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Bioinformatic identification 
of genomic instability‑associated 
lncRNAs signatures for improving 
the clinical outcome of cervical 
cancer by a prognostic model
Jian Zhang1, Nan Ding1, Yongxing He2, Chengbin Tao1, Zhongzhen Liang1, Wenhu Xin1, 
Qianyun Zhang1 & Fang Wang1*

The research is executed to analyze the connection between genomic instability‑associated long 
non‑coding RNAs (lncRNAs) and the prognosis of cervical cancer patients. We set a prognostic model 
up and explored different risk groups’ features. The clinical datasets and gene expression profiles 
of 307 patients have been downloaded from The Cancer Genome Atlas database. We established a 
prognostic model that combined somatic mutation profiles and lncRNA expression profiles in a tumor 
genome and identified 35 genomic instability‑associated lncRNAs in cervical cancer as a case study. 
We then stratified patients into low‑risk and high‑risk groups and were further checked in multiple 
independent patient cohorts. Patients were separated into two sets: the testing set and the training 
set. The prognostic model was built using three genomic instability‑associated lncRNAs (AC107464.2, 
MIR100HG, and AP001527.2). Patients in the training set were divided into the high‑risk group with 
shorter overall survival and the low‑risk group with longer overall survival (p < 0.001); in the meantime, 
similar comparable results were found in the testing set (p = 0.046), whole set (p < 0.001). There are also 
significant differences in patients with histological grades, FIGO stages, and different ages (p < 0.05). 
The prognostic model focused on genomic instability‑associated lncRNAs could predict the prognosis 
of cervical cancer patients, paving the way for further research into the function and resource of 
lncRNAs, as well as a key approach to customizing individual care decision‑making.

The major cause of cancer mortality among women around the globe is cervical cancer (CC) which ranks 4th 
as a widely diagnosed cancer. Early CC patients were tested with thinprep cytologic tests (TCT) and treated 
with human papilloma (HPV) vaccines, but mortality between 2007 and 2017 rose by 19%1. Particularly in 
developing countries, the long-term survival and prognosis of patients at advanced stage CC remain still poor. 
Patient features (such as age, the high-risk HPV infection, cancer grade, etc.) are already used to evaluate the 
recurrence or progression of patients with CC. CC is considered to be a complex, clinical heterogeneity cancer. 
Surgery, radiotherapy, and chemical treatment are often used for CC, but such treatments do not necessarily 
 work2. Therefore, there is an evident interest in finding new bioinformatic identification and novel therapeutic 
targets, which are capable of could reliably predict the clinical outcomes of CC accurately.

Genomic instability was established by increasing the incidence of gene destruction and genomic integrity 
loss as a significant feature of  tumorigenesis3. More importantly, genomic instability is correlated and a prog-
nostic factor with tumor development and  survival4–6. Though it is uncertain that disrupting the mechanism of 
genomic stability, numerous studies have confirmed that long noncoding RNA (lncRNA) is functional in such 
a  process3,7–9.

In this study, we established a computational model integrating lncRNA expression profiles and somatic muta-
tion profiles in a tumor genome to explore better the dynamic mechanism of lncRNA signature as an indicator 
of CC genomic stability, and which might help improve its prognostic utility.

OPEN

1Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou 730030, China. 2School of 
Life Sciences, Lanzhou University, Lanzhou 730000, China. *email: ery_fwang@lzu.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-00384-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20929  | https://doi.org/10.1038/s41598-021-00384-6

www.nature.com/scientificreports/

Materials and methods
Data collection. The data were collected from The Cancer Genome Atlas (TCGA) database included clini-
cal features, transcriptome profiling data, and somatic mutation information of CC patients. 307 female samples 
were paired with the Fragments Per Kilobase Million (FPKM) values of lncRNA and mRNA expression profiles, 
somatic mutation data, and clinical survival data were to further analyze and validate. Data were deposited in the 
TCGA database (https:// portal. gdc. cancer. gov/ repos itory).

The training set was used to identify prognostic lncRNA signature and build a prognostic risk model. The test-
ing set was used to validate the efficiency of the prognostic risk model independently. Besides, somatic mutation 
information and the corresponding lncRNA expression data of 294 CC patients were also downloaded from the 
TCGA database. The clinical and pathological characteristics were briefly summarized in Table 1.

Identification of genomic instability‑associated lncRNAs. Briefly, we followed the methods of Bao 
et  al. 2019 to identify genomic instability-associated lncRNA and use a mutator hypothesis-derived compu-
tational  model10. The computational model incorporating lncRNA expression profiles and somatic mutation 
profiles in a tumor genome to screen the genes that are significantly associated with lncRNAs (Fig. 1): (1) the 
cumulative number of somatic mutations was computed and ranked in decreasing order for each patient; (2) the 
top 25% of patients were defined as genomic unstable (GU)-like group, and the last 25% were defined genomi-
cally stable (GS)-like group; (3) expression profiles of lncRNAs between the GU group and GS group were 
compared using significance analysis of microarrays (SAM) method; (4) differentially expressed lncRNAs (|log 
fold change|> 0.3 and false discovery rate (FDR) adjusted p < 0.05) were defined as genomic instability-associated 
 lncRNAs11.

Establishment of the prognostic model and validation. For the construction of the prognostic 
model, CC patients with overall survival of < 30  days were excluded. To select prognostic genes, we applied 
Univariate Cox regression analysis by R package survival (https:// github. com/ thern eau/ survi val) with a cut-off 
of p < 0.05. The whole data set was randomly separated into the training set and the testing set using R package 
caret (https:// github. com/ topepo/ caret).

We evaluated outcome prediction by using a lncRNA signature (LncSig) formula as follows: 
LncSig

(

patient
)

=

n
∑

i=1

ceof (lncRNAi) ∗ expr (lncRNAi) . LncSig (patient) represents a prognostic risk score, expr 

(lncRNAi) is the expression level of the ith prognostic lncRNA for the patient. coef (lncRNAi) represents prognostic 

Table 1.  Clinical information for 3 cervical cancer patients sets in this study. *Compared testing set with 
training set by using Chi square test.

Characteristics Testing set (n = 152) Training set (n = 152) Whole set (n = 304) p-value*

Age, no (%)

Young (≤ 46) 76 (50) 78 (51.32) 154 (50.66) 0.9087

Old (> 46) 76 (50) 74 (48.68) 150 (49.34)

Histological grade, no (%)

G1–2 70 (46.05) 83 (54.61) 153 (50.33) 0.1087

G3 66 (43.42) 52 (34.21) 118 (38.82)

Unknow 16 (10.52) 17 (11.18) 33 (10.86)

FIGO stage no (%)

Stage I–IIA 97 (63.81) 91 (59.87) 188 (61.84) 0.3421

Stage IIB–IVB 50 (32.89) 59 (34.21) 109 (35.86)

Unknow 5 (3.29) 2 (1.32) 7 (2.30)

T, no (%)

T1–2 104 (68.42) 107 (70.39) 211 (69.41) 0.1492

T3–4 10 (6.58) 20 (13.16) 30 (9.87)

Unknow 38 (25) 25 (16.45) 63 (20.72)

M, no (%)

M0 57 (37.5) 59 (38.82) 116 (38.16) 0.1494

M1 2 (1.32) 8 (5.26) 10 (3.29)

Unknow 93 (61.18) 85 (55.92) 178 (58.55)

N, no (%)

N0 70 (46.05) 63 (41.45) 133 (43.75) 0.2982

N1 26 (17.11) 34 (22.37) 60 (19.74)

Unknow 56 (36.84) 55 (36.18) 111 (36.51)

Vital status, no (%)

Alive 124 (81.58) 110 (72.37) 234 (76.97) 0.0766

Dead 28 (18.42) 42 (27.63) 70 (23.03)

https://portal.gdc.cancer.gov/repository
https://github.com/therneau/survival
https://github.com/topepo/caret
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risk scores of the ith prognostic lncRNA, and coef was calculated by multivariate Cox analysis. Cox regression 
and stratified analysis were used in evaluating the link between LncSig and some important clinical factors. We 
determined the risk score for each study based on the expression of the outcome-related genes, the prognosis 
model coefficient, and patients’ survival status. We calculated hazard ratio (HR) and 95% confidence interval 
(CI) by Cox analysis. The samples were consequently separated by the risk score median value of the low-risk or 
high-risk group. Finally, all statistical analyses were carried out by using R-version 4.0.2 (https:// www.R- proje 
ct. org). R package (survivalROC) and the time-dependent receiver operating characteristic (timeROC) curve 
were evaluated the prognostic performance of the model LncSig.

Functional enrichment analysis. The functional enrichment analysis was conducted using the R package 
(clusterProfiler). We have conducted the Pearson correlation to determine 15 LncRNAs (co-expressed LncRNA-
associated mRNA partners) to determine the link between paired lncRNAs expression and protein-coding genes 

Figure 1.  Computational process of genomic instability-related lncRNAs detection. Calculating the cumulative 
number of somatic mutations per sample and ranked in decreasing order. Then, somatic mutation profile was 
built. The columns reflect cervical cancer samples, and the rows reflect genes. The value reflects the number 
of altered sites for each gene on each sample. Samples were divided into two groups, GU-like group (patients’ 
mutator phenotype ranked in the top 25%) and GS-like group (the last 25%), according to their mutator 
phenotype. Genomic instability-related lncRNAs were detected by comparing the lncRNA expression profile 
between GU group and GS group. Differentially expressed lncRNAs were defined as genomic instability-
associated lncRNAs.

https://www.R-project.org
https://www.R-project.org
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(PCGs) in CC. To improve the reliability and credibility of the results, we employed the Gene Ontology (GO) 
Enrichment Analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analy-
sis, which targeted the co-expressed lncRNA-associated mRNA partners to further explore the potential func-
tions and the molecular mechanism of lncRNAs based on the threshold with FDR < 0.05 and p < 0.05.

Results
Identification of genomic instability‑related lncRNAs in cervical cancer patients. We collected 
309 samples (306 tumor and 3 adjacent tissues) from the TCGA database to analyze the differences of gene 
expression between tumor and adjacent samples, and then identified the lncRNAs related to genomic instability 
in CC patients. The cumulative number of somatic mutations per patient was computed, and then ranked them 
in the decreasing order, the top 25% (n = 73) and last 25% (n = 74) as GU-like group and GS-like group accord-
ing to the above order. 35 lncRNAs were found to be substantially differentially expressed with their |log fold 
change value|> 0.3 and FDR-adjusted p < 0.05 based on the SAM approach. We performed hierarchical clustering 
analysis on 147 samples of the whole set using the set of 35 differentially expressed lncRNAs, and then we clus-
tered into GU and GS-like groups according to the expression levels of 35 differentially expressed lncRNAs (9 
upregulated lncRNAs and 26 downregulated were found in GU-like group, R-package: limma, sparcl and pheat-
map, Fig. 2A). Analytical findings revealed a statistically significant difference in the median value of somatic 
cumulative mutations between the GU-like (57.3) and the GS-like group (42.7), p < 0.001, Mann–Whitney U 
test, R-package: limma and ggpubr, Fig. 2B. We next compared the expression level of KRAS, PIK3CA, ARID1A, 
and UBQLN4 gene (a set of newly discovered drivers of genomic instability) between the GS-like group and GU-
like  group12,13. When compared to the GS-like group, the GU-like group showed greater these gene expression 
levels (p < 0.05, Mann–Whitney U test, R-package: limma and ggpubr, Fig. 2C).

We performed functional enrichment analysis to predict possible roles and pathways, and aim to further 
grasp the relationship between the expression of 35 differentially lncRNAs and PCGs. We calculated the expres-
sion correlation between the 35 lncRNAs and PCGs, and then found lncRNA-correlated PCGs. A network of 
lncRNAs–mRNA co-expression was built with 35 nodes, and one node containing 1 lncRNA and 15 mRNAs, and 
if they were related, the lncRNAs and mRNAs are connected (R-package: limma and igraph, Table 2, Fig. 2D). 
The results of GO analysis of lncRNA-correlated PCGs showed that mRNAs in this network were substantially 
linked with genomic instability, including rRNA catabolic process, deoxyribonucleotide catabolic process, and 
transcriptionally active chromatin (R-package: clusterProfiler, org.Hs.eg.db, enrichplot and ggplot2, Fig. 2E). 
KEGG pathway analysis identified 15 pathways that were highly enriched, several of which were associated with 
transcriptional misregulation in cancer (Fig. 2E). While analyzing the 35 differentially expressed lncRNAs, we 
found that their altered expression might affect transcriptional genes, which may cause the genomic stability in 
CC cells (Table 2). Normal gene damage repair boosts genomic instability due to changes in the cell microenvi-
ronment, and the genomic instability brought on by changes in the molecular and metabolism function of the 
lncRNA-related PCGs regulatory network. As shown in the above findings, and it was found that 35 lncRNAs 
whose expression differed from that of their normal tissues were potential genomic instability-associated lncR-
NAs (GIlncRNAs).

Establishing and validating the 3 lncRNAs based prognostic signature in the training set. The 
prognostic model was constructed by a group of 304 patients with a survival duration of more than 1 month and 
CC-related genes. The R package caret may randomly separate the whole data set into a training set (n = 152) and 
a testing set (n = 152). The baseline features are summarized in Table 1. The clinical parameters were not signifi-
cantly different from the training set and testing set. The univariate Cox proportional hazard regression analysis 
study 35 genomic instability-associated lncRNAs was then used to establish the 5 candidate lncRNAs prognostic 
signature (R-package: survival, caret, glmnet, survminer and timeROC, Fig. 3A). After analyzing the training set 
using the Cox model, we found 3 of 5 candidate lncRNAs (AP001527.2, AC107464.2, and MIR100HG) as inde-
pendent prognostic lncRNAs in the (p < 0.05). The genomic instability-derived lncRNA signature (LncSig) was 
constructed as follows: LncSig score = (− 1.4997 × expression level of AC107464.2) + (0.3111 × expression level of 
MIR100HG) + (0.0802 × expression level of AP001527.2). In this LncSig score, positive coef of AP001527.2 and 
MIR100HG suggested that they might be risk factors for a poor prognosis, while negative ceof of AC107464.2 
indicated that it could be a protective factor for survival.

The median risk score (1.1467) was used to divide the training set into the high-risk and low-risk groups based 
on the LncSig. Kaplan–Meier analysis showed that the survival outcomes of patients in the low-risk group are 
significantly better than patients in the high-risk group (median survival 1.633 years versus 1.323 years, p < 0.001, 
log-rank test; R-package: survival and survminer, Fig. 3B). The survival rate of the high-risk group was 13.8% 
at 3 years and that of the low-risk group was 17.1%. The time-dependent ROC curves analysis of the LncSig 
yielded an area under curve (AUC) of 0.783 at 3 years (R-package: survival, survminer and timeROC, Fig. 3C). 
As the LncSig score increased, we observed how the count of somatic mutations and an increase in the expres-
sion level of KRAS. For the high score group, the expression levels of risk factors (AP001527.2 and MIR100HG) 
were upregulated, while the expression level of protective factor (AC107464.2) was downregulated in the low 
score group. Conversely, the low score group held an opposite expression of 3 lncRNAs (R-package: limma and 
pheatmap, Fig. 3D). Compared with the low-risk group, the somatic mutation was found to be substantially 
greater in the high-risk group (median 166.5 versus 177, p = 0.077, Mann–Whitney U test, R-package: limma 
and ggpubr, Fig. 3E). The expression levels of newly identified drivers of genomic instability (KRAS, PIK3CA, 
ARID1A, and UBQLN4) were analyzed, in which KRAS in the high-risk group was significantly higher compared 
to that of patients in the low-risk group (median 7.221 versus 7.036, p = 0.04, Mann–Whitney U test, Fig. 3F). 
Other divers revealed no significant differences.
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Figure 2.  Identification and functional annotations of genomic instability-related lncRNAs in patients with 
cervical cancer. (A) Clustering of 147 cervical cancer patients based on the expression pattern of 35 candidate 
genomic instability-related lncRNAs. The left blue cluster is GS-like group, and the right red cluster is GU-like 
group. (B) Boxplots of somatic mutations in the GU-like group and GS-like group. Somatic cumulative 
mutations in the GU-like group are significantly higher than those in the GS-like group (p < 0.001). (C) Boxplots 
of KRAS, PIK3CA, ARID1A and UBQLN4 expression level in the GU-like group and GS-like group. These 
genes expression level in the GU-like group is significantly higher than that in the GS-like group (p < 0.001). (D) 
Co-expression network of genomic instability-related lncRNAs and mRNAs based on the Pearson correlation 
coefficient. The blue circles represent lncRNAs, and the red circles represent mRNAs. (E) Functional enrichment 
analysis of GO and KEGG for mRNAs co-expressed lncRNAs.
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LncRNA logFC p value Fdr Relative mRNA

Up-regulated

KCNMB2-AS1 1.633484 9.22E−05 0.018886 BOLA2B, LAMTOR4, UQCC3, BCL7C, FAAP20, NUDT1, IZUMO4, POLR2J, NCBP2AS2, COPS9, ELOB, NT5C, SMUG1, 
MRPL47, TNNC2

AC093895.2 1.544702 4.76E−05 0.014907 LPAR6, HEBP2, ARL11, C12orf54, CRABP2, HSPB1, NRN1, XCL1, SLC44A5, SP140L, KRT15, TXNDC17, PERM1, 
C1orf21, CLEC2A

AL162413.1 2.309286 0.001041 0.047346 KCNQ4, APRT, EXOSC4, CITED4, DPM2, PTGES2, RPL36, BOP1, RPL13, NDUFAF8, CCDC167, MRPL27, MRPL14, 
RPL8, MVD

FIRRE 0.974686 0.000931 0.046215 PAPOLG, TFAP4, KMT5A, KCTD15, KANSL2, KDM3A, METTL8, DKC1, TAF4B, ZC3H8, VANGL2, C21orf91, EFS, 
METAP1, FANCE

LINC00944 1.795497 0.000303 0.028837 SLC25A22, IL2RG, RELB, GNGT2, ICOS, IL21R, MARCO, FAM24B, APOBEC3G, APOBEC3H, CTLA4, CXCL10, 
VCAM1, CLIC2, CD2

AC005993.1 1.09773 0.000443 0.037799 TESMIN, ALPG, IGF1R, CCNA1, DDX17, CCDC3, ANO1, PREX1, DGKZ, KMT5B, SERHL2, TMEM184B, BRMS1L, 
MBIP, DNAL4

LINC02542 1.075473 0.000305 0.028837 A1CF, XYLB, GGCX, AGMAT, ACOX2, SLC25A13, ACADSB, SERPIND1, PLG, ITIH1, SLC6A1, AGMO, SLCO1B1, 
SNTB1, HNF4A

LINC00649 0.909561 1.81E−05 0.007423 IFI16, SNX30, N4BP1, GJB5, RARG, KCTD1, NECTIN1, MAP3K6, TRIM29, GM2A, KLF8, TRERF1, DEF6, NECTIN4, 
LRRC1

AL023803.2 0.553819 0.000561 0.037799 PAX9, CALB2, CCNO, FAM83D, MCIDAS, ITGA2B, UBE2C, LIN7B, FOXA1, PCED1A, AC011479.2, TFAP2C, MXD3, 
ACTR5, KMT5C

Down-regulated

MAN1B1-DT  − 0.56543 0.000984 0.047346 EXOSC6, HIRIP3, DDX28, MDP1, CHAF1B, THAP11, TTC32, C4orf36, TLX2, C9orf78, CTF1, CFDP1, EXOSC2, PIGW, 
UTP4

AC025580.1  − 1.87066 0.000609 0.038385 TCTE3, SCIN, ZG16B, GFPT1, ZNF585B, FGFBP3, TTC39A, SLC44A4, ZNF345, MYO6, PDXDC1, ZFP14, ZNF529, 
ARFGEF3, ZNF518A

TRAM2-AS1  − 0.43872 0.000128 0.02102 ALDH5A1, BPHL, SIRT5, TPMT, KLC4, CAP2, ACOT13, MMUT, MOCS1, DHTKD1, HIBADH, YIPF3, SLC17A4, 
FAM8A1, EHHADH

RARA-AS1  − 0.35817 0.000119 0.02102 FKBP2, RARA, KRT18, TMEM205, RPS27L, NTHL1, G3BP1, REPS2, FUCA1, CEBPB, BLOC1S1, FAM167B, RAB17, 
COX14, CD63

LINC01836  − 0.99887 0.000317 0.028837 TMC4, MSLN, WWC1, MISP, RAB20, TMPRSS3, LAMA5, ALDH3B1, TSPAN15, DOCK5, RBMS2, CRIM1, IQCE, 
PIWIL4, CCL28

SERTAD4-AS1  − 0.88678 6.68E−06 0.005235 SERTAD4, DOK7, TMEM125, SIX1, CRIP2, HOXB6, HOXB5, CCDC160, MRAP2, TSPAN3, SLFN13, CRIP1, COL9A2, 
IFT172, SCX

AC132938.4  − 0.6378 7.33E−05 0.017157 PNPO, PIGV, CPT2, HLF, PDK2, TOM1L1, PCTP, SLC38A10, FBXO31, ACOX1, MTMR4, UGT1A3, SCP2, ZMYND12, 
CRYZ

AC107464.2  − 0.75617 0.001019 0.047346 PDE6B, UCP2, PRAF2, FUZ, DTX3, ZNF232, DOK1, AC005041.1, COL9A2, NAT14, CRIP1, UBXN11, C2orf15, C11orf49, 
CLUAP1

MIR100HG  − 0.8595 0.000184 0.025064 SPRY2, SPRY1, DLG4, KIF26B, MFGE8, ZNF853, FGF18, SPRY4, MFAP4, EFEMP2, REV3L, ETV5, VCAN, KCNH3, 
LRIG1

AC083964.1  − 0.47203 0.000799 0.042653 TDRP, CCDC28B, FABP6, MARCO, NPPC, KREMEN2, TNNI2, IL11RA, COL16A1, LIFR, FAM71E1, PARM1, CD200, 
TRAF2, SOCS1

IRAIN  − 0.1848 0.000699 0.042435 TESMIN, IGF1R, ALPG, CCNA1, CCDC3, ANO1, CSPG5, PREX1, TMEM184B, SLC39A8, RGS10, DNAL4, KMT5B, 
RNF32, DDX17

AP001527.2  − 1.66464 0.000317 0.028837 YAP1, BIRC2, CEP126, TMEM123, CFAP300, SYDE1, SLC1A6, DYNC2H1, DCUN1D5, FADS3, BIRC3, IKBIP, HMGB3, 
ELOVL3, GPAT2

BMPR1B-DT  − 2.95927 0.000575 0.037799 BMPR1B, SOX17, FBLN1, PAK1IP1, FAM189A2, MAP2K6, HOXA10, TUBA3D, RBBP7, AADAT, LHX2, ELP3, ASRGL1, 
IGF1, ALKAL2

AC096733.3  − 0.41954 0.000561 0.037799 TBC1D9, WDFY3, HELQ, USP53, ELF2, SMARCAD1, NEK1, KIAA1109, THUMPD1, SETD1B, KDM6A, KIDINS220, 
DNAJB14, ARID2, EIF2AK3

AC097359.2  − 0.38644 0.000777 0.042653 TCTA, SLC25A20, QPRT, TK2, FN3K, ABHD6, CMTM8, MYRIP, SLC26A1, ALDH4A1, CPN2, SYPL2, HNF1A, IQSEC1, 
OAF

ADCY6-DT  − 0.96724 0.000577 0.037799 JSRP1, PLA2G10, SMIM22, TRIM54, GCNT3, ASPHD1, PDE4C, METTL27, TNNC2, PRR13, RNASEH2C, PGP, RASSF7, 
ELOB, TMEM238

IQCH-AS1  − 0.40448 0.000238 0.027863 NEK8, NEIL1, C2orf15, COA5, DIS3L, P4HTM, SNAPC5, ZNF33B, BBS4, MYO5C, LZTS3, FAM81A, ARPIN, LRTOMT, 
CCDC57

AC129510.1  − 0.47954 0.000522 0.037799 CCDC14, AHI1, WDR90, NKTR, PHF12, PNISR, CFAP44, SREK1, MSANTD2, EFHC1, KIF27, VEZF1, PASK, DNAL1, 
KIAA0753

LINC02875  − 0.69396 0.000465 0.037799 PIGP, RAB6B, SOX2, C6orf226, CDKAL1, TNRC6C, TBX2, TMEM251, CHAF1B, CHST7, ADRA2B, TP53I13, BFSP1, 
CD200, THAP7

LOXL1-AS1  − 0.59163 9.59E−06 0.005235 LOXL1, ADPGK, CHSY1, LARP6, SLC35E4, RCN2, THAP10, KIAA0753, NCBP3, VCL, CHD3, DTX3, PTPN9, CNTROB, 
MYO9A

FGF14-AS2  − 1.20708 3.01E−06 0.004925 CMBL, ACAA2, TMEM205, BTD, CYP2B6, ZG16, CYP2A6, CYB5A, SERPINA4, HAO1, ACBD4, CLYBL, SLC10A1, 
CYP2A13, PCK2

AL391422.4  − 0.56864 0.000766 0.042653 PXDC1, TMEM14C, SAA2, CUTA, YIPF3, TRIM27, RNF5, C6orf89, MOCS1, SAA1, NMT2, SLC39A7, SIRT5, C9, MRPL2

AC025265.1  − 0.56836 5.46E−05 0.014907 NT5DC3, MTERF2, OVGP1, GOLGA8B, RPL9, SLC25A16, KLHL23, NR2C1, NSUN6, MPST, CENPV, C12orf73, ZNF577, 
ABCA5, CHKA

ATP1A1-AS1  − 0.42986 0.000822 0.042653 ABCD3, PRKAA2, NBR1, TOM1L1, CNNM3, C16orf58, C1orf56, SPATA25, DDAH1, USP30, CRYZ, ST3GAL3, PARD3B, 
REPIN1, COX11

Continued
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Table 2.  Differentially expressed lncRNAs and relative mRNAs.

LncRNA logFC p value Fdr Relative mRNA

EIF3J-DT  − 0.40662 0.000201 0.025372 C2orf15, ZBTB26, VPS39, ZNF512, POLR2M, ETAA1, ZBTB14, HNRNPA1L2, ZNF33B, ICE2, MKS1, ZNF248, KAT8, 
INTS14, CTDSPL2

AC114956.2  − 0.51268 0.000145 0.021664 C5orf34, NIPBL, ZNF131, RAD1, DROSHA, C5orf51, RICTOR, C5orf22, NUP155, TMEM267, DNAJC21, CPLANE1, 
ICE1, MARCHF6, PAIP1

Figure 3.  Establishment of the prognostic model and validation of the genomic instability-derived lncRNA 
signature (LncSig) for outcome prediction in the training set. (A) 5 lncRNAs for establishment of the prognostic 
model. (B) Estimates of overall survival of patients with low or high risk predicted by the LncSig in the 
training set (p < 0.001). (C) Time-dependent ROC curves analysis of the LncSig at 3 years (AUC = 0.783). (D) 
With increasing LncSig score, LncRNA expression patterns, the distribution of somatic mutation and KRAS 
expression. (E) The distribution of somatic cumulative mutations in high- and low-risk groups. (F) KRAS, 
PIK3CA, ARID1A and UBQLN4 expression in the high- and low-risk groups. The red represents the high-risk 
group, and the blue represents the low-risk group.
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Independent validation of LncSig in the testing set and whole set. To examine the applicability of 
the LncSig, the testing set (152 patients) was tested for its prognostic outcome in LncSig. The 152 patients of the 
testing set were assigned to the high-risk group (n = 90) and low-risk group (n = 62) by applying the median risk 
score (1.1467) of the training set, and the survival rate was significantly different in the testing set (p = 0.046). 
Kaplan–Meier analysis showed that the survival outcomes of patients in the low-risk group are significantly bet-
ter than patients in the high-risk group (median survival 1.737 years versus 1.611 years, p = 0.046, log-rank test; 
Fig. 4A). The survival rate of the high-risk group was 12.5% at 5 years and that of the low-risk group was 13.8% 
in the training set. In comparison, the validation was identical to the findings above in the whole set. The patients 
of the whole set were categorized as the high-risk group (n = 166) and low-risk group (n = 138), which was much 
higher than patients in the high-risk population median results in the low-risk groups (survival 1.701 years 
versus 1.485 years, p < 0.001, log-rank test; Fig. 4B). The survival rate was 13.8% in the high-risk group at 5 years 
below 14.8% in the low-risk group.

The time-dependent ROC curves analysis of the LncSig was applied to the testing set yielded an AUC of 
0.663 at 3 years (Fig. 4C). The consistent results of time-dependent ROC curves analysis in the whole set were 
observed as above, an AUC of 0.687 at 3 years (Fig. 4D).

We verified how the count of somatic mutations and expression of KRAS with increasing LncSig score in 
the testing set and whole set. The distribution of somatic mutation count and KRAS expression in the testing 
and whole samples were illustrated in Fig. 4E,F. The results of 2 sets were consistent with our earlier research 
of the training set. The somatic mutation pattern of the high-risk was marginally significantly higher than the 
low-risk group in the testing set (median 158 versus 146, p = 0.41). The expression level of KRAS was observed 
to be marginally significantly higher in the high-risk group than that in the low-risk group (median 7.469 versus 
7.212, p = 0.44, p = 0.084, Mann–Whitney U test; Fig. 4G). The somatic mutation pattern of the high-risk was 
marginally significantly higher than the low-risk group in the testing set (median 149 versus 146, p = 0.31). The 
expression level of KRAS in the high-risk group was observed to be marginally significantly higher than that in 
the low-risk group (median 7.615 versus 7.605, p = 0.22, Mann–Whitney U test; Fig. 4H).

The LncSig model validation of different clinical groups. To observe whether the LncSig model 
was suitable for different clinical groups of patients, we performed multivariate Cox regression analyses on age, 
histological grade, and FIGO stage. The clinical information table of 3 CC patients set showed that there was no 
significant difference in age, histological grade, FIGO stage, tumor TNM stage, and vital status between the test-
ing set group and training set group (p > 0.05, Chi-square test, Table 1). Stratification analysis was performed to 
determine whether the LncSig possessed a prognostic value that was independent of the age, histological grade, 
FIGO stage. Patients in the whole set were stratified into a younger group (n = 154) and an older group (n = 150) 
according to the median age (46-year-old). Patients in each age group further were divided into the high-risk 
and the low-risk group by using the LncSig model. There was a significant difference in Kaplan–Meier curve 
analysis of overall survival between the high-risk and low-risk groups in the younger group (p = 0.035, Fig. 5A). 
There was also a statistical difference in the older group (p < 0.001, Fig. 5B). Then patients in the whole set were 
stratified into a well-moderately differentiated group (histological grade 1–2, n = 153) and a poorly-no differenti-
ated group (histological grade 3, n = 118). LncSig model could further classified patients in each stage into the 
high-risk and the low-risk group. There was a significant difference between the high-risk and low-risk groups in 
the well-moderately differentiated histological grade group (p = 0.014, Fig. 5C). There was also a statistical differ-
ence in the poorly-no differentiated histological grade group (p = 0.008, Fig. 5D). Finally, according to different 
FIGO stages and treatment methods, patients in the whole set were stratified into an earlier stage group (FIGO 
stage I–IIA, n = 188) and a later stage group (FIGO stage IIB–IVB, n = 109)14. LncSig model could further classi-
fied patients in each stage into the high-risk and the low-risk group. There was a significant difference between 
the high-risk and low-risk groups in the earlier stage group (p = 0.001, Fig. 5E). There was also a statistical differ-
ence in the advanced group (p = 0.017, Fig. 5F). The results suggested that the LncSig model was an independent 
prognostic factor for overall survival in CC patients.

The prediction outcome of LncSig model greater than KRAS mutation status. To further verify 
the reliability of the LncSig model, we compared it with KRAS mutation status. Samples were classified into the 
wild group and the mutation group according to their KRAS mutation. We further classified the mutation group 
based on somatic mutations into two groups: GU-like and GS-like. The wild group is the same as above. As 
shown in Fig. 6A, the groups were divided into KRAS Mutation/GS-like, KRAS Mutation/GU-like, KRAS Wild/
GS-like, and KRAS Wild/GU-like group. The overall survival outcome of KRAS Mutation was lower than that 
of KRAS wild, R-package: survival and survminer. The result indicated that KRAS mutation/GU-like patients 
had marginally shorter survival than those with KRAS wild type (p = 0.067, log-rank test). According to LncSig, 
the mutation/wild KRAS group samples were divided into two groups: the high-risk and low-risk. As shown in 
Fig. 6B, the overall survival outcome of KRAS Mutation/high had significantly lower than those with KRAS wild 
type (p < 0.001, log-rank test). The survival curve of the KRAS Mutation/GU-like group (Fig. 6A) was not similar 
to KRAS Mutation/high group curves (Fig. 6B). Our results provide a more detailed analysis of the prognosis 
of patients with KRAS mutations. Therefore, The significant difference suggested that the LncSig may be better 
than the KRAS mutation status alone.

Survival performance prediction comparison of the LncSig with existing lncRNA‑related 
signatures. We further compared the prediction performance of the LncSig with two recently published 
lncRNA signatures: 3-lncRNAs (H19, MALAT1, and CCHE1) signature derived from Cáceres’ study (herein-
after referred to as CácereslncSig)15 and 2-lncRNAs (HOTAIR and SNHG1) signature derived from Aalijahan’s 
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Figure 4.  Performance evaluation of the LncSig in the testing and whole set. Kaplan–Meier estimates of 
overall survival of patients with low or high risk predicted by the LncSig in the testing set (A) and whole set 
(B). Time-dependent ROC curves analysis of the LncSig at 3 years in the testing set (C) and whole set (D). 
LncRNA expression patterns and the distribution of somatic mutation count distribution and KRAS expression 
for patients in high- and low-risk groups in the testing set (E) and whole set (F). The distribution of somatic 
mutation and KRAS expression in patients of high- and low-risk groups in the testing set (G) and whole set (H).
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study (hereinafter referred to as AalijahanlncSig)16 using the same TCGA patient cohort. As shown in Fig. 7, the 
AUC at 3 years for the LncSig is 0.687, which is significantly higher than that of CácereslncSig (AUC = 0.569) and 
AalijahanlncSig (AUC = 0.580), R-package: limma, survival, survminer and timeROC. These comparison results 
of ROC survival prediction demonstrated the better prognostic performance of the LncSig in predicting survival 
than two recently published lncRNA signatures.

Figure 5.  Stratification analyses by age, histological grade and FIGO stage. Kaplan–Meier curve analysis of 
overall survival in high-risk and low-risk groups for younger patients (age ≤ 46) (A) and older patients (age > 46) 
(B). For early-grade patients (histological grade 1–2) (C) and late-grade patients (histological grade 3) (D). For 
early-stage patients (FIGO stage I–IIA) (E) and late-stage patients (FIGO stage IIB–IVB) (F). Statistical analysis 
was performed using the log-rank test and univariate Cox analysis.

Figure 6.  Combined survival analysis of genotyping and mutation. (A) Kaplan–Meier curve analysis of overall 
survival is shown for patients classified according to KRAS mutation status and the GU/GS. (B) Kaplan–Meier 
curve analysis of overall survival is shown for patients classified according to KRAS mutation status and the 
LncSig.
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Discussion
Cervical cancer is thought to bring a great threat to current women’s health, and have important impacts on it. 
Statistics show that the age of diagnosed patients is tardily decreasing, with 80% developing aggressive cancer. 
Though traditional tumor grade and pathologic stage are used as the most important prognostic factors in the 
CC patients, it is still difficult to predict the clinical outcome more  accurately17,18. However, reliable and specific 
biomarkers for the diagnosis and prognosis of cervical cancer are scarce and lack exploration. Earlier research 
had focused on a single biomarker, which might reduce the prognostic  performance19–21. Therefore, more reliable 
prognostic models for CC patients currently are urgently need.

Recently, more and more scholars have been drawn to genomic instability. Genomic instability can not 
only initiate cancer, augment progression, and influence the overall prognosis of the affected patient, but also 
the survival of CC  patients3,5,22,23. Recent studies have shown that epigenetic modifications and DNA damage 
from endogenous and exogenous sources could affect genomic  instability24–27. An increasing number of reports 
have revealed that lncRNAs are implicated in the control of various cancer cellular disease  progression28–30. 
Though the comprehension of functional mechanisms of lncRNAs has shown that lncRNAs also are crucial for 
genomic stability, the systematic exploration of genomic instability-associated lncRNAs on their clinical signifi-
cance in cancers is still in its infancy. Accumulative evidence has identified lncRNAs as functional regulators 
of cervical cancer oncogenesis and progression, and play critical roles in the regulation of the complex cellular 
 comportements31–33. We used a mutator hypothesis-derived computational model, which combined lncRNAs 
expression profiles and somatic mutation profiles in a tumor genome for screening lncRNAs.

A five-lncRNAs signature based on the TCGA database has been identified and validated in this report. And 
then, with GO enrichment, KEGG pathway, and co-expression analysis, we explored the potential mechanism of 
35 lncRNAs. Our studies suggested that the genes that co-expressed with the 35 lncRNAs were enriched in rRNA 
catabolic process, deoxyribonucleotide catabolic process, and transcriptionally active chromatin. rRNA that was 
essential housekeeping genes found in all organisms can maintain genome  integrity34,35. Regulation of intracellu-
lar deoxynucleoside triphosphate (dNTP) pool is critical to genomic stability and cancer development, and imbal-
anced deoxyribonucleotide catabolic can lead to genomic instability and cell-cycle progression, thus promoting 
the proliferation of cancer  cells36. Specific DNA structures such as R-loops and topoisomerase-induced DNA 
double-strand break (DSBs) causing genotoxic stress and may lead to genome instability and consequently to 
cancer in the transcriptional  activation37. According to KEGG pathway analysis, the 35 lncRNAs were involved in 
transcriptional misregulation in the cancer pathway, ribosome, which are associated with genomic  instability38–40.

Furthermore, we examined whether genomic instability-related lncRNAs could allow the prediction of CC 
patients’ outcome, and then resulted in a lncRNA signature (LncSig) including three genomic instability-related 
lncRNAs (AP001527.2, AC107464.2, and MIR100HG). The whole TCGA clinical set was classified into the high-
risk and the low-risk group with significantly different survival in the training set, which was verified on the 
testing set. After a careful literature search, we found that AP001527.2 was associated with the immune micro-
environment of cervical  cancer41. MIR100HG was associated with promoter methylation of cervical  cancer42,43. 
The biological function of lncRNA AC107464.2 has not been reported until now. These validation results in 
multiple data sets indicated that the LncSig could predict the prognosis and genomic instability of CC patients.

Some studies suggested that activating KRAS mutation was the major oncogenic driver regardless of a specific 
site of  origin12,44,45. LncSig found that the expression level of KRAS in the high-risk group was observed to be 
marginally significantly higher than that in the low-risk group. In different clinical groups, we also found that the 
LncSig had a significantly different clinical outcome in CC patients. Furthermore, the LncSig could marginally 

Figure 7.  Combined survival analysis of model comparison. The ROC analysis at 3 years of overall survival for 
the LncSig, AalijahanLncSig and MiguelLncSig.
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significantly distinguish survival outcomes between KRAS mutation patients and other group patients. KRAS 
mutation/high patients had significantly shorter survival than those with KRAS wild type. The significant dif-
ference suggested that the LncSig may be better than the KRAS mutation status alone. These findings suggested 
that the prediction outcome of the LncSig model might be greater than the KRAS mutation status.

There are still some limitations that require further study. Although LncSig has been validated in the TCGA 
data set, it required more independent data sets to verify the LncSig to guarantee its reliability and replicabil-
ity. The regulatory mechanisms of the genomic instability in CC patients are understood via large numbers of 
verification experiments.

Conclusion
In summary, we established a signature model based on 3 genomic instability-associated lncRNAs corrected to 
evaluate progression and prognosis in CC. The high- and low-risk groups present separate survival states, sug-
gesting the capacity of genomic instability-associated lncRNAs to determine the survival of patients. The LncSig 
provides a critical approach and resource for further studies examining. We expect the LncSig model to pave the 
way for further research into the function and resource of lncRNAs, as well as a key approach to customizing 
individual care decision-making.

Data availability
The data used to support the findings of this study are available from the corresponding author upon request. 
The availability of data and materials is from the TCGA database (https:// portal. gdc. cancer. gov/ repos itory).
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