 16 journals in 2021 and 2022 (as of

September 8), which showed that the attention of this journal

to the related research of NDDS for PC was increasing or the

attention of scholars of this field to PHARMACEUTICS was

increasing. The top five journals commonly co-cited were

JOURNAL OF CONTROLLED RELEASE, BIOMATERIALS,

ACS NANO, CANCER RESEARCH, and ADVANCED DRUG

DELIVERY REVIEWS. Therefore, the research results related to

NDDS for PC published in these journals may be easier to be

cited and receive more attention. Moreover, it is necessary to pay

attention to the published papers in these journals to obtain the

latest progress in the field of NDDS for PC.

Figure 8C listed the top 30 references with strong citation

burst. Since 2008, the strongest citation burst came from the

article of Von HOFFDD et al. (Von Hoff et al., 2013) in 2013,

followed by the article of Bray F et al. on CA-CANCER J CLIN in

2018 (Bray et al., 2018), and the article of Siegel RL et al. on CA-

CANCER J CLIN in 2015 (Siegel et al., 2015). Considering the

strength and time of burst, four articles were worthy of attention:

In addition to an article by Cabral et al. (2011c), an article by

Meng H et al. has maintained a continuous burst from 2016

(Meng et al., 2015), they developed a mesoporous silica NPs

vector for PC, which cooperatively delivered gemcitabine/

paclitaxel combinations. Cell experiments found that it could

inhibit the expression of cytidine deaminase and induce oxidative

stress; In vivo experiments showed that the growth of PC was

significantly inhibited and metastasis was eliminated. Another

clinical trial investigated the efficacy of FOLFIRINOX in

metastatic PC (Conroy et al., 2011). In addition, Wilhelm

et al. analyzed the reasons for the poor efficiency of NPs

delivered to solid tumors from the perspective of tumor

biology and competing organs and proposed effective

strategies to address this limitation (Wilhelm et al., 2016).

The references co-citation and keyword co-occurrence

analysis can help to reveal the main research directions, hot

spots, and evolution process in this field (Wang et al., 2021).

Figure 8B showed the trajectory of reference clusters over

time. The results indicated that the current research hotspot has

shifted to “#0 tumor penetration”, “#2 exosome”, “#4 polymer”,

and “#13 alternating magnetic field”.

Figure 9B showed that the keywords “exosome”, “hypoxia”,

“autophagy”, “tumor penetration”, “extracellular matrix”,

“tumor microenvironment”, “immunotherapy”, “ultrasound”,

and “hyaluronic acid”, etc. were hot topics in recent years. In

addition, we also conducted a trend topic analysis based on

author keywords (Figure 10B), and the results showed that

“immunotherapy” began to appear in the field of NDDS for

PC in 2020, and “exosome” began to appear in the field in 2019.

“Immunotherapy” had the highest frequency in 2021, while

“exosome”, “tumor microenvironment”, and “photodynamic

therapy” had the highest frequency in 2020. The results based

on the trend topic analysis showed that in 2020 and 2021,

researchers gradually paid more attention to these keywords.

We also used R software to conduct a distribution map of the top

35 high-frequency keywords over time (Figure 10A), and the

results showed that the two core keywords “pancreatic cancer”

and “nanoparticle” had the highest frequency in 2021, and “drug

delivery system” had a higher frequency in 2021, which indicated

that research related to NDDS for PC was still hot; Besides,

“nanomedicine”, “cancer therapy”, “nanotechnology”, “tumor

microenvironment”, “siRNA”, “photodynamic therapy”,

“combination therapy”, “targeted therapy”, “immunotherapy”,

“cytotoxicity”, and “polymetric micelle” also had the highest

frequency in 2021, and the frequency of some of these

keywords fluctuated significantly: For example, “tumor

microenvironment” had a relatively higher frequency in

2017 and 2021, but the frequency was lower in 2018 and

2020. Similar phenomena also occurred in “polymetric

micelle”. Different software and research methods have their
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advantages and can complement each other. In this study, we

used VOSviewer, R software, and R-Bibliometrix to analyze

keywords, using keyword co-occurrence network and overlay

visualization maps, trend topics map, and distribution map of

high-frequency keywords over time to display the topic evolution

and hotspots of keywords as broadly and objectively as possible.

Keywords’ thematic map can analyze topics that may have long-

term development in the future. The keywords that appear in the

motor themes are important andmature. Figure 10C showed that

the motor theme contained one cluster, which included “tumor

microenvironment”, “siRNA”, “combination therapy”, “targeted

therapy”, “drug resistance”, “immunotherapy”, “hyaluronic

acid”, “tumor targeting”, “miRNA”, and “cancer stem cell”.

The above results showed that the current research hotspots

of PC NDDs mainly focused on the tumor microenvironment

and its molecular mechanisms, as well as topics related to tumor

penetration, such as “tumor microenvironment”, “extracellular

matrix”, “tumor penetration”, “hypoxia”, “exosome”, and

“autophagy”; Treatment related topics, such as

“immunotherapy”, “combination therapy”, “alternating

magnetic field/magnetic hyperthermia”, and “ultrasound”;

And gene therapy dominated by “siRNA” and “miRNA”.

An important feature of PC is the extensive deposition of

extracellular matrix (ECM) components in the tumor

microenvironment (TME) and the activation of cancer-

associated fibroblasts (CAFs). These changes can reduce

vascular patency, lead to hypoxia (Jain et al., 2014), hinder

the effective delivery of drugs (Jia et al., 2021), and change the

anti-tumor immune response (Hosein et al., 2020). As key

participants in TME, CAFs can promote ECM deposition by

producing fibrotic compounds such as collagen, hyaluronic

acid, and fibronectin (Tian et al., 2019), and also have complex

crosstalk with cancer and immune cells (Kota et al., 2017). In

addition, CAFs can secrete chemokines, cytokines, growth

factors, microRNAs (miRNAs), and extracellular vesicles to

communicate with cancer cells and other TME participants to

promote tumor progression (Vennin et al., 2018). Therefore,

blocking the activation and proliferation of CAFs or targeting

them for drug delivery is a new therapeutic strategy for PC.

Study shows that the absorption of NPs by CAFs is more than

10% higher than that of tumor cells (Alhussan et al., 2021), so

drugs targeting CAFs can give full play to the advantages of

NDDS. Although CAFs-targeting NPs can lead to significant

inactivation of CAFs, and further reduce ECM production

(Feng et al., 2020a), however, blocking the activation of CAFs

alone may not be effective in killing PC. Therefore, the use of

nanocarriers combined with drugs that block CAFs from

producing matrix and chemotherapeutic drugs (such as

paclitaxel, etc.) has become a direction worthy of in-depth

research (Zhao et al., 2018; Yu et al., 2020; Zang et al., 2022).

In addition, targeted therapy against the over-expressed

enzymes on the membrane of CAFs can also inhibit the

function of CAFs, which can effectively combine with

NDDS and significantly enhance drug accumulation at

tumor sites (Yu et al., 2020).

The low tumor penetration dominated by TME is the core

factor hindering the clinical efficacy of NDDS, mainly because of

the complex arrangement and distribution of blood vessels in

tumors (Jain and Stylianopoulos, 2010; Matsumoto et al., 2016),

which is mainly manifested in, on the one hand, the rapid

diffusion of tumor cells leads to the lack of oxygen and

nutrition, which leads to vascular abnormalities and

heterogeneity (Chauhan et al., 2011), and ultimately inhibits

the penetration of NPs (Jain, 2003); The uneven distribution of

blood vessels from the periphery to the center of the tumor

further hinders the deep penetration of NPs into the tumor

(Munir, 2022). On the other hand, the ECM has very narrow

pores, which hinders the delivery of NPs by electrostatic

interactions and steric restriction (Stylianopoulos et al., 2010;

Sriraman et al., 2014). Therefore, destroying tumor ECM and

complex blood vessel distribution becomes one of the main

methods to improve the penetration of NPs (Munir, 2022).

However, forcefully destroying the matrix barrier and the

blood vessels in the tumor may lead to the imbalance of

signal transduction and dependence in TME, and

uncontrolled PC growth and metastasis (Chen et al., 2022).

Researches show that photothermal therapy (PTT) can

promote NPs to penetrate deep in sites away from vasculature

exposed to the near-infrared laser (He et al., 2015; Chen et al.,

2017; Yu et al., 2017), and enhance the accumulation and efficacy

of chemotherapy drugs in PC (Yu et al., 2020; Zhang et al., 2021).

Combined ultrasound microbubble technology can also enhance

the permeability of NPs and inhibit the growth of PC (Xing et al.,

2016; Xu et al., 202b). In addition, the transcellular drug

transport mediated by tumor penetrating peptide iRGD has

been proved to enhance the effective penetration of NPs in

PC tissues (Liu et al., 2017a; Liu et al., 2017b; Ruoslahti, 2017;

Hurtado de Mendoza et al., 2021), which shows the potential of

iRGD as a tumor-specific enhancer. However, due to the

complexity of the biological barrier, the penetration depth of

NPs still needs to be determined by in-depth research. The

combination of photodynamic therapy (PDT) and PTT-

mediated NPs and checkpoint blocking immunotherapy (Liu

et al., 2019b; Sun et al., 2021; Qiu et al., 2022a; Xu et al., 2022a;

Yun et al., 2022), as well as the combination of NPs and small

interacting RNA (siRNA) targeted to checkpoints (Barshidi et al.,

2022; Won et al., 2022), is expected to effectively activate the

immune system, cause tumor degeneration, and get rid of the

technical difficulties of tumor penetration.

However, due to the abnormal vascular network in TME and

other reasons, the drugs delivered by traditional nano delivery

systems show reduced biocompatibility, low permeability,

retention effect, and high toxicity (Zhou et al., 2020). The

targeted stimulus-responsive NDDS is a very promising

solution, which shows high stability, biocompatibility,

enhanced permeability, reduced toxicity, and retention effect,
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and can improve the efficacy of delivered drugs and significantly

reduce side effects (Masood, 2016; Mahato, 2017;

Narayanaswamy and Torchilin, 2019). Currently, a large

number of studies on NDDS targeting different stimuli-

responsive elements have been carried out, including

temperature (Yang et al., 2018; Lu and Ten Hagen, 2020;

Zhang et al., 2022b), magnetic field (Chen et al., 2019; Sun

et al., 2020), light (Sun et al., 2019; Ge et al., 2021; Feng et al.,

2022), pH (Li et al., 2016a; Qu et al., 2017; Latorre et al., 2019),

ATP (Lai et al., 2015; Zhang et al., 2016), enzyme (Cai et al., 2020;

Deng et al., 2022b), redox-potential (Raza et al., 2018; Kumar

et al., 2019), and hypoxia (Kulkarni et al., 2018; Im et al., 2019;

Zhen et al., 2019; Zhu et al., 2019). However, there are still few

studies on PC-targeted stimuli-responsive NDDS. It can be

predicted that, unlike other solid tumors, TME of PC is more

specific and complex, which is a difficult problem to overcome in

the further study of targeted stimuli-responsive NDDS.

Exosomes, saucer-shaped extracellular vesicles of

approximately 30–100 nm diameter that are delimited by a

lipid bilayer, contain a large amount of biologically active

molecules, such as lipids, enzymes, metabolites, and various

non-coding RNAs (miRNAs, long noncoding RNAs, and

circular RNAs) (Yu et al., 2021), and play important roles in

cell-cell communications in TME (Aguilar-Cazares et al., 2022;

Ghosh and Ghosh, 2022). In addition, due to the excellent

biosafety, low immunogenicity, carrier properties, nanoscale

penetration effect, longer half-life, and no microvascular

embolism (Ghosh et al., 2020), numerous studies have shown

that as a carrier of conventional chemotherapy drugs (Zhao et al.,

2021; Premnath et al., 2022), targeted therapy (Deng et al., 2021;

Xu et al., 2021), or mediate photodynamic therapy and

immunotherapy (Jang et al., 2021), exosomes have shown

potential as a new NDDS for the treatment of PC. However,

the isolation and preparation of a large number of engineered

exosomes is still an important test for PC treatment, which

requires the support of materials science, engineering, and

other disciplines; In addition, when exosomes are coupled

with NPs or encapsulated with drugs, the pharmacokinetics of

exosomes in vivo is still not completely clear, and a large number

of retention effects or drug off-target phenomena may occur,

affecting the efficacy; In addition, a lot of work is needed to

confirm the biosafety, targeted efficacy, and adverse reactions of

exosomes before clinical use.

As an extremely complex bidirectional regulatory

mechanism in the development of PC, autophagy can inhibit

the transformation from precancerous lesions to PC in the initial

stage, and also contribute to PC progression and chemotherapy

resistance (Ma et al., 2021), which is closely related to TME.

Nanomaterials have been designed to inhibit the progression of

PC or induce the death of PC cells by autophagy or as autophagy

inhibitor carriers (Raju et al., 2018; Li et al., 2019; Thomas et al.,

2020; Chen et al., 2022). However, it is also noteworthy that

autophagy has also been considered an important mechanism of

nanomaterial-induced toxicity (Feng et al., 2020b). Studies have

reported organ damage related to nanomaterial-driven

autophagy, including hepatotoxicity (Li et al., 2015; Zhang

et al., 2017; Zhu et al., 2017), pulmonary toxicity (Park et al.,

2015; Jiang et al., 2018b), nephrotoxicity (Lin et al., 2016; Jiang

et al., 2018a), neurotoxicity (Gao et al., 2015; Shang et al., 2021),

cardiovascular toxicity (Guo et al., 2016; Zhang et al., 2019b), and

these organ damage processes include nanomaterial mediated

autophagy triggered mitochondrial damage (Yuan et al., 2017),

lysosomal dysfunction (Wang et al., 2017), endoplasmic

reticulum damage (Wei et al., 2017), cytoskeleton damage

(Liu et al., 2019a), Golgi body injury (Huang et al., 2018), and

DNA damage (Sadhu et al., 2018), etc. Therefore, the rational use

of nanomaterials to mediate autophagy in the treatment of PC

still needs further research, such as the bidirectional regulation

mechanism of autophagy, avoiding organ damage, and so on.

Immune checkpoint inhibitors targeting PD-1/PD-L1 have

shown good efficacy in many solid tumors (Zhang et al., 202a).

However, most PCs are resistant to PD-(L)1 treatment (Feng

et al., 2017), and immunosuppressive TME is the intrinsic core of

PC treatment resistance (Amrutkar and Gladhaug, 2017;

Karamitopoulou, 2020; Zhang et al., 2022a; Sally et al., 2022).

The dense fibrous matrix and deficient vascular system in PC

TME can hinder the entry of effector T cells (Sahin et al., 2017;

Gong et al., 2018). Moreover, the unique PC TME results in a

physical barrier preventing the infiltration of chimeric antigen

receptor T (CAR-T) cells. TME immune cells secrete and express

molecules that suppress T cell activation, limiting CAR-T cells’

antitumor response (Bailey et al., 2016). Therefore, it can be

predicted that TME will be the main mechanism that hinders the

efficacy of immunotherapy for PC for a long time. However,

some NDDS has shown the potential to overcome the poor

immunotherapeutic efficacy caused by TME: such as NDDS to

promote pyroptosis (Xiao et al., 2021; Qiu et al., 2022b),

intelligent stimulus response NDDS (Bu et al., 2021; Tan

et al., 2021; Wang et al., 2022c; Mao et al., 2022), NDDS with

high efficiency of transcytosis (Wang et al., 2022b; Wu et al.,

2022); vaccines based on NDDS (Banerjee et al., 2019; Affandi

et al., 2020; Liu et al., 2021a; Tang et al., 2022); NDDS of siRNAs

targeted immune (Ghasemi-Chaleshtari et al., 2020; Deng et al.,

2022a; Biber et al., 2022; Li et al., 2022; Yoo et al., 2022). The

development of multifunctional NDDS with diverse and

complementary functions is expected to enhance the efficacy

of PC immunotherapy.

Magnetic hyperthermia (MH) refers to a new therapeutic

method for cancer by converting electromagnetic energy into

local heat by magnetic NPs via hysteresis or Néel/Brownian

relaxation exposed to the alternating magnetic field (AMF)

(Chiu-Lam and Rinaldi, 2016; Song et al., 2020). Compared

with PTT, magnetic hyperthermia has little damage to normal

tissues (Tamura et al., 2022). Moreover, magnetic NPs in AMF

have been proved to be able to efficiently deliver

chemotherapeutic drugs and other molecular drugs, and show
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remarkable efficacy against various tumors including PC (Wang

et al., 2015; Sanhaji et al., 2019; Zuo et al., 2021; Demin et al.,

2022; Wang et al., 2022d). However, for magnetic NPs used for

drug delivery, it is necessary to optimize the size and shape to

achieve safe blood circulation, prolong the circulation time, and

reduce the release of unsafe degradation products into the blood

circulation. It is worth mentioning that stealthy design has

initially shown the potential to address the above limitations

(Salmaso and Caliceti, 2013; Friedl et al., 2021). The magnetic coil

used for delivering the magnetic field of magnetic NPs also has

technical challenges and needs to solve the precise solutions of

MH combined with chemotherapy, such as duration and

frequency (Palzer et al., 2021).

A recent bibliometric study showed that the combination of

NDDS and ultrasound microbubbles has become a hot spot to

improve tumor efficacy (Wu et al., 2021). Ultrasound

microbubbles can improve membrane permeability, making

therapeutic drugs easy to pass through biological barriers such

as vascular endothelium and cell membrane (Meng et al., 2021;

Snipstad et al., 2021). Compared with higher-frequency

ultrasound, low-frequency ultrasound microbubbles are more

effective in promoting the accumulation of NPs in PC tissues (Lin

et al., 2018). The latest research by Meng et al. reported that the

optimized NPs with virus-mimic surface topology combined

with low-frequency ultrasound microbubbles significantly

enhanced the permeability of the biological barrier and

enhanced the distribution of NPs in solid tumors (Meng

et al., 2021). In recent years, the combination of NDDS and

ultrasound microbubbles has shown great potential in improving

gene transfection efficiency in gene therapy (Tay and Xu, 2017;

Wang et al., 2022a; Kida et al., 2022), and improving the efficacy

of chemotherapy drugs on a variety of tumors including PC (Gao

et al., 2019; Lee et al., 2020; Liu et al., 2020; Yang et al., 2022a;

Ngamcherdtrakul et al., 2022; Schoen et al., 2022). However, it

should be noted that the size and concentration of microbubbles

and the total amount of gas contained in the liquid are important

factors affecting NDDS mediated by ultrasound microbubbles

(Kida et al., 2022).

In addition to the use of chemotherapy drugs and

immunotherapy, drugs such as siRNA and miRNA targeting

different targets are also important cancer therapies. Various

methods have been proven to be able to achieve targeted

inhibition of specific miRNAs (Sun et al., 2015; Liang et al.,

2016; Van Roosbroeck et al., 2017; De Cola et al., 2018). However,

susceptibility to degradation by nucleases, low intracellular

absorption rate due to an inherent negative charge and

hydrophilic structure, and potential off-target effects limit the

application of miRNAs (Kara et al., 2022). MiRNA nanocarriers

based on polymers, inorganic materials, and lipids have

demonstrated their potential in the treatment of PC (Arora

et al., 2014; Gurbuz and Ozpolat, 2019; Gokita et al., 2020;

Wu et al., 2020; Borchardt et al., 2022). However, it is

important to note that therapeutic miRNAs can also

accumulate in healthy tissues due to interstitial fluid pressure

and shearing stress promoting NPs extravasation, which may

lead to their degradation (Zhang et al., 2019a), and cause toxic

and other adverse reactions (Kara et al., 2022). Effective delivery

and cell uptake of siRNA are major challenges in therapeutic

applications (Wang et al., 2016; Arnold et al., 2017; Tan et al.,

2022). PEGylated ligand-targeted liposomes or micelles avoid

nonspecific clearance of siRNA by the reticuloendothelial system

and protect siRNA from the degradation of nuclease (Charbe

et al., 2020), which makes it possible to address these major

obstacles. Although several studies have shown that the NDDS

can effectively deliver siRNA and synergize with

chemotherapeutic drugs to inhibit the growth of PC and the

expression of related genes (Li et al., 2016b; Strand et al., 2019;

Wang et al., 2020; Jung et al., 2021; Luo et al., 2021), however, the

biosafety and biodegradability of siRNA delivery vehicles, the

targeting specificity and endosomal escape capability of

nanocarriers to tumor tissues, toxicity and immune

stimulation need to be addressed by further studies (Aghamiri

et al., 2021; Huang and Xiao, 2022).

Dual-map overlays showed that NDDS for PC research

mainly focuses on molecular, biology, immunology, and

physics, materials, chemistry (Figure 7). Fortunately, these

researches related to NDDS for PC has reflected the effective

penetration of multiple disciplines and the result of deepening

cooperation, which is also the development trend of various

disciplines at present, especially in nanomaterials and medicine.

Limitations

There were several limitations. First, this study only included

the publications from 2003 to 2022 (as of September 8), and it

was possible to miss some important and landmark studies

before 2002; Secondly, because the literature of 2022 was

incomplete and some unpublished hot spots may not be

included, and some results of this study may change after

being included in the data for the whole year of 2022, so what

is necessary to carry out follow-up research to evaluate the results

more objectively; Finally, although we used various software to

analyze the content of countries, institutions, authors, keywords,

and references, the analysis still could not provide a

comprehensive overview of NDDS for PC-related literature.

However, we believe that the current literature-based

bibliometric studies may, to the greatest extent, allow scholars

to understand the research hotspots and development trends of

NDDS for PC.

Conclusion

In the past 20 years, the number of publications related to

NDDS for PC has increased, indicating that the interest of
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scholars in this field is increasing. The United States is absolutely

in the leading position in the field of NDDS for PC research. In

terms of publication volume and global institutional cooperation,

Chinese Acad SCI has made the greatest contribution in this field.

Professors Couvreur P and Kazuoka K made great achievements

in this field. JOURNAL OF CONTROLLED RELEASE is at the

core of the publishing of NDDS for PC research. The topics

related to the TME such as “tumor microenvironment”, “tumor

penetration”, “hypoxia”, “exosome”, and “autophagy”, PC

treatment-related topics such as “immunotherapy”,

“combination therapy”, “alternating magnetic field/magnetic

hyperthermia”, and “ultrasound”, and gene therapy dominated

by “siRNA” and “miRNA” are the research hotspots and trends

in the field of NDDS for PC.
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