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Abstract: The eye lens is a transparent, ellipsoid organ in the anterior chamber of the eye that is
required for fine focusing of light onto the retina to transmit a clear image. Cataracts, defined as any
opacity in the lens, remains the leading cause of blindness in the world. Recent studies in humans and
mice indicate that Eph–ephrin bidirectional signaling is important for maintaining lens transparency.
Specifically, mutations and polymorphisms in the EphA2 receptor and the ephrin-A5 ligand have
been linked to congenital and age-related cataracts. It is unclear what other variants of Ephs and
ephrins are expressed in the lens or whether there is preferential expression in epithelial vs. fiber cells.
We performed a detailed analysis of Eph receptor and ephrin ligand mRNA transcripts in whole
mouse lenses, epithelial cell fractions, and fiber cell fractions using a new RNA isolation method.
We compared control samples with EphA2 knockout (KO) and ephrin-A5 KO samples. Our results
revealed the presence of transcripts for 12 out of 14 Eph receptors and 8 out of 8 ephrin ligands in
various fractions of lens cells. Using specific primer sets, RT-PCR, and sequencing, we verified the
variant of each gene that is expressed, and we found two epithelial-cell-specific genes. Surprisingly,
we also identified one Eph receptor variant that is expressed in KO lens fibers but is absent from
control lens fibers. We also identified one low expression ephrin variant that is only expressed in
ephrin-A5 control samples. These results indicate that the lens expresses almost all Ephs and ephrins,
and there may be many receptor–ligand pairs that play a role in lens homeostasis.
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1. Introduction

In the anterior chamber of the eye, the lens, an ellipsoid and transparent tissue, is
responsible for the fine focusing of light onto the retina to transmit a clear image. The
function of the lens depends on its shape, biomechanical properties, clarity, and refractive
index [1]. Despite decades of study, cataracts, defined as any opacity in the normally clear
lens, remain the leading cause of blindness in the world [2]. The causes for congenital
cataracts due to genetic mutations have been studied, but the cellular and molecular
mechanisms that lead to age-related cataracts remain unclear.

Recent studies have shown that the dysfunction of Eph–ephrin bidirectional signaling
leads to congenital and age-related cataracts in human patients [3–14]. Erythropoietin-
producing hepatocellular carcinoma (Eph) receptors are the largest class of receptor tyrosine
kinases (RTK). Eph receptors bind to a class of ligands, known as ephrins, and the binding
of the receptor and ligand leads to a unique bidirectional signaling pathway with forward
signaling in the Eph-bearing cell and reverse signaling in the ephrin-bearing cell [15–17].
Eph–ephrin bidirectional signaling is important for many cellular functions, including
cell migration, proliferation, adhesion, and patterning [18–21]. Virtually all cells express a
complement of Ephs and ephrins. There are 14 Eph receptors that are divided into EphAs
(9 members, 1–8 and 10) and EphBs (5 members, 1–4 and 6), based on their sequence
similarity and ligand affinity [17,22–26]. Ephrin ligands are categorized by structure into
ephrin-As (5 members, 1–5), which are anchored via a glycosylphosphatidylinositol (GPI)
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moiety to the membrane, and ephrin-Bs (3 members, 1–3), which have a transmembrane
region and a short cytoplasmic tail [17,24,25,27]. In human patients, mutations of the EPHA2
gene cause congenital [3–9] and age-related [10–13] cataracts, while polymorphisms of the
EFNA5 gene, which encodes the ephrin-A5 protein, are linked to age-related cataracts [11].

The lens is composed of two cell types, a monolayer of epithelial cells covering the
anterior hemisphere and a bulk mass of elongated and differentiated fiber cells [1]. The lens
capsule is a basement membrane that surrounds the entire tissue, and lens epithelial cells are
strongly adhered to the lens capsule [1]. Anterior epithelial cells are quiescent and thought
to nourish the fiber cell underneath, and epithelial cells at the lens equator proliferate,
migrate, elongate, and differentiate into new layers of lens fiber cells [28–30]. The addition
of fiber cell layers along the lens equator drives life-long lens growth. Studies in mouse
models indicate that EphA2 is required for hexagonal packing, for the organization of
equatorial lens epithelial cells [31–33], and for fiber cell maturation [33–35], while ephrin-
A5 is needed for maintaining the quiescence of anterior epithelial cells [32,36]. Recent
works reveal that EphA2 and ephrin-A5 affect lens fiber cell patterning [33,34,37], which
alters tissue biomechanical properties [34]. Immunostaining studies indicate that ephrin-A5
is mainly in the anterior epithelial cells, anterior tips of fiber cells, and peripheral equatorial
fibers in mouse lenses [32,33,36]. In contrast, EphA2 proteins are mainly found along the
equatorial epithelial cell and fiber cell membranes and in anterior fiber cell tips [10,32,33,36].
From these studies, it is possible that EphA2 and ephrin-A5 are a receptor–ligand pair at the
anterior tips of lens fiber cells [33,34]. However, the diverse roles of EphA2 and ephrin-A5
in different populations of lens epithelial cells and the unique subcellular localization of
these proteins in the lens suggest that they are not a receptor–ligand pair in most cells of
the lens [32]. Thus, it is likely that EphA2 and ephrin-A5 interact with other ephrin ligands
and Eph receptors, respectively, to regulate the homeostasis of lens epithelial cells and
fiber cells.

In this study, we conducted a comprehensive analysis to determine which Eph re-
ceptors and ligands are present in adult mouse lenses using RNA isolation, reverse tran-
scription (RT), polymerase chain reaction (PCR), and Sanger sequencing. In addition to
screening RNA samples from whole lenses, we separated lens epithelial cells and fiber cells
for RNA isolation using our new protocol [38]. We compared 6-week-old samples from
control, EphA2−/−, and ephrin-A5−/− lenses. Of the 14 Eph receptors and 8 ephrin ligands,
we verified that transcripts for 12 Ephs and 8 ephrins are present in the lens. Our data
revealed 1 Eph receptor and 1 ephrin ligand that are only expressed in lens epithelial cells.
In addition, there is 1 Eph receptor that is expressed in KO lens fiber cells, but not in the
control samples. We compared our RT-PCR and sequencing data with microarray data.
Overall, the adult mouse lens expresses most EphAs and all EphBs, ephrin-As, and ephrin-
Bs; thus, much more work needs to be conducted to identify all cogent receptor–ligand
pairs and understand their role in maintaining lens health and homeostasis.

2. Materials and Methods
2.1. Mice

Mice were maintained in accordance with an approved animal protocol (Indiana
University Bloomington Institutional Animal Care and Use Committee, protocol #21-010)
and the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research.
Generations of ephrin-A5−/− and EphA2−/− mice were previously described [31,36,39,40].
All mice were maintained in the C57BL/6J background with wild-type Bfsp2 (CP49) genes.
Genotyping was completed using automated qPCR on toe and/or tail snips (Transnetyx,
Cordova, TN, USA). Male and female littermates were used for experiments.

2.2. RNA Isolation from Epithelial Cells

RNA from epithelial cells were obtained by decapsulating freshly dissected lenses
using a modified version of a published protocol [38]. Samples were collected from three
control (EphA2+/+ and ephrin-A5+/+) and three knockout (EphA2−/− and ephrin-A5−/−)
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6-week-old mice. After dissected lenses were cleaned of unrelated tissues, tweezers were
used to gently puncture the lens at the equator. Shallow punctures prevented the fiber
cells from adhering to the lens capsule and lens epithelial cell layer. A pair of lens capsules
with the lens epithelial cells from one mouse were then placed into 0.4 mL of cold TRIzol
(Invitrogen, Waltham, MA, USA, Cat# 15596026). Samples were then incubated at room
temperature for 30 min. For phase separation, 0.2 mL of chloroform was added to each
sample before tubes were shaken vigorously for 15 s. Samples were incubated at room
temperature for 10–15 min and centrifuged at 14,000× g for 15 min at 4 ◦C. The aqueous
phase was transferred to new RNase-free microcentrifuge tubes. Two volumes of RNA
binding buffer per 1 volume of aqueous phase was added to each sample. Then, an equal
volume of 100% ethanol (Fisher Scientific, Waltham, MA, USA, Cat# BP2818500), relative to
the volume within the tube, was added before the samples were inverted to gently mix.
The rest of the RNA isolation was performed with the RNA clean and concentrator kit
(Zymo Research, Tustin, CA, USA, Cat# R1013), according to manufacturer instructions and
two additional steps. The first additional step was another centrifugation after the final
RNA wash buffer centrifugation to remove excess wash buffer. The second additional
step was a 2-min waiting step after the addition of DNase/Rnase-free water to the filter
in the spin column. The addition of this step allowed for higher recovery of RNA. RNA
samples were then incubated at 60 ◦C for 10 min before being stored at 4 ◦C overnight
for concentration quantification the next day using the NanoDrop One (Thermo Fisher
Scientific, Waltham, MA, USA, Version 2.6.0.6., Cat# ND-ONE-W). RNA was stored at
−80 ◦C until use.

2.3. RNA Isolation from Fiber Cells, Whole Lens Samples, or Positive Control Samples

RNA isolation from fiber cells, whole lens, or positive control samples were processed
using the same protocol [41]. Whole lens and fiber cell samples were collected from
four control (EphA2+/+ and ephrin-A5+/+) and four knockout (EphA2−/− and ephrin-A5−/−)
6-week-old mice. Fiber cell samples were collected from the same mice used for epithelial
cell RNA isolation, while whole lens RNA sample was isolated from another mouse. A
control brain sample was collected from a 9-week-old wild-type C57BL/6J mouse. Lenses
from the same mouse were cleaned of other attached tissues, and pairs of lenses or fiber
cell masses (after lens capsule and epithelial cell removal) from one mouse were pooled
into one sample. For whole lenses and fiber cells masses, 0.4 mL TRIzol was used for
homogenization. For the brain positive control sample, 1 mL of TRIzol per 50–100 mg
of tissue was used for homogenization. Samples were homogenized with RNase Zap
(Sigma-Aldrich, St. Louis, MO, USA, Cat# R2020)-treated polypropylene microcentrifuge
pestles, until no large pieces of tissue remained. Homogenized samples were incubated at
room temperature for 5 min before 0.4 mL chloroform (Fisher Scientific, Cat# AA22920K2),
per 1 mL TRIzol, was added. Samples were then shaken vigorously for 15 s and incubated
at room temperature for 3 min. After incubation, the samples were centrifuged at 12,000× g
for 15 min at 4 ◦C. The aqueous phase was transferred to RNase-free microcentrifuge tubes.
Then, half the sample’s volume of 100% isopropanol (Fisher Scientific, Cat# AC327270010)
was added before the samples were mixed by brief vortexing. The samples were incubated
at room temperature for 10 min and then centrifuged at 12,000× g for 10 min at 4 ◦C. The
supernatant was decanted, and the RNA pellet was washed with 75% ethanol (in diethyl
pyrocarbonate (DEPC)-treated water), using a volume equal to the volume of TRIzol used.
The samples were then vortexed briefly, so that the pellet floats in solution. Then, the
samples were centrifuged at 7500× g for 5 min at 4 ◦C. After centrifugation, the ethanol
wash was decanted, and the RNA pellet was allowed to air dry for 5–10 min, with the
microcentrifuge tube being inverted. The RNA pellets were then dissolved in 20 µL of
DNase/RNase-free water before incubating for 10 min at 60 ◦C. The samples were then
kept at 4 ◦C overnight for quantification the next day using the NanoDrop One. RNA was
stored at −80 ◦C until use.
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2.4. Primer Design

Primer design was performed with the National Center for Biotechnology Informa-
tion (NCBI) Primer-BLAST website [https://www.ncbi.nlm.nih.gov/tools/primer-blast/
(accessed on 2 September 2022)]. Primers were designed to span exon–exon junctions, when
possible, and were specific to each gene. For validated variants, specific primer sets were
designed for each variant, when possible, utilizing the differences in sizes of the resulting
PCR products from one set of primers or sequencing when the difference is <15 nucleotides.
PCR products were between 500–2200 bp (Table S1).

2.5. Reverse Transcription and Polymerase Chain Reaction (RT-PCR)

Reverse transcription was performed using SuperScript III (Thermo Fisher Scientific,
Cat.# 18080-051) and Oligo(dT)20 primer (50 µM), following the manufacturer’s instructions.
The cDNA was used immediately or stored at −20 ◦C until use.

Polymerase chain reaction was performed using Quick-Load Taq 2X master mix (New
England Biolabs, Ipswich, MA, USA, Cat# M0271S), following the manufacturer instruc-
tions. The reactions were loaded into the MiniAmp Thermal Cycler (Thermo Fisher Sci-
entific, Version 0.2.9, Cat# A37834). The thermocycling conditions are as follows. There
was one cycle of 95 ◦C for 30 s, followed by 45 cycles of 95 ◦C for 30 s, 53.5–55 ◦C for
30 s (temperature varied, based on the primers, info provided in Table S1) and 68 ◦C for
1 min per 1 kb of expected PCR product length. A final cycle of 68 ◦C for 5 min finished
the PCR reaction. PCR products were maintained at 4 ◦C before storage at −20 ◦C or gel
electrophoresis.

2.6. Gel Electrophoresis and DNA Extraction from Gel Pieces

Gel electrophoresis was performed using 0.8% or 2% agarose (Fisher Scientific, Cat#
S53) gels with GelGreen (Biotium, Fremont, CA, USA, Cat# 41005). The DNA ladder used
was GeneRuler 100 bp (Thermo Fisher Scientific, Cat# SM0241) or GeneRuler 1 kb Plus
(Thermo Fisher Scientific, Cat# SM1331). Samples with multiple variants and with product
sizes under 1000 bp were run on 2% gels to better separate the bands for gel extraction
and DNA sequencing. Gels were imaged using PrepOne Sapphire Blue LED illuminator
(Embi Tec, San Diego, CA, USA, Cat# PI-1000). Gel extraction was performed by cutting
out the individual bands from the gels using a clean razor and placing the gel piece into a
microcentrifuge tube that was then processed with the QIAquick gel extraction kit (Qiagen,
Hilden, Germany, Cat# 28704), following the manufacturer’s instructions. The extracted
DNA was then prepared for sequencing, according to Quintarabio’s (Cambridge, MA, USA)
sample submission and shipping instructions. The sequencing results were compared in
NCBI nucleotide BLAST to confirm the identity of each PCR product.

2.7. Microarray Data Comparison

Microarray data were obtained from the iSyTE database [https://research.bioinformatics.
udel.edu/iSyTE/ppi/expression.php (accessed on 13 September 2022)], searching for
Ephs and ephrins. A standard lens gene expression search was performed for mouse
mm10 species, with normalized expression comparison. The data that were used for
Table 2 and Table S2 were from the developmental dataset for Affymetrix 430 2.0 epithelial
P28 and P56, as well as Illumina WG-6 v2.0 P30, P42, and P52. For Table 2, we also listed
other mouse tissues with high expression of Ephs and ephrins, according to each gene’s
expression level information in the NCBI gene database.

3. Results
3.1. EphA Transcripts in the Lens

We analyzed RNA transcripts with specific primer pairs for Epha1–8 and Epha10 in
control, EphA2−/−, and ephrin-A5−/− whole lens, epithelial cell, and fiber cell samples from
6-week-old mice. We found transcripts for Epha1, Epha2, Epha3 variant 1, Epha4, Epha5
variants 3, 9, 12, and 14, Epha7 variant 2, and Epha8 in all samples tested (Figure 1). As

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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expected, Epha2 transcripts are absent from the EphA2−/− samples. Variants 1 and 2 of
Epha3 differ by one amino acid, and Epha3 variant 1 has an additional amino acid, Q478.
The presence of Epha3 variant 1 in lens samples was confirmed by sequencing of the PCR
product. Epha5 has 14 different variants with different splicing patterns and lengths. We
used sequencing to confirm the presence of four variants of Epha5 in the lens. Epha7 has
three variants, 1, 2, and 3. Epha7 variants 1 and 3 differ by four amino acids, and variant
1 is longer, with the addition of 601–604 KFPG amino acids. We detected Epha7 variant
1 in whole lens and epithelial cells samples of the control and KO samples, as well as
in KO fiber cell samples (Figure 1, magenta boxes). Epha7 variant 2 is a shorter variant
lacking multiple exons and has a different and shorter C-terminus than variants 1 and 3.
Sequencing confirmed the presence of the Epha7 variant 2 in all lens samples. We did not
detect Epha6 or Epha10 in any samples. There are two variants, 1 and 2, for Epha10. Variant 2
of Epha10 is much shorter than variant 1, due to loss of exons, and has a unique C-terminus,
compared to variant 1. Positive control PCR products from brain RNA samples were used
to confirm primer sets and PCR conditions for the Epha5 variants 1, 4, 5, 6, 8, and 10 and
the Epha6 and Epha10 experiments.
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Figure 1. Epha transcripts in whole lens, lens epithelial cell, or lens fiber cell RNA samples from
6-week-old EphA2+/+, EphA2−/−, ephrin-A5+/+, and ephrin-A5−/− mice. Positive control was brain
RNA isolated from a wild-type (WT) control mouse. We detected Epha1, Epha2, Epha3 variant 1, Epha4,
Epha5 variants 3, 9, 12, and 14, Epha7 variants 1 and 2, and Epha8 in the lens. As expected, Epha2 was
not detected in EphA2−/− lens samples. Epha7 variant 1 was detected in all whole lens and epithelial
cell samples and in the fiber cells of EphA2−/− and ephrin-A5−/− lenses (magenta boxes). We did not
detect Epha6 or Epha10 in the lens.

3.2. EphB Transcripts in the Lens

Next, we tested for the presence of Ephb1–4 and Ephb6 transcripts in the control and
KO samples. We detected Ephb1 variant 1, Ephb2 variant 2, Ephb3, Ephb4 variants 1 and 2,
and Ephb6 transcripts in all lens samples (Figure 2). The Ephb1 variant 1 is a longer isoform,
and variant 2 lacks one of the coding exons. Ephb1 variants 1 and 2 have the same N- and
C-termini. Specific primers were designed to distinguish between Ephb1 variants 1 and 2.
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The lens only expresses Ephb1 variant 1, and the primers for Ephb1 variant 2 were verified
by the positive control brain RNA sample. Ephb2 variant 1 has one additional amino acid,
Q477, compared to variant 2. Sequencing verified that the lens expresses Ephb2 variant
2. Ephb4 also has two variants, and due to an alternate in-frame splice site, variant 2 is a
shorter transcript. Specific primers designed for each variant and sequencing confirm that
both variants 1 and 2 of Ephb4 are expressed in the lens. Ephb6 also has two variants, but
the two variants are identical in the coding region and differ by a four-nucleotide difference
in the 5′ untranslated region (UTR).
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Figure 2. Ephb transcripts in whole lens, lens epithelial cell, or lens fiber cell RNA samples from
6-week-old EphA2+/+, EphA2−/−, ephrin-A5+/+, and ephrin-A5−/− mice. Positive control was brain
RNA isolated from a WT control mouse. We detected Ephb1 variant 1, Ephb2 variant 2, Ephb3, Ephb4
variants 1 and 2, and Ephb6 in the lens. We did not detect Ephb1 variant 2 in the lens.

In total, the lens expresses 12 of the 14 Eph genes. Due to the variants in multiple genes,
we found 14 Eph transcripts in our samples. Most notably, the Epha7 variant 1 is normally
only expressed in lens epithelial cells, but is present in the lens fiber cells of EphA2−/− and
ephrin-A5−/− samples.

3.3. Ephrin-A Transcripts in the Lens

Ephrin-A proteins are encoded by the Efna genes. We performed experiments to
determine whether Efna1–5 are present in the lens. Our results show that Efna1 variant
1, Efna2, Efna3 variant 1, Efna4, and Efna5 variants 1 and 2 transcripts are present in all
lens samples (Figure 3). As expected, the Efna5 transcripts are absent in the ephrin-A5−/−

samples. Efna1 variant 2 is missing a part of the 5′ UTR and coding region, resulting in a
shorter transcript, compared to variant 1. Specific forward primers for Efna1 variants 1 and
2 revealed that the lens expresses the longer Efna1 variant 1 transcript in both epithelial
cells and fiber cells, while Efna1 variant 2 is only expressed in lens epithelial cells. Efna3
has 7 variants. Efna3 variants 1 and 2 differ by one exon in the 3′ coding region and can
be distinguished by PCR product size. We found Efna3 variant 1 transcripts in all lens
samples. With sequencing verification, we could only detect very low levels of Efna3 variant
2 transcripts in the ephrin-A5+/+ control samples (Figure 3, magenta boxes). Efna3 variants
3, 4, and 5 have identical coding regions and are shorter transcripts with a start codon in
the middle of the variant 1 sequence. There are minor differences in the 5′ UTR of Efna3
variants 3, 4, and 5 from the 5′ coding region of Efna3 variant 1; thus, specific primers
to test for Efna3 variants 3, 4, and 5 could not be designed. Efna3 variants 6 and 7 have
identical coding regions and are shorter transcripts with a start codon in the middle of the
variant 2 sequence. There are some differences in the 5′ UTR of variants 6 and 7 from the
5′ coding region of variant 2, but specific primers could not be designed to distinguish
between variants 2, 6, and 7. Interestingly, the lens expresses both variants of Efna5. Efna5
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variant 2 lacks one exon and is shorter than variant 1, but both transcripts have the same N-
and C-termini sequence.
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Figure 3. Efna transcripts, which encode for ephrin-A proteins, in whole lens, lens epithelial cell, or
lens fiber cell RNA samples from 6-week-old EphA2+/+, EphA2−/−, ephrin-A5+/+, and ephrin-A5−/−

mice. We detected Efna1 variant 1, Efna2, Efna3 variant 1, Efna4, and Efna5 variants 1 and 2 in the
lens. Efna1 variant 2 was detected in the whole lens and epithelial cells, but not detected in fiber cells.
Efna3 variant 2 was only detected in ephrin-A5+/+ lens samples (magenta boxes).

3.4. Ephrin-Bs Transcripts in the Lens

The last group of genes tested were Efnb1–3, which encode for ephrin-B1–3. We
detected Efnb1 and Efnb2 variant 1 in all lens samples (Figure 4). Efnb2 has two variants,
and variant 2 is shorter by 93 base pairs. Efnb2 variants 1 and 2 have the same N- and
C-termini sequence. We did not detect the smaller Efnb2 variant 2 band in any of the lens
samples. Interestingly, Efnb3 transcripts are only found in lens epithelial cells. Overall, we
found transcripts for all eight Efn genes in the lens. Notably, Efna5 variants 1 and 2 were
both expressed in the lens, and Efnb3 was only found in lens epithelial cells. All PCR and
sequencing results are summarized in Table 1.
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Figure 4. Efnb transcripts, which encode for ephrin-B proteins, in whole lens, lens epithelial cell, or
lens fiber cell RNA samples from 6-week-old EphA2+/+, EphA2−/−, ephrin-A5+/+, and ephrin-A5−/−

mice. We detected Efnb1 and Efnb2 variant 1 in the lens. Efnb3 was detected in the whole lens and
epithelial cells, but not detected in fiber cells.
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Table 1. Eph and Efn transcripts in the lens.

Gene Whole Lens Epithelium Fiber Cells
EphA2 Ephrin-A5 EphA2 Ephrin-A5 EphA2 Ephrin-A5

+/+ -/- +/+ -/- +/+ -/- +/+ -/- +/+ -/- +/+ -/-
Epha1 3 3 3

Epha2 3 KO 3 3 3 KO 3 3 3 KO 3 3

Epha3 Variant 1 3 3 3

Epha3 Variant 2 n.d. n.d. n.d.
Epha4 3 3 3

Epha5 Variant 1 n.d. n.d. n.d.
Epha5 Variant 2 n.d. n.d. n.d.
Epha5 Variant 3 3 3 3

Epha5 Variant 4 n.d. n.d. n.d.
Epha5 Variant 5 n.d. n.d. n.d.
Epha5 Variant 6 n.d. n.d. n.d.
Epha5 Variant 7 n.d. n.d. n.d.
Epha5 Variant 8 n.d. n.d. n.d.
Epha5 Variant 9 3 3 3

Epha5 Variant 10 n.d. n.d. n.d.
Epha5 Variant 11 n.d. n.d. n.d.
Epha5 Variant 12 3 3 3

Epha5 Variant 13 n.d. n.d. n.d.
Epha5 Variant 14 3 3 3

Epha6 n.d. n.d. n.d.
Epha7 Variant 1 3 3 n.d. 3 n.d. 3

Epha7 Variant 2 3 3 3

Epha7 Variant 3 n.d. n.d. n.d.
Epha8 3 3 3

Epha10 Variant 1 n.d. n.d. n.d.
Epha10 Variant 2 n.d. n.d. n.d.
Ephb1 Variant 1 3 3 3

Ephb1 Variant 2 n.d. n.d. n.d.
Ephb2 Variant 1 n.d. n.d. n.d.
Ephb2 Variant 2 3 3 3

Ephb3 3 3 3

Ephb4 Variant 1 3 3 3

Ephb4 Variant 2 3 3 3

Ephb6Variant 1 3 3 3

Ephb6Variant 2 3 3 3

Efna1 Variant 1 3 3 3

Efna1Variant 2 3 3 n.d.
Efna2 3 3 3

Efna3 Variant 1 * 3 3 3

Efna3 Variant 2 * n.d. n.d. 3 n.d. n.d. n.d. 3 n.d. n.d. n.d. 3 n.d.
Efna4 3 3 3

Efna5Variant 1 3 3 3 KO 3 3 3 KO 3 3 3 KO
Efna5 Variant 2 3 3 3 KO 3 3 3 KO 3 3 3 KO

Efnb1 3 3 3

Efnb2 Variant 1 3 3 3

Efnb2 Variant 2 n.d. n.d. n.d.
Efnb3 3 3 n.d.

+/+ = wild-type or control; −/− or KO = knockout; n.d. = not detected; blue = detected in all lens fractions;
orange = detected in some lens fractions; yellow highlight = detected in lens epithelial fractions, but not in lens
fiber cell fractions; * There are two shorter variants of Efna3, variants 3/4/5 and variants 6/7, that cannot be
distinguished by RT-PCR.

3.5. Data Comparison with Adult Lens Microarray Data

We compared our RT-PCR results to the Eph and Efn microarray data available in
iSyte 2.0 from the Affymetrix 430 2.0 and Illumina WG-6 v2.0 arrays [42]. We chose to
compare our data from 6-week-old mice with data from wild-type lenses at postnatal
day 28 (P28) from the epithelium and at P56 from the whole lens on the Affymetrix
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platform and results from wild-type whole lenses from P30, P42, and P52 on the Il-
lumina arrays with our data. It should be noted that the data from the two differ-
ent microarray platforms should not be compared to each other, due to differences in
technology for the two arrays. We designated detected (3) or not detected (n.d.) for
the microarray data (Table 2) and included the normalized lens expression numbers
for each gene from iSyte 2.0 (Supplemental Table S2). The normalized lens expression val-
ues for the two different chip sets were in different ranges. Our data matches closely with
the microarray data, except for a few of the genes. We detected the expression of Epha8, but
the array data did not, and we did not detect Epha6, but the Affymetrix array did. Neither
microarray tested for Epha10.

Table 2. Eph and Efn transcripts in lens microarray studies and other tissues.

Gene iSyte 2.0 NCBI
Affymetrix 430 2.0 Illumina WG-6 v2.0
P28 Epi P56 P30 P42 P52 Other tissues with high expression

Epha1 3 3 3 3 3 Duodenum, intestines, lung
Epha2 3 3 3 3 3 Duodenum, intestines, lung
Epha3 3 3 3 3 3 Embryonic/adult brain, embryonic limb
Epha4 3 3 3 3 3 Embryonic/adult brain, embryonic limb, heart
Epha5 3 3 3 3 3 Embryonic/adult brain
Epha6 3 3 n.d. n.d. n.d. Adult brain
Epha7 3 3 3 3 3 Embryonic/adult brain, embryonic limb

Epha8 1 n.d n.d n.d n.d n.d Embryonic brain, adult cerebellum
Epha10 2 N/A N/A N/A N/A N/A Embryonic/adult brain, testis
Ephb1 3 3 3 3 3 Embryonic/adult brain
Ephb2 3 3 3 3 3 Embryonic brain, adrenal, colon, intestines
Ephb3 3 3 n.d. n.d. n.d. Embryonic limb, colon, lung, stomach
Ephb4 3 3 3 3 3 Embryonic limb, colon, lung, ovary
Ephb6 3 3 3 3 3 Thymus, adult cortex
Efna1 3 3 3 3 3 Duodenum, lung, intestines
Efna2 3 3 n.d. n.d. n.d. Embryonic brain, embryonic liver, ovary
Efna3 3 3 n.d. n.d. n.d. Embryonic brain, embryonic limb, stomach
Efna4 3 3 3 3 3 Embryonic limb, duodenum, ovary
Efna5 3 3 3 3 3 Embryonic brain, embryonic limb, bladder
Efnb1 3 3 3 3 3 Colon, duodenum, lung, ovary
Efnb2 3 3 3 3 3 Colon, lung

Efnb3 3 3 3 3 3 3 Embryonic brain, embryonic limb, heart

n.d. = not detected. Bolded genes were detected in our RT-PCR experiments; 1 Epha8 was detected at low levels in
E15.5 and P0 lenses on the Illumina WG-6 v1.1 microarray; 2 Epha10 was not tested in any of the reported arrays
on iStye 2.0; 3 Efnb3 is only expressed in lens epithelial cells.

In Table 2, we also list other mouse tissues with high expression of each Eph or Efn.
We wanted to determine whether there were other tissues with similar expression patterns
of Eph or Efn as in the lens. The lens expresses many of the genes also detected in the brain,
lung, and the gastrointestinal tract. However, no other tissues expressed as many Eph or
Efn, compared to the lens.

4. Discussion

Our data shows that the adult mouse lens expresses 7 Epha, 5 Ephb, 5 Efna, and 3 Efnb
transcripts. Counting all the different variants, we detected 18 Ephs and 11 Efns in the lens.
Of these isoforms, three are only expressed in lens epithelial cells, Epha7 variant 1, Efna1
variant 2, and Efnb3. Epha7 variant 1 is also aberrantly expressed in the EphA2−/− and
ephrin-A5−/− lens fiber cells. Interestingly, we only found Efna3 variant 2 in the control
ephrin-A5+/+ samples. This variant has very faint PCR bands, but was consistently present
in the control ephrin-A5+/+ whole lens, epithelial cell, and fiber cell samples. It is not clear
why EphA2+/+ samples do not also express Efna3 variant 2. However, this does suggest
that, even among control “wild-type” animals, there could be slight strain differences.
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This notion is supported by our previous work, showing differences between our control
animals vs. pure C57BL6/J wild-type mice [43].

Our data reveals that the loss of EphA2 or ephrin-A5 causes abnormal expression of
Epha7 variant 1 transcripts in KO lens fiber cells. This unexpected result was our first clue
about compensatory upregulation or deregulation in KO animals. In addition to our data,
a recent work described marked downregulation of Epha5 transcripts in developing lenses
with the disruption of the musculoaponeurotic fibrosarcoma (MAF) family of proteins [44].
The data from RNA-seq plates did not distinguish between the 14 variants of Epha5. MAFs
encode basic leucine zipper transcription factors that are known to be important for lens
development and to be involved cataractogenesis [44–50]. There may be other insights that
can be gleaned from the microarray data between the control, EphA2−/−, and ephrin-A5−/−

lens samples. Comparison of our RT-PCR results and previous microarray data indicate
a good match between the information from these data sets for most of the Eph and Efn
isoforms. We may be able to use microarrays to quickly screen our KO lenses for highly
upregulated or downregulated Ephs and Efns and examine large groups of other genes.

Our new method to isolate RNA from epithelial cells allows for ~20–30 PCR reactions,
allowing for the efficient screening of transcripts. This protocol makes it possible to identify
epithelial-cell specific isoforms. We had presumed that, in the whole lens samples, the fiber
cell RNA content would dominate over the smaller amount of RNA from the lens epithelial
cells. Different from our investigation of tropomyosin transcripts in whole lens [41] vs.
epithelial cells [51], where several isoforms of tropomyosin were only detected in epithelial
cell samples, we surprisingly found three epithelial cell-specific Eph/Efn transcripts (Epha7
variant 1, Efna1 variant 2, and Efnb3) that were also present in whole lens samples. Of
note, Efnb3 did not have other variants expressed in fiber cells, but it was detected on both
microarray platforms in both the epithelial and whole lens samples. Our data suggests
that RNA from epithelial cells can be detected in whole lens samples; however, very
low expression epithelial-cell-exclusive genes may still be difficult to detect in whole
lens samples.

The large number of isoforms and variants of Ephs and Efns found in adult mouse
lenses greatly complicates our search for lens receptor–ligand pairs. EphA receptors mainly
bind to ephrin-As, while EphB receptors usually interact with ephrin-Bs [52,53]. Less
common are the cross-interactions between EphAs and ephrin-Bs or EphBs and ephrin-
As [27,54]. Each receptor can interact with multiple ligands, and similarly, each ligand
can bind to multiple receptors [54]. This leads to a complex and large matrix of possible
receptor–ligand pairs. To tackle the next phase of this project, we will be designing specific
TaqMan real-time PCR assays to uncover changes in Eph and Efn expression levels between
our control and KO samples. This may help us narrow down the list of priority isoforms to
study in our KO mouse lines. Following the identification of priority isoforms for study,
we plan to perform Western blotting, co-immunoprecipitation, immunostaining, and/or
proximity ligation assay to determine the protein localization and receptor–ligand pairs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11203291/s1, Table S1: Primers, PCR product size, and PCR
temperature; Table S2: Normalized lens expression of Eph and Efn transcripts in lens
microarray studies.
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