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Abstract

Although bilateral cochlear implant users receive input to both ears, they nonetheless have

relatively poor localization abilities in the horizontal plane. This is likely because of the two

binaural cues, they have good sensitivity to interaural differences of level (inter-aural level

differences, or ILDs), but not those of time (inter-aural time differences; ITDs). Here, locali-

zation performance is assessed in six bilateral cochlear implant patients when instanta-

neous ITDs are measured and converted to ILDs, a strategy that results in larger-than-

typical ILDs. The added ILDs are corrective, in that they are derived from individual listener

performance across both frequency and azimuth, so that they are small where a listener per-

forms well, and increase as performance deviates from ideal. Results show significantly

improved localization performance as a result of this strategy, with two of the six listeners

achieving levels of performance typically observed in NH listeners.

Introduction

The criteria for CI candidacy has eased in recent years, and as a result it is becoming more

common for individuals with bilateral hearing loss to be fitted with two cochlear implants. The

hope is that because these bilateral CI (BCI) users are receiving auditory input in both ears,

they may be able to perform binaural tasks such as localization, and improved speech under-

standing in spatially-separated maskers (ie., solve the well-known cocktail party problem).

Results thus far have been disappointing however, as they have shown relatively poor localiza-

tion abilities, and little benefit in competing-talker scenarios. Of the two binaural cues avail-

able to listeners with normal hearing (NH), BCI users generally have better sensitivity to

interaural level differences (ILDs), although their ability to localize based on ILDs is still poorer

than that for listeners with NH [1–4]. BCI users have shown relatively poor sensitivity to ITDs

[5–7], and it is this reduced ITD sensitivity that is likely the limiting factor in their binaural

abilities [8].

Although ITDs are present in the acoustic signals captured by cochlear implants (CIs), they

are poorly represented in the signals delivered to CI users, because salient ITDs are encoded

in the temporal fine-structure (TFS). It is well known that CI signal processing discards most

of the acoustic TFS information and instead delivers the more slowly-varying fluctuations,
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known as the amplitude envelope [9, 10]. Although envelope information alone is often suffi-

cient for good speech intelligibility in quiet [10], CI users perform poorly on speech under-

standing in competing backgrounds, and other complex perceptual tasks that rely on TFS cues

like pitch and ITDs [7, 11, 12], which are poorly represented by CI processing [9, 13].

Improving the binaural representation for CI users is an enormous challenge that is being

addressed by a relatively large cross-section of the field on a number of different fronts. For

example, there have been efforts to improve ITD sensitivity by better aligning electrodes in

frequency using physiological [14] or behavioral [15] procedures. Others have attempted to

improve the saliency of ITDs via manipulations of the timing of the electrical pulses [16], or

envelope [17]. The possibility of taking advantage of residual acoustic hearing to improve bin-

aural hearing has also been examined [18]. The benefits obtained thus far, however, have been

relatively small.

The reliance by BCI users on ILDs has significant implications for localization, speech

reception, and other tasks as well. For example, ILDs are generally considered usable above

about 2000 Hz or so [19], which means that a significant portion of the frequency spectrum

(i.e., most of the energy below 2000 Hz) does not carry a reliable binaural cue for most BCI

users [20].

In addition to being inconsistent across frequency, naturally-occurring ILDs are also non-

monotonic as a function of azimuth, as illustrated by the well known acoustical “bright spot”

[21]. For example, if ILDs are measured at 2 kHz as a function of azimuth at a fixed far-field

distance and using a typical human head or acoustic manikin, they will increase as azimuth

increases from zero until about 55˚, at which point the ILDs will begin to decrease with a local

minimum at about 90˚, where the ILD is about equal to that at 25˚. There is evidence from

both animal [22] and modeling [4] studies that source location estimation based on ILDs can

be disambiguated by across-frequency pattern analysis, although it is unclear whether BCI

users possess this ability. However, given the limited number of available CI channels [23],

and the relatively poor localization abilities exhibited by BCI users [24], this possibility seems

unlikely. Given that BCI users rely on ILDs, the poor localization performance shown by BCI

users thus far [25] is not surprising.

The strategy employed here attempts to address these shortcomings by providing larger-

than-normal ILD cues [26]. Instantaneous ITDs are estimated, which are present acoustically

but not commonly deliverable to the user, and are converted to ILDs, which are not robust

enough in all frequency regions to be useful but have been shown to be perceivable irrespective

of frequency when made large enough [27]. Further, a corrective approach is taken in which

the size of the ILD applied in each frequency band and at each location is determined by each

listener’s performance there. Thus, if a listener shows good localization performance in a par-

ticular frequency band and at a given location, then the strategy does little, and the size of the

ILDs applied increases as performance deviates from ideal (see Figs 1–6). The goal is to provide

an ILD that delivers a more consistent percept across frequency [28] by increasing the magni-

tude of the cue where and by as much as is needed.

Method

Participants

Six adult BCI listeners participated, all of whom had at least 24 months of experience with two

CIs. Please see Table 1 for participant demographics and Table 2 for device information. This

research involved human subjects, and was approved by the University of Pittsburgh Institu-

tional Review Board (IRB# REN16080059). All participants provided written informed con-

sent prior to participating in the study.
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Procedure and stimuli

Each sat in an echo-reduced listening room (RT60 = 97 ms) that contained a 13-loudspeaker

array arranged in an arc in the front hemifield 1.67 m away from the listening position, and at

the height of the seated listeners’ pinnae. The loudspeakers were positioned from −90˚ to +90˚

with 15˚ of separation between each. Thus, all possible loudspeakers produced sound. The

average presentation level was 65 dB SPL.

The stimuli consisted of 500-ms broadband Gaussian noise bursts that were digitally-gener-

ated at a 44.1 kHz sampling rate (22 kHz bandwidth), with 20-ms raised-cosine onset and off-

set ramps applied. Noise was chosen over speech stimuli because the flat frequency spectrum

afforded audible sound on each trial, even after bandpass filtering in the corrective ILD func-

tion generation phase of the study. A random level rove of ±3 dB was applied from trial to trial

to minimize the effects of level cues that might arise as a result of differences across loudspeak-

ers. Each run consisted of 13 trials, with each loudspeaker location randomly selected without

replacement. Each condition was run 3 times, and performance was averaged across the three

runs. The subjects’ task was to identify the loudspeaker that presented the noise, and responses

were made via computer keypress. Subjects were told that they were free to rotate their head

Fig 1. Corrective ILD generation data for participant 883. The six inset panels each represent a different frequency band, with cutoff frequencies

indicated in the upper left corner of each inset panel. In each inset panel, the dashed black line represents ideal performance, the open blue circle

markers depict perceived location plotted as a function of source location, and the heavy blue plot is a sigmoid fit to the localization data. The red

functions are the corrective ILD functions for each band, which are the respective differences between ideal and the fit sigmoids, are expressed in dB,

and use the y-axes to the right.

https://doi.org/10.1371/journal.pone.0187965.g001
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while choosing a loudspeaker, but that they should face the loudspeaker directly in front of

them when a trial began, although this was not enforced.

Conditions

In one condition (“Unprocessed”), listeners used their own devices including the device

microphones, and their everyday program, and no research hardware or signal processing was

utilized. In another condition (“Processed”), the research platform was used, with the experi-

mental signal-processing strategy described below.

Signal processing

The research platform consisted of two high-fidelity 1

4
” omni-directional electret condenser

microphones to capture sound, mounted on custom earhooks so that they faced forward and

were positioned just above and in front of the pinnae. Real-time signal processing took place

on an Android phone, using custom-written code. 20-ms processing windows were used, with

no overlap, at a sampling rate of 48 kHz. Sound was delivered to each CI using the devices’

accessory cables. In one case (S2349), it was not technically possible to disable the processor

microphones, so device microphone sensitivity was decreased as much as possible, which

achieved a 90/10 aux-in/microphone mix ratio. The other five patients were all Advanced

Fig 2. Corrective ILD generation data for participant 2243. The layout is identical to that of Fig 1.

https://doi.org/10.1371/journal.pone.0187965.g002
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Bionics users; one patient used Harmony processors, one Neptune, and three used Naida pro-

cessors. For these participants, their clinical maps were placed onto Harmony Research pro-

cessors for testing, which allowed the use of clinical programming software to disable the

processor microphones without the need to make modifications to their devices. No other

changes to aspects of CI processing, such as automatic gain control, were made.

To generate the corrective ILD functions, localization was measured using Gaussian noise

that was filtered into one of six contiguous one-octave-wide bands between 125 Hz and 8 kHz

prior to presentation from a loudspeaker. During this phase of the study, users’ device micro-

phones were disabled, and the research platform described above was used to deliver signals to

the CI devices otherwise unprocessed. A corrective ILD function was generated for each fre-

quency band, by fitting a sigmoid function to the psychometric data generated, which was

then subtracted from ideal performance. See Fig 1, in which the corrective ILD functions use

the Y axis to the right. It can be seen that when performance is near ideal (when the sigmoid is

near the dashed line), the corrective ILD function is near zero, and as performance deviates

from ideal, the prescribed ILD becomes larger. The corrective ILD functions were 1501 in

length, to cover the range of possible ITDs (integer values, in samples, between ±750 μsec)

used in the study. 750 μsec was chosen as the maximum ITD to use because it was slightly

larger than the maximum ITD measured when using an acoustic manikin. A maximum ILD

of 32 dB was chosen for similar reasons.

Fig 3. Corrective ILD generation data for participant 2287. The layout is identical to that of Fig 1.

https://doi.org/10.1371/journal.pone.0187965.g003
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In the “Processed” condition, the research platform filtered the incoming audio data from

the left and right channels into 6 contiguous 1-octave-wide bands between 125 Hz and 8 kHz.

In each band, a sliding lag cross-correlation was used to estimate the ITD, which was the delay

that produced the largest correlation. A maximum possible ITD of ±750 μsec was used. An

ILD was then generated using the estimated ITD as an index into the corrective ILD function.

ILDs of up to 32 dB were applied via attenuation at the far ear, and any amount beyond 32 dB

was applied via gain at the near ear. For example, if an ILD of 38 dB was called for, the signal at

the far ear was attenuated by 32 dB, and the near-ear signal was increased in level by 6 dB.

ILDs larger than 32 dB occurred only occasionally, when the difference between the actual and

perceived source locations was greater than 90˚. This occurred in three frequency bands for

S883, as can be seen in panels 125–250, 500–1000, and 4000–8000 Hz of Fig 1a, in which the

Corrective ILD functions extend beyond the bounds of the panels. This also occurred for

S2243 in bands 250–500, 1000–2000, and 4000–8000 Hz, and for S643 in band 2000–4000 Hz.

No other participant perceived a location that was, on average, further than 90˚ from the actual

location.

Results and discussion

Fig 7 shows localization performance by each subject in both conditions. The abscissae are

staggered for each subject, to facilitate comparison and to conserve space. Root-mean-square

Fig 4. Corrective ILD generation data for participant 1363. The layout is identical to that of Fig 1.

https://doi.org/10.1371/journal.pone.0187965.g004
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(RMS) error was computed for each listener in each condition. This measure was used as the

dependent variable in a related-measures t-test, which revealed a significant difference in per-

formance between the two conditions, t = 4.8, p = .0003. This result indicates the corrective

processing provided a statistically significant improvement to localization accuracy over the

listeners’ typical configurations. Across listeners, average RMS error was 31.0˚ in the Unpro-

cessed condition, and 12.8˚ in the Processed condition.

Mean RMS error in the Unprocessed condition of the current study (31˚) is on par with

that reported in the literature, which has varied somewhat across studies between 20 and about

30˚ [1, 2, 25]. Recent studies have reported mean RMS error for listeners with NH localizing

broadband noise to be about 6˚, with the poorest performers exhibiting about 12˚ of error [1,

19]. Average performance in the Processed condition (12.8˚ of error) is approaching this

range, with two listeners performing similar to the reported NH-listener average (S 1363 at

7.3˚ and S 2349 at 5.2˚ of error). Table 3 depicts RMS error, in degrees azimuth, for the six par-

ticipants in the Unprocessed and Processed conditions.

Fig 5. Corrective ILD generation data for participant 643. The layout is identical to that of Fig 1.

https://doi.org/10.1371/journal.pone.0187965.g005
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High-frequency processing

The processing used in the current study was applied to octave-wide frequency bands that

extended up to 8 kHz. This choice may benefit from some discussion since it is generally

acknowledged that ITDs are ‘usable’ only below 1.4 kHz [29]. This is true for pure tones, for

which the short wavelengths associated with higher frequencies limit the size of the delay

that can be perceived in ongoing signals (longer delays can be perceived at signal onsets).

Fig 6. Corrective ILD generation data for participant 2349. The layout is identical to that of Fig 1.

https://doi.org/10.1371/journal.pone.0187965.g006

Table 1. There is one listener per row. Data include Gender, Age, the Etiology of the hearing loss, and the number of years of experience with the Left and Right CI.

Subject Gender Age Etiology Years CI; Left Years CI; Right

883 Female 70.9 Unknown 8.8 16.0

2243 Male 65.6 Noise Exposure 2.0 2.7

2287 Male 55 Unknown 8.6 14.7

1363 Male 62.1 Unknown 4.6 4.1

643 Male 63 Noise Exposure 9.8 8.8

2349 Female 54.7 Unknown 2.5 2.0

https://doi.org/10.1371/journal.pone.0187965.t001
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Transients and other aperiodic signals like noise, however, do not necessarily have the same

limitations. When it is considered that much of the high-frequency energy in speech is derived

from sibilants and plosives, both of which are aperiodic, it is reasonable to think that successful

high-frequency ITD encoding is possible.

Table 2. There is one listener per row. Data include the manufacturer of participant’s CIs, the CI models the participant uses day-to-day, and the models used in the

study. For the MedEl patient, the cutoff frequencies of the four lowest processing channels, in which FSP takes place, are listed beside the left and right Strategies.

Subject CI

Make

CI Model;

Daily

CI Model;

Testing

Strategy; Left Strategy; Right

883 AB Harmony Harmony HiRes-P w/ Fidelity 120 CIS

2243 AB Naida Harmony HiRes-P w/ Fidelity 120 HiRes-P w/ Fidelity 120

2287 AB Naida Harmony HiRes-S w/ Fidelity 120 HiRes-S w/ Fidelity 120

1363 AB Neptune Harmony HiRes-S w/ Fidelity 120 HiRes-S w/ Fidelity 120

643 AB Naida Harmony HiRes Optima-S HiRes Optima-S

2349 MED-EL Sonnet Sonnet FSP (100, 208, 352, 545, 806 Hz) FSP (100, 208, 352, 545, 806 Hz)

https://doi.org/10.1371/journal.pone.0187965.t002

Fig 7. Localization performance for each participant. Each of the six participants are each represented in a separate panel. The blue open circles represent

performance in the Unprocessed condition, the red open circles represent performance in the Processed condition, and error bars represent standard deviations. The

X axes are staggered within each panel to facilitate comparison and to conserve space.

https://doi.org/10.1371/journal.pone.0187965.g007
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Fig 8 confirms this assumption, and depicts frequency histograms of the estimated ITDs in

20-ms time bins for two concurrent talkers when non-individualized head-related impulse

responses (HRIRs) were applied to each such that one was 60 degrees to the left of midline,

and the other was 60 degrees to the right. Fifty sentence tokens of each female talker were

used, or about 3 minutes of audio data. Each panel of Fig 8 shows data for a different frequency

band. It can be seen that in most frequency bands, ITDs tend to cluster around one of two

modes even in the 4–8 kHz band. The poorest spatial representation occurs in the 1–2 kHz

band, which appears to have four distinct modes. It is unclear why this pattern is observed,

Table 3. There is one listener per row. Data show RMS error in degrees azimuth for the Unprocessed and Processed

conditions.

Subject Unproc Error Proc Error

883 40.2˚ 15.3

2243 26.1 14.0

2287 36.7 17.6

1363 26.9 7.3

643 38.4 17.6

2349 17.5 5.2

https://doi.org/10.1371/journal.pone.0187965.t003

Fig 8. ITD frequency histograms for various frequencies. Acoustic analysis was conducted on 50 pairs of sentences (about 2.5 minutes of

data) produced by different female talkers, in which head-related impulse responses were applied to each such that one was 60 degrees to the

left, and the other 60 degrees to the right. The sentences were then combined, filtered into six one-octave wide frequency bands, and an ITD

was then estimated every 20 ms in each band. Each plot represents the proportion of occurrence of a given ITD among the time bins. Each

panel shows acoustic analysis data for a particular frequency band.

https://doi.org/10.1371/journal.pone.0187965.g008
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although it was replicated using both 50 different tokens from the same two talkers, and 50

tokens each from 2 male talkers. Despite this unexplained result, this analysis indicates that

reliable ITD estimation is possible even in this relatively high frequency region, at least for the

talkers used in this analysis.

Another unexpected outcome from this acoustic analysis was the magnitude of the ITDs

measured. For example, it can be seen that in the 125–250 Hz band, the modal ITD was around

750 us. Given that 750 μs was the largest ITD estimated in the current study, and that the anal-

ysis presented in Fig 8 was generated with non-individualized HRIRs from sources locations

of ±60˚, it seems clear that there is a distinct possibility that some ITD estimates in the current

study were not as veridical as they may otherwise have been, particularly at more lateral source

positions, and in the lower frequency bands. When ±90˚ source locations were used and the

analysis re-run, modal ITDs in the lowest band were around 1000 μs. However, because each

listener has a potentially different head size, quantifying this source of error would require

making HRTF measurements of each source location for each listener, which is not feasible

after the fact. In any event, the most likely result is that in the moments of time when the actual

ITD exceeded the maximum measured ITD, the applied ILD would be smaller, and probably

more variable than it otherwise would have been.

In retrospect, microphone placement may have also exacerbated this problem. In the Pro-

cessed conditions, subjects wore the custom ear-hook microphones in addition to a behind-

the-ear (BTE) speech processor, and in a case or two the temples of eyeglasses. It was thus

sometimes cumbersome to securely and comfortably mount the custom earhook micro-

phones onto the pinnae of the listeners. In some cases, the most comfortable and secure

approach was to mount the ear-hook mics to the outside of the BTE processor, and depend-

ing on placement, the gap between the custom mics and the side of the head is estimated to

have been as much as 3/8” on either side. This may have made the measured ITDs in the

study larger still, although custom microphone earhook placement was not documented dur-

ing testing.

A related issue is the pre-emphasis filtering that is applied by CI devices at the front end

processing stage, which have a high-pass characteristic. For example, Advanced Bionics

devices use a pre-emphasis filter in which the energy at 100 Hz is attenuated by about 30 dB

relative to the energy at around 3 kHz (the half-power point is around 1400 Hz). This has the

effect of enhancing energy in the high-frequency region, and may lead users to weight cues in

that frequency region more heavily. This effect was further emphasized by the use of Gaussian

white noise in the current experiment, as opposed to pink or speech shaped noise, which have

low-pass characteristics.

Individual differences

One of the more unexpected results of the current experiment is the seemingly disparate psy-

chometric functions generated in the band-pass conditions. For example, patient 883 (Fig 1a)

shows very little ability to discriminate source locations in any of the band-pass conditions. In

fact, the most striking aspect of this patient’s data is its frequency-specific nature, observable

in Fig 1. That is, when localizing noise filtered between 125 and 250 Hz, patient 883 hears all

source locations almost all the way to the right. Conversely, noise filtered between 4 and 8 kHz

is heard almost all the way to the left, regardless of source location. Frequency bands between

those two are heard nearer midline. The perceptual stability of this pattern of results was con-

firmed a week later when Patient 883 was brought back in to the lab and tested again in the

band-pass conditions. This pattern of performance could be explained by asymmetries in

neural survival or depth of insertion of the electrode arrays, poor clinical fitting, or some
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combination. Even when loudness is interaurally balanced (as from a good clinical fitting), an

ILD of zero dB does not always produce a centered image [30, 31].

Patient 1363 (Fig 1d) shows a different pattern which is non-the-less relatively frequency

specific. For the two highest frequency bands, the psychometric functions are more or less

linear, if somewhat compressed. Specifically, in these frequency regions this participant does

not perceive any locations beyond about ±60˚ or so. This may be due to the amount of com-

pression required by CI devices, as well as the non-monotonic nature of the ILD cue. In the

four lower frequency bands, on the other hand, patient 1363 tends to hyper-lateralize. For

example, in the 500–1000 Hz band, sound sources appear to this listener as either near +90

or −90˚, with no intermediate perceived locations. In the lowest frequency bands, the strat-

egy delivered contra-ILDs in which the applied ILDs would, on their own, have indicated a

source location to the contralateral side of the actual source. This is an intriguing result, and

warrants further study. It has been suggested that across-frequency pattern analysis can be

used to derive source location from the ILD cue [4, 22]. On the other hand, the pattern

of results from patients 1363 and 2349 suggest that broadband localization may be the prod-

uct of relatively simple across-frequency integration of the ILD cue, at least for these two

patients. The relatively crude spectral representation that BCI listeners receive makes this a

reasonable possibility. It could also be that the low-frequency bands are not perceptually

weighted as heavily as the higher-frequency bands by these participants, possibly due to pre-

emphasis filtering etc. as described above. In any event, the low-frequency hyper-lateraliza-

tion by these two participants may be related to loudness recruitment and the omni-direc-

tional microphones used.

The interaction between the currently proposed strategy with particular CI coding

strategies warrants further study. For continuous-interleaved strategies (CIS) such as with

Advanced Bionics devices and in the higher-frequency channels of the FSP family of MedEl

strategies, each channel is enabled on each cycle, which may make their effects easier to

anticipate. The effects of peak-picking strategies, on the other hand, are harder to predict.

MedEl’s FSP strategies use peak-picking in the lower 4 channels, while devices from Cochlear

Corp use peak picking across the entire range of channels. Peak picking strategies are also

known as n-of-m strategies, in that they analyze the levels of m channels on each cycle, and

choose the n channels with the highest amplitudes, which are the only channels enabled on

that cycle. Thus, a number of channels are off on any given cycle. This has potentially signifi-

cant implications for ILD perception by BCI users who use peak-picking strategies. For

example, infinite ILDs are frequently delivered when the ipsilateral level at a given frequency

region is high enough to be selected while the corresponding contralateral level is too low

and that channel is not selected. In these cases, the frequency-specific ILDs may be made

larger than what occurs naturally, but there may be more variability across frequency in the

ILD cue. Making the ILD larger than natural, as the currently proposed strategy does, may

contribute to this problem. If high-frequency ILDs are, in fact, weighted more heavily than

those in the low-frequencies, however, this problem may not be as severe with the FSP strate-

gies of MedEl devices, where peak-picking is used only in the lower four frequency bands.

The cutoff frequencies of the 4 low-frequency (FSP) channels of the MedEl patient (Subject

2349) are listed in the “Strategy” columns of Table 2. It will be interesting to see the benefits

of the proposed strategy with users of devices from Cochlear Corp., which use peak-picking

across the entire frequency range. No users of Cochlear devices participated in the current

study because difficulties in disabling the device microphones (a safety feature) made it diffi-

cult to ensure that listeners heard only the processed sound. Experiments examining the

interaction between the proposed strategy and those from the different manufacturers are

planned.
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ILD magnitude before and after processing

To gain some insight into the actual ILDs that were present after processing, acoustic analysis

was performed as follows. First, 500-ms broadband Gaussian noise was recorded from the 13

locations used in the current study, using the earhook microphones described in the Methods

section, mounted on an acoustic manikin at the listening position. These recordings were

either analyzed as is (Unprocessed), or after processing with the algorithm described, and

using the corrective ILD functions generated by each of the participants. The analysis consisted

of filtering the noise into the six 1-octave wide frequency bands used in the current study, and

computing an ILD in each band. Fig 9 shows the results of this analysis, with the top panel

depicting the Unprocessed stimuli, and the lower six panels the stimuli processed with the

algorithm, one for each participant. In each panel, frequency band is presented on the Y axis,

and source location is on the abscissa. The size of the marker represents the magnitude of

Fig 9. Pre- and post-processed ILD estimates as a function of azimuth for each participant. Acoustic analysis is of 500-ms broadband Gaussian noise, recorded

from source locations at +/-90 degrees in 15-degree steps, using omnidirectional 1/4” microphones mounted on an acoustic manikin facing forward just above the

auricles, as was done during testing. The top panel depicts ILDs in the unprocessed condition, and the the lower six panels each represent ILDs after processing using

the six listeners corrective ILD functions, one panel per listener. In each panel, maker size represents ILD magnitude in each of the six frequency bands used in the

study as a function of source location. Black markers represent apparent source locations to the left, and white markers to the right.

https://doi.org/10.1371/journal.pone.0187965.g009
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the ILD in that frequency band and at that location, and black markers indicate an apparent

source location to the left of midline, while white markers indicate apparent sources to the

right.

The largest ILD measured in the Unprocessed conditions was 7.5 dB. Although this is

somewhat smaller than the ILDs that typically occur in the ear for listeners with NH at these

frequencies, it is on par with the ILDs reported in the literature for a behind-the-ear micro-

phone placement [32]. The largest ILD measured in any of the processed conditions is 28.5 dB,

for subject 883. This value appears lower than expected, given the ILD functions for this lis-

tener. One potential cause of this is the possible smaller-than-expected applied ILDs that

might occur when the measured ITDs are greater than anticipated, and particularly if they are

greater than the maximum ITD chosen for this study.

Regardless of the cause, if the applied ILDs would have been too small, this would have

been observable in the localization data in the form of compressive, sigmoidally-shaped locali-

zation functions. This might have been addressed by increasing the maximum ILD parameter

of the algorithm. Nevertheless, more work will be needed to address how larger-than-typical

ILDs drive perceived location.

All participants showed reduced RMS error when provided with the corrective ILD pro-

cessing strategy. But four of the six subjects still showed performance that does not appear to

be in the range exhibited by typical NH listeners. One interesting possibility for BCI users

like these is that the applied ILDs be made larger still, and users be provided exposure over

time to the very large ILDs. The acute outcome would likely be that these listeners would

hyper-lateralize, given the very large ILDs. But it is possible that if they are exposed over time

to the large ILDs, they may be able to adapt to them and re-map their perceptual space to

account for them. In such a scenario, it may be that localization performance eventually

becomes even better with very large ILDs. That is, using very large ILDs might increase the

available dynamic range of ILDs across the horizontal plane, possibly improving acuity when

expressed in degrees azimuth. On the other hand, the maximum realizable ILD will be con-

strained by the input dynamic range of the devices. Thus, there are technical limitations to

what is possible.

Nevertheless, the approach outlined here, combined with the portable real-time platform

offers an intriguing opportunity to explore binaural plasticity, and the possibility of adaptation

to altered ILD cues particularly. There are a few such experiments in the literature, but none

have directly examined ILD adaptation, in part because of the technical challenges associated

with implementation. For example, Young constructed a ‘pseudophone’ which positioned

acoustic collectors on either side of the head, and used tubes to deliver the sound collected

from each to the respective contralateral ears of the listener [33]. The author wore this passive

instrument continuously for 85 hours, with the goal of observing if there was any adaptation to

the reversed binaural cues, but found none. However, given that modern ear plugs typically

provide 20–30 dB of attenuation [34], an amount that leaves signals audible when produced at

typical conversational levels, it is unlikely that the apparatus used by Young effectively isolated

him from the original, veridical sound. This would mean that he likely received a mixture of

the two sounds, which makes interpretation of the results of the study difficult.

Other investigators have looked at aspects of adaptation to spatial cues, with most focusing

on spectral cues. For example, adaptation has been shown for vertical localization when spec-

tral cues were altered by applying molds to the pinnae of participants [35], and for reducing

front-back confusions in the horizontal plane when HRTFs were non-individualized [36]. Sev-

eral studies have demonstrated adaptation to changes in the ITD cue in a horizontal-plane

localization task by implementing a constant interaural delay using bilateral hearing aids pro-

grammed with asymmetrical digital delays [37], or by placing participants under water, where
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the speed of sound is greater than in air, and thus the ITD cue is reduced for given source

angles [38]. No studies were found that directly examined adaptation to altered ILD cues.

It appears from these results that the binaural representation of at least some individuals in

this population can be quite complex, idiosyncratic, and non-monotonic. It is unknown at this

time what the source or sources of this variability are, although there are a number of likely

candidates, including their reliance on ILDs [1], and the speech coding strategies of the devices

[3, 39]. Another likely factor involves the interface between individual electrodes of each

device and the regions of auditory nerve they each stimulate. In a normal healthy auditory

system there is precise interaural frequency alignment, which is required for good binaural

fusion. That is, if components to each ear stimulate neurons in different tonotopic regions,

then they will likely not be perceived as a single auditory object, and no binaural fusion will

occur. For example, if there is an ILD present between two such components, it may not con-

tribute to a spatial percept, but rather one component may be perceived as being lower in level

than the other, in addition to being different in frequency. However, this appears to be less of a

problem for BCI users in particular [15], perhaps because the relatively course frequency reso-

lution and broad spread of current [40] may make electrode alignment somewhat less critical

for ILD processing, although this possibility would need to be established empirically.

Conclusion

The proposed corrective processing appears able to provide benefit for both above-average

(S1363, S2349) and below-average (S883, S643) performers, with the performance of some

listeners approaching that of NH. The results of the current study demonstrate that although

naturally-occurring ILDs alone are often not sufficient for good localization by BCI users,

applying them in a corrective way as was done in the current study can lead to significant

improvements in localization for this population.

Supporting information

S1 File. Localization data. The data file is in comma-separated-value text format. Columns

are participant number, condition, and actual and mean perceived location, in degrees azi-

muth. Data for the Unprocessed and Processed conditions are the data for the main experi-

ment, and the other conditions are the band-specific conditions used for generating the

corrective functions, where eg., band_250_500 refers to the condition in which the high-

pass and low-pass cutoff frequencies were 250 and 500 Hz.
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