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The research is executed to analyze the connection between genomic instability-associated long
non-coding RNAs (IncRNAs) and the prognosis of cervical cancer patients. We set a prognostic model
up and explored different risk groups’ features. The clinical datasets and gene expression profiles

of 307 patients have been downloaded from The Cancer Genome Atlas database. We established a
prognostic model that combined somatic mutation profiles and IncRNA expression profiles in a tumor
genome and identified 35 genomic instability-associated IncRNAs in cervical cancer as a case study.
We then stratified patients into low-risk and high-risk groups and were further checked in multiple
independent patient cohorts. Patients were separated into two sets: the testing set and the training
set. The prognostic model was built using three genomic instability-associated IncRNAs (AC107464.2,
MIR100HG, and AP001527.2). Patients in the training set were divided into the high-risk group with
shorter overall survival and the low-risk group with longer overall survival (p <0.001); in the meantime,
similar comparable results were found in the testing set (p=0.046), whole set (p <0.001). There are also
significant differences in patients with histological grades, FIGO stages, and different ages (p<0.05).
The prognostic model focused on genomic instability-associated IncRNAs could predict the prognosis
of cervical cancer patients, paving the way for further research into the function and resource of
IncRNAs, as well as a key approach to customizing individual care decision-making.

The major cause of cancer mortality among women around the globe is cervical cancer (CC) which ranks 4th
as a widely diagnosed cancer. Early CC patients were tested with thinprep cytologic tests (TCT) and treated
with human papilloma (HPV) vaccines, but mortality between 2007 and 2017 rose by 19%. Particularly in
developing countries, the long-term survival and prognosis of patients at advanced stage CC remain still poor.
Patient features (such as age, the high-risk HPV infection, cancer grade, etc.) are already used to evaluate the
recurrence or progression of patients with CC. CC is considered to be a complex, clinical heterogeneity cancer.
Surgery, radiotherapy, and chemical treatment are often used for CC, but such treatments do not necessarily
work?®. Therefore, there is an evident interest in finding new bioinformatic identification and novel therapeutic
targets, which are capable of could reliably predict the clinical outcomes of CC accurately.

Genomic instability was established by increasing the incidence of gene destruction and genomic integrity
loss as a significant feature of tumorigenesis®. More importantly, genomic instability is correlated and a prog-
nostic factor with tumor development and survival*-. Though it is uncertain that disrupting the mechanism of
genomic stability, numerous studies have confirmed that long noncoding RNA (IncRNA) is functional in such
a process®’~’.

In this study, we established a computational model integrating IncRNA expression profiles and somatic muta-
tion profiles in a tumor genome to explore better the dynamic mechanism of IncRNA signature as an indicator
of CC genomic stability, and which might help improve its prognostic utility.
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Characteristics ‘ Testing set (n=152) | Training set (n=152) | Whole set (n=304) | p-value*
Age, no (%)

Young (< 46) 76 (50) 78 (51.32) 154 (50.66) 0.9087
Old (>46) 76 (50) 74 (48.68) 150 (49.34)

Histological grade, no (%)

G1-2 70 (46.05) 83 (54.61) 153 (50.33) 0.1087
G3 66 (43.42) 52 (34.21) 118 (38.82)

Unknow 16 (10.52) 17 (11.18) 33 (10.86)

FIGO stage no (%)

Stage I-TIA 97 (63.81) 91 (59.87) 188 (61.84) 0.3421
Stage IIB-IVB 50 (32.89) 59 (34.21) 109 (35.86)

Unknow 5(3.29) 2(1.32) 7 (2.30)

T, no (%)

T1-2 104 (68.42) 107 (70.39) 211 (69.41) 0.1492
T3-4 10 (6.58) 20 (13.16) 30 (9.87)

Unknow 38 (25) 25 (16.45) 63 (20.72)

M, no (%)

MO 57 (37.5) 59 (38.82) 116 (38.16) 0.1494
M1 2(1.32) 8(5.26) 10 (3.29)

Unknow 93 (61.18) 85 (55.92) 178 (58.55)

N, no (%)

NoO 70 (46.05) 63 (41.45) 133 (43.75) 0.2982
N1 26 (17.11) 34(22.37) 60 (19.74)

Unknow 56 (36.84) 55 (36.18) 111 (36.51)

Vital status, no (%)

Alive 124 (81.58) 110 (72.37) 234 (76.97) 0.0766
Dead 28 (18.42) 42 (27.63) 70 (23.03)

Table 1. Clinical information for 3 cervical cancer patients sets in this study. *Compared testing set with
training set by using Chi square test.

Materials and methods

Data collection. The data were collected from The Cancer Genome Atlas (TCGA) database included clini-
cal features, transcriptome profiling data, and somatic mutation information of CC patients. 307 female samples
were paired with the Fragments Per Kilobase Million (FPKM) values of IncRNA and mRNA expression profiles,
somatic mutation data, and clinical survival data were to further analyze and validate. Data were deposited in the
TCGA database (https://portal.gdc.cancer.gov/repository).

The training set was used to identify prognostic IncRNA signature and build a prognostic risk model. The test-
ing set was used to validate the efficiency of the prognostic risk model independently. Besides, somatic mutation
information and the corresponding IncRNA expression data of 294 CC patients were also downloaded from the
TCGA database. The clinical and pathological characteristics were briefly summarized in Table 1.

Identification of genomic instability-associated INCRNAs.  Briefly, we followed the methods of Bao
et al. 2019 to identify genomic instability-associated IncRNA and use a mutator hypothesis-derived compu-
tational model'®. The computational model incorporating IncRNA expression profiles and somatic mutation
profiles in a tumor genome to screen the genes that are significantly associated with IncRNAs (Fig. 1): (1) the
cumulative number of somatic mutations was computed and ranked in decreasing order for each patient; (2) the
top 25% of patients were defined as genomic unstable (GU)-like group, and the last 25% were defined genomi-
cally stable (GS)-like group; (3) expression profiles of IncRNAs between the GU group and GS group were
compared using significance analysis of microarrays (SAM) method; (4) differentially expressed IncRNAs (|log
fold change|> 0.3 and false discovery rate (FDR) adjusted p < 0.05) were defined as genomic instability-associated
IncRNAs'".

Establishment of the prognostic model and validation. For the construction of the prognostic
model, CC patients with overall survival of <30 days were excluded. To select prognostic genes, we applied
Univariate Cox regression analysis by R package survival (https://github.com/therneau/survival) with a cut-off
of p<0.05. The whole data set was randomly separated into the training set and the testing set using R package
caret (https://github.com/topepo/caret).

We evaluated outcome prediction by using a IncRNA signature (LncSig) formula as follows:

LncSig (patient) = Y- ceof (IncRNA;) * expr (IncRNA;). LncSig (patient) represents a prognostic risk score, expr
i=1
(IncRNA,) is the exprzession level of the ith prognostic IncRNA for the patient. coef (IncRNA;) represents prognostic
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Figure 1. Computational process of genomic instability-related IncRNAs detection. Calculating the cumulative
number of somatic mutations per sample and ranked in decreasing order. Then, somatic mutation profile was
built. The columns reflect cervical cancer samples, and the rows reflect genes. The value reflects the number

of altered sites for each gene on each sample. Samples were divided into two groups, GU-like group (patients’
mutator phenotype ranked in the top 25%) and GS-like group (the last 25%), according to their mutator
phenotype. Genomic instability-related IncRNAs were detected by comparing the IncRNA expression profile
between GU group and GS group. Differentially expressed IncRNAs were defined as genomic instability-
associated IncRNAs.

risk scores of the ith prognostic IncRNA, and coef was calculated by multivariate Cox analysis. Cox regression
and stratified analysis were used in evaluating the link between LncSig and some important clinical factors. We
determined the risk score for each study based on the expression of the outcome-related genes, the prognosis
model coefficient, and patients’ survival status. We calculated hazard ratio (HR) and 95% confidence interval
(CI) by Cox analysis. The samples were consequently separated by the risk score median value of the low-risk or
high-risk group. Finally, all statistical analyses were carried out by using R-version 4.0.2 (https://www.R-proje
ct.org). R package (survivalROC) and the time-dependent receiver operating characteristic (timeROC) curve
were evaluated the prognostic performance of the model LncSig.

Functional enrichment analysis. The functional enrichment analysis was conducted using the R package
(clusterProfiler). We have conducted the Pearson correlation to determine 15 LncRNAs (co-expressed LncRNA-
associated mRNA partners) to determine the link between paired IncRNAs expression and protein-coding genes
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(PCGs) in CC. To improve the reliability and credibility of the results, we employed the Gene Ontology (GO)
Enrichment Analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analy-
sis, which targeted the co-expressed IncRNA-associated mRNA partners to further explore the potential func-
tions and the molecular mechanism of IncRNAs based on the threshold with FDR <0.05 and p <0.05.

Results

Identification of genomic instability-related IncRNAs in cervical cancer patients. We collected
309 samples (306 tumor and 3 adjacent tissues) from the TCGA database to analyze the differences of gene
expression between tumor and adjacent samples, and then identified the IncRNAs related to genomic instability
in CC patients. The cumulative number of somatic mutations per patient was computed, and then ranked them
in the decreasing order, the top 25% (n="73) and last 25% (n="74) as GU-like group and GS-like group accord-
ing to the above order. 35 IncRNAs were found to be substantially differentially expressed with their |log fold
change value|> 0.3 and FDR-adjusted p <0.05 based on the SAM approach. We performed hierarchical clustering
analysis on 147 samples of the whole set using the set of 35 differentially expressed IncRNAs, and then we clus-
tered into GU and GS-like groups according to the expression levels of 35 differentially expressed IncRNAs (9
upregulated IncRNAs and 26 downregulated were found in GU-like group, R-package: limma, sparcl and pheat-
map, Fig. 2A). Analytical findings revealed a statistically significant difference in the median value of somatic
cumulative mutations between the GU-like (57.3) and the GS-like group (42.7), p<0.001, Mann-Whitney U
test, R-package: limma and ggpubr, Fig. 2B. We next compared the expression level of KRAS, PIK3CA, ARID1A,
and UBQLN4 gene (a set of newly discovered drivers of genomic instability) between the GS-like group and GU-
like group'*"3. When compared to the GS-like group, the GU-like group showed greater these gene expression
levels (p <0.05, Mann-Whitney U test, R-package: limma and ggpubr, Fig. 2C).

We performed functional enrichment analysis to predict possible roles and pathways, and aim to further
grasp the relationship between the expression of 35 differentially IncRNAs and PCGs. We calculated the expres-
sion correlation between the 35 IncRNAs and PCGs, and then found IncRNA-correlated PCGs. A network of
IncRNAs-mRNA co-expression was built with 35 nodes, and one node containing 1 IncRNA and 15 mRNAs, and
if they were related, the IncRNAs and mRNAs are connected (R-package: limma and igraph, Table 2, Fig. 2D).
The results of GO analysis of IncRNA-correlated PCGs showed that mRNAs in this network were substantially
linked with genomic instability, including rRNA catabolic process, deoxyribonucleotide catabolic process, and
transcriptionally active chromatin (R-package: clusterProfiler, org.Hs.eg.db, enrichplot and ggplot2, Fig. 2E).
KEGG pathway analysis identified 15 pathways that were highly enriched, several of which were associated with
transcriptional misregulation in cancer (Fig. 2E). While analyzing the 35 differentially expressed IncRNAs, we
found that their altered expression might affect transcriptional genes, which may cause the genomic stability in
CC cells (Table 2). Normal gene damage repair boosts genomic instability due to changes in the cell microenvi-
ronment, and the genomic instability brought on by changes in the molecular and metabolism function of the
IncRNA-related PCGs regulatory network. As shown in the above findings, and it was found that 35 IncRNAs
whose expression differed from that of their normal tissues were potential genomic instability-associated IncR-
NAs (GIIncRNAs).

Establishing and validating the 3 IncRNAs based prognostic signature in the training set. The
prognostic model was constructed by a group of 304 patients with a survival duration of more than 1 month and
CC-related genes. The R package caret may randomly separate the whole data set into a training set (n=152) and
a testing set (n=152). The baseline features are summarized in Table 1. The clinical parameters were not signifi-
cantly different from the training set and testing set. The univariate Cox proportional hazard regression analysis
study 35 genomic instability-associated IncRNAs was then used to establish the 5 candidate IncRNAs prognostic
signature (R-package: survival, caret, glmnet, survminer and timeROC, Fig. 3A). After analyzing the training set
using the Cox model, we found 3 of 5 candidate IncRNAs (AP001527.2, AC107464.2, and MIR100HG) as inde-
pendent prognostic IncRNAs in the (p <0.05). The genomic instability-derived IncRNA signature (LncSig) was
constructed as follows: LncSig score = (- 1.4997 x expression level of AC107464.2) +(0.3111 x expression level of
MIR100HG) +(0.0802 x expression level of AP001527.2). In this LncSig score, positive coef of AP001527.2 and
MIR100HG suggested that they might be risk factors for a poor prognosis, while negative ceof of AC107464.2
indicated that it could be a protective factor for survival.

The median risk score (1.1467) was used to divide the training set into the high-risk and low-risk groups based
on the LncSig. Kaplan-Meier analysis showed that the survival outcomes of patients in the low-risk group are
significantly better than patients in the high-risk group (median survival 1.633 years versus 1.323 years, p <0.001,
log-rank test; R-package: survival and survminer, Fig. 3B). The survival rate of the high-risk group was 13.8%
at 3 years and that of the low-risk group was 17.1%. The time-dependent ROC curves analysis of the LncSig
yielded an area under curve (AUC) of 0.783 at 3 years (R-package: survival, survminer and timeROC, Fig. 3C).
As the LncSig score increased, we observed how the count of somatic mutations and an increase in the expres-
sion level of KRAS. For the high score group, the expression levels of risk factors (AP001527.2 and MIR100HG)
were upregulated, while the expression level of protective factor (AC107464.2) was downregulated in the low
score group. Conversely, the low score group held an opposite expression of 3 IncRNAs (R-package: limma and
pheatmap, Fig. 3D). Compared with the low-risk group, the somatic mutation was found to be substantially
greater in the high-risk group (median 166.5 versus 177, p=0.077, Mann-Whitney U test, R-package: limma
and ggpubr, Fig. 3E). The expression levels of newly identified drivers of genomic instability (KRAS, PIK3CA,
ARIDI1A, and UBQLN4) were analyzed, in which KRAS in the high-risk group was significantly higher compared
to that of patients in the low-risk group (median 7.221 versus 7.036, p=0.04, Mann-Whitney U test, Fig. 3F).
Other divers revealed no significant differences.
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Figure 2. Identification and functional annotations of genomic instability-related IncRNAs in patients with
cervical cancer. (A) Clustering of 147 cervical cancer patients based on the expression pattern of 35 candidate
genomic instability-related IncRNAs. The left blue cluster is GS-like group, and the right red cluster is GU-like
group. (B) Boxplots of somatic mutations in the GU-like group and GS-like group. Somatic cumulative
mutations in the GU-like group are significantly higher than those in the GS-like group (p <0.001). (C) Boxplots
of KRAS, PIK3CA, ARID1A and UBQLN4 expression level in the GU-like group and GS-like group. These
genes expression level in the GU-like group is significantly higher than that in the GS-like group (p <0.001). (D)
Co-expression network of genomic instability-related IncRNAs and mRNAs based on the Pearson correlation
coeflicient. The blue circles represent IncRNAs, and the red circles represent mRNAs. (E) Functional enrichment
analysis of GO and KEGG for mRNAs co-expressed IncRNAs.
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AC129510.1 047954 | 0000522 |0.037799 CCDC14, AHI1, WDR90, NKTR, PHF12, PNISR, CFAP44, SREK1, MSANTD2, EFHCI, KIF27, VEZF1, PASK, DNALI,
KIAA0753

LINC02875 —0.69396 | 0.000465 | 0.037799 PIGP, RAB6B, SOX2, C6orf226, CDKAL1, TNRC6C, TBX2, TMEM251, CHAF1B, CHST7, ADRA2B, TP53113, BFSP1,
CD200, THAP7

LOXLI-AS1 059163 | 9.59E-06 |0.005235 b%)g;AADPGK) CHSY]1, LARP6, SLC35E4, RCN2, THAP10, KIAA0753, NCBP3, VCL, CHD3, DTX3, PTPN9, CNTROB,

FGF14-AS2 120708 |3.01E-06 |0.004925 CMBL, ACAA2, TMEM205, BTD, CYP2B6, ZG16, CYP2A6, CYB5A, SERPINA4, HAO1, ACBD4, CLYBL, SLC10A1,
CYP2A13, PCK2

AL391422.4 —-0.56864 | 0.000766 | 0.042653 | PXDC1, TMEM14C, SAA2, CUTA, YIPF3, TRIM27, RNF5, C60rf89, MOCS1, SAA1, NMT2, SLC39A7, SIRT5, C9, MRPL2

AC025265.1 056836 |5.46E-05 |0.014907 NT5DC3, MTERF2, OVGP1, GOLGAS8B, RPL9, SLC25A16, KLHL23, NR2C1, NSUN6, MPST, CENPYV, C12o0rf73, ZNF577,
ABCAS5, CHKA

ATP1A1-ASI _0.42986 |0.000822 | 0.042653 31123}(:41];31, I(’:Ig;Al/l\Z, NBR1, TOM1L1, CNNM3, Cl60rf58, Clorf56, SPATA25, DDAH1, USP30, CRYZ, ST3GAL3, PARD3B,
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LncRNA logFC p value Fdr Relative mRNA
EIF3]-DT 040662 | 0.000201 0.025372 C2orf15, ZBTB26, VPS39, ZNF512, POLR2M, ETAA1, ZBTB14, HNRNPA1L2, ZNF33B, ICE2, MKS1, ZNF248, KATS,
INTS14, CTDSPL2
C5orf34, NIPBL, ZNF131, RAD1, DROSHA, C5o0rf51, RICTOR, C50rf22, NUP155, TMEM267, DNAJC21, CPLANE],
AC114956.2 —0.51268 | 0.000145 | 0.021664 ICE1, MARCHE6, PAIP1
Table 2. Differentially expressed IncRNAs and relative mRNAs.
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Figure 3. Establishment of the prognostic model and validation of the genomic instability-derived IncRNA
signature (LncSig) for outcome prediction in the training set. (A) 5 IncRNAs for establishment of the prognostic
model. (B) Estimates of overall survival of patients with low or high risk predicted by the LncSig in the

training set (p <0.001). (C) Time-dependent ROC curves analysis of the LncSig at 3 years (AUC=0.783). (D)
With increasing LncSig score, LncRNA expression patterns, the distribution of somatic mutation and KRAS
expression. (E) The distribution of somatic cumulative mutations in high- and low-risk groups. (F) KRAS,
PIK3CA, ARID1A and UBQLN4 expression in the high- and low-risk groups. The red represents the high-risk
group, and the blue represents the low-risk group.
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Independent validation of LncSig in the testing set and whole set.  To examine the applicability of
the LncSig, the testing set (152 patients) was tested for its prognostic outcome in LncSig. The 152 patients of the
testing set were assigned to the high-risk group (n=90) and low-risk group (n=62) by applying the median risk
score (1.1467) of the training set, and the survival rate was significantly different in the testing set (p=0.046).
Kaplan—Meier analysis showed that the survival outcomes of patients in the low-risk group are significantly bet-
ter than patients in the high-risk group (median survival 1.737 years versus 1.611 years, p =0.046, log-rank test;
Fig. 4A). The survival rate of the high-risk group was 12.5% at 5 years and that of the low-risk group was 13.8%
in the training set. In comparison, the validation was identical to the findings above in the whole set. The patients
of the whole set were categorized as the high-risk group (n=166) and low-risk group (n=138), which was much
higher than patients in the high-risk population median results in the low-risk groups (survival 1.701 years
versus 1.485 years, p <0.001, log-rank test; Fig. 4B). The survival rate was 13.8% in the high-risk group at 5 years
below 14.8% in the low-risk group.

The time-dependent ROC curves analysis of the LncSig was applied to the testing set yielded an AUC of
0.663 at 3 years (Fig. 4C). The consistent results of time-dependent ROC curves analysis in the whole set were
observed as above, an AUC of 0.687 at 3 years (Fig. 4D).

We verified how the count of somatic mutations and expression of KRAS with increasing LncSig score in
the testing set and whole set. The distribution of somatic mutation count and KRAS expression in the testing
and whole samples were illustrated in Fig. 4E,F. The results of 2 sets were consistent with our earlier research
of the training set. The somatic mutation pattern of the high-risk was marginally significantly higher than the
low-risk group in the testing set (median 158 versus 146, p=0.41). The expression level of KRAS was observed
to be marginally significantly higher in the high-risk group than that in the low-risk group (median 7.469 versus
7.212, p=0.44, p=0.084, Mann-Whitney U test; Fig. 4G). The somatic mutation pattern of the high-risk was
marginally significantly higher than the low-risk group in the testing set (median 149 versus 146, p=0.31). The
expression level of KRAS in the high-risk group was observed to be marginally significantly higher than that in
the low-risk group (median 7.615 versus 7.605, p=0.22, Mann-Whitney U test; Fig. 4H).

The LncSig model validation of different clinical groups. To observe whether the LncSig model
was suitable for different clinical groups of patients, we performed multivariate Cox regression analyses on age,
histological grade, and FIGO stage. The clinical information table of 3 CC patients set showed that there was no
significant difference in age, histological grade, FIGO stage, tumor TNM stage, and vital status between the test-
ing set group and training set group (p>0.05, Chi-square test, Table 1). Stratification analysis was performed to
determine whether the LncSig possessed a prognostic value that was independent of the age, histological grade,
FIGO stage. Patients in the whole set were stratified into a younger group (n=154) and an older group (n=150)
according to the median age (46-year-old). Patients in each age group further were divided into the high-risk
and the low-risk group by using the LncSig model. There was a significant difference in Kaplan-Meier curve
analysis of overall survival between the high-risk and low-risk groups in the younger group (p=0.035, Fig. 5A).
There was also a statistical difference in the older group (p <0.001, Fig. 5B). Then patients in the whole set were
stratified into a well-moderately differentiated group (histological grade 1-2, n=153) and a poorly-no differenti-
ated group (histological grade 3, n=118). LncSig model could further classified patients in each stage into the
high-risk and the low-risk group. There was a significant difference between the high-risk and low-risk groups in
the well-moderately differentiated histological grade group (p=0.014, Fig. 5C). There was also a statistical differ-
ence in the poorly-no differentiated histological grade group (p=0.008, Fig. 5D). Finally, according to different
FIGO stages and treatment methods, patients in the whole set were stratified into an earlier stage group (FIGO
stage I-11A, n=188) and a later stage group (FIGO stage IIB-IVB, n=109)". LncSig model could further classi-
fied patients in each stage into the high-risk and the low-risk group. There was a significant difference between
the high-risk and low-risk groups in the earlier stage group (p=0.001, Fig. 5E). There was also a statistical differ-
ence in the advanced group (p=0.017, Fig. 5F). The results suggested that the LncSig model was an independent
prognostic factor for overall survival in CC patients.

The prediction outcome of LncSig model greater than KRAS mutation status. To further verify
the reliability of the LncSig model, we compared it with KRAS mutation status. Samples were classified into the
wild group and the mutation group according to their KRAS mutation. We further classified the mutation group
based on somatic mutations into two groups: GU-like and GS-like. The wild group is the same as above. As
shown in Fig. 6A, the groups were divided into KRAS Mutation/GS-like, KRAS Mutation/GU-like, KRAS Wild/
GS-like, and KRAS Wild/GU-like group. The overall survival outcome of KRAS Mutation was lower than that
of KRAS wild, R-package: survival and survminer. The result indicated that KRAS mutation/GU-like patients
had marginally shorter survival than those with KRAS wild type (p=0.067, log-rank test). According to LncSig,
the mutation/wild KRAS group samples were divided into two groups: the high-risk and low-risk. As shown in
Fig. 6B, the overall survival outcome of KRAS Mutation/high had significantly lower than those with KRAS wild
type (p<0.001, log-rank test). The survival curve of the KRAS Mutation/GU-like group (Fig. 6A) was not similar
to KRAS Mutation/high group curves (Fig. 6B). Our results provide a more detailed analysis of the prognosis
of patients with KRAS mutations. Therefore, The significant difference suggested that the LncSig may be better
than the KRAS mutation status alone.

Survival performance prediction comparison of the LncSig with existing IncRNA-related
signatures. We further compared the prediction performance of the LncSig with two recently published
IncRNA signatures: 3-IncRNAs (H19, MALAT1, and CCHEI) signature derived from Céceres study (herein-
after referred to as CacereslncSig)"® and 2-IncRNAs (HOTAIR and SNHGI1) signature derived from Aalijahan’s
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Figure 4. Performance evaluation of the LncSig in the testing and whole set. Kaplan-Meier estimates of

overall survival of patients with low or high risk predicted by the LncSig in the testing set (A) and whole set

(B). Time-dependent ROC curves analysis of the LncSig at 3 years in the testing set (C) and whole set (D).
LncRNA expression patterns and the distribution of somatic mutation count distribution and KRAS expression
for patients in high- and low-risk groups in the testing set (E) and whole set (F). The distribution of somatic
mutation and KRAS expression in patients of high- and low-risk groups in the testing set (G) and whole set (H).
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Figure 5. Stratification analyses by age, histological grade and FIGO stage. Kaplan-Meier curve analysis of
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(B). For early-grade patients (histological grade 1-2) (C) and late-grade patients (histological grade 3) (D). For
early-stage patients (FIGO stage I-IIA) (E) and late-stage patients (FIGO stage IIB-IVB) (F). Statistical analysis

was performed using the log-rank test and univariate Cox analysis.
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Figure 6. Combined survival analysis of genotyping and mutation. (A) Kaplan-Meier curve analysis of overall
survival is shown for patients classified according to KRAS mutation status and the GU/GS. (B) Kaplan-Meier
curve analysis of overall survival is shown for patients classified according to KRAS mutation status and the

LncSig.

study (hereinafter referred to as AalijahanlncSig)'® using the same TCGA patient cohort. As shown in Fig. 7, the
AUC at 3 years for the LncSig is 0.687, which is significantly higher than that of CécereslncSig (AUC =0.569) and
AalijahanlncSig (AUC =0.580), R-package: limma, survival, survminer and timeROC. These comparison results
of ROC survival prediction demonstrated the better prognostic performance of the LncSig in predicting survival
than two recently published IncRNA signatures.
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Discussion

Cervical cancer is thought to bring a great threat to current women’s health, and have important impacts on it.
Statistics show that the age of diagnosed patients is tardily decreasing, with 80% developing aggressive cancer.
Though traditional tumor grade and pathologic stage are used as the most important prognostic factors in the
CC patients, it is still difficult to predict the clinical outcome more accurately'”'s. However, reliable and specific
biomarkers for the diagnosis and prognosis of cervical cancer are scarce and lack exploration. Earlier research
had focused on a single biomarker, which might reduce the prognostic performance'®-?!. Therefore, more reliable
prognostic models for CC patients currently are urgently need.

Recently, more and more scholars have been drawn to genomic instability. Genomic instability can not
only initiate cancer, augment progression, and influence the overall prognosis of the affected patient, but also
the survival of CC patients®>>?*?3, Recent studies have shown that epigenetic modifications and DNA damage
from endogenous and exogenous sources could affect genomic instability**~?’. An increasing number of reports
have revealed that IncRNAs are implicated in the control of various cancer cellular disease progression®-.
Though the comprehension of functional mechanisms of IncRNAs has shown that IncRNAs also are crucial for
genomic stability, the systematic exploration of genomic instability-associated IncRNAs on their clinical signifi-
cance in cancers is still in its infancy. Accumulative evidence has identified IncRNAs as functional regulators
of cervical cancer oncogenesis and progression, and play critical roles in the regulation of the complex cellular
comportements®~**. We used a mutator hypothesis-derived computational model, which combined IncRNAs
expression profiles and somatic mutation profiles in a tumor genome for screening IncRNAs.

A five-IncRNAs signature based on the TCGA database has been identified and validated in this report. And
then, with GO enrichment, KEGG pathway, and co-expression analysis, we explored the potential mechanism of
35 IncRNAs. Our studies suggested that the genes that co-expressed with the 35 IncRNAs were enriched in rRNA
catabolic process, deoxyribonucleotide catabolic process, and transcriptionally active chromatin. rRNA that was
essential housekeeping genes found in all organisms can maintain genome integrity****. Regulation of intracellu-
lar deoxynucleoside triphosphate (ANTP) pool is critical to genomic stability and cancer development, and imbal-
anced deoxyribonucleotide catabolic can lead to genomic instability and cell-cycle progression, thus promoting
the proliferation of cancer cells*. Specific DNA structures such as R-loops and topoisomerase-induced DNA
double-strand break (DSBs) causing genotoxic stress and may lead to genome instability and consequently to
cancer in the transcriptional activation®. According to KEGG pathway analysis, the 35 IncRNAs were involved in
transcriptional misregulation in the cancer pathway, ribosome, which are associated with genomic instability**~.

Furthermore, we examined whether genomic instability-related IncRNAs could allow the prediction of CC
patients’ outcome, and then resulted in a IncRNA signature (LncSig) including three genomic instability-related
IncRNAs (AP001527.2, AC107464.2, and MIR100HG). The whole TCGA clinical set was classified into the high-
risk and the low-risk group with significantly different survival in the training set, which was verified on the
testing set. After a careful literature search, we found that AP001527.2 was associated with the immune micro-
environment of cervical cancer*'. MIR100HG was associated with promoter methylation of cervical cancer*>*.
The biological function of IncRNA AC107464.2 has not been reported until now. These validation results in
multiple data sets indicated that the LncSig could predict the prognosis and genomic instability of CC patients.

Some studies suggested that activating KRAS mutation was the major oncogenic driver regardless of a specific
site of origin'>**°. LncSig found that the expression level of KRAS in the high-risk group was observed to be
marginally significantly higher than that in the low-risk group. In different clinical groups, we also found that the
LncSig had a significantly different clinical outcome in CC patients. Furthermore, the LncSig could marginally
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significantly distinguish survival outcomes between KRAS mutation patients and other group patients. KRAS
mutation/high patients had significantly shorter survival than those with KRAS wild type. The significant dif-
ference suggested that the LncSig may be better than the KRAS mutation status alone. These findings suggested
that the prediction outcome of the LncSig model might be greater than the KRAS mutation status.

There are still some limitations that require further study. Although LncSig has been validated in the TCGA
data set, it required more independent data sets to verify the LncSig to guarantee its reliability and replicabil-
ity. The regulatory mechanisms of the genomic instability in CC patients are understood via large numbers of
verification experiments.

Conclusion

In summary, we established a signature model based on 3 genomic instability-associated IncRNAs corrected to
evaluate progression and prognosis in CC. The high- and low-risk groups present separate survival states, sug-
gesting the capacity of genomic instability-associated IncRNAs to determine the survival of patients. The LncSig
provides a critical approach and resource for further studies examining. We expect the LncSig model to pave the
way for further research into the function and resource of IncRNAs, as well as a key approach to customizing
individual care decision-making.

Data availability
The data used to support the findings of this study are available from the corresponding author upon request.
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