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Abstract
Objective ‒ To identify differentially expressed and clini-
cally significant mRNAs and construct a potential predic-
tion model for metabolic steatohepatitis (MASH).
Method ‒ We downloaded four microarray datasets,
GSE89632, GSE24807, GSE63067, and GSE48452, from
the Gene Expression Omnibus database. The differen-
tially expressed genes (DEGs) analysis and weighted
gene co-expression network analysis were performed
to screen significant genes. Finally, we constructed a
nomogram of six hub genes in predicting MASH and
assessed it through receiver operating characteristic
(ROC) curve, calibration plot, and decision curve ana-
lysis (DCA). In addition, qRT-PCR was used for relative
quantitative detection of RNA in QSG-7011 cells to further
verify the expression of the selected mRNA in fatty liver
cells.
Results ‒ Based on common DEGs and brown and yellow
modules, seven hub genes were identified, which were
NAMPT, PHLDA1, RALGDS, GADD45B, FOSL2, RTP3, and
RASD1. After logistic regression analysis, six hub genes
were used to establish the nomogram, which were NAMPT,
RALGDS, GADD45B, FOSL2, RTP3, and RASD1. The area

under the ROC of the nomogramwas 0.897. The DCA showed
that when the threshold probability of MASH was 0–0.8, the
prediction model was valuable to GSE48452. In QSG-7011
fatty liver model cells, the relative expression levels of
NAMPT, GADD45B, FOSL2, RTP3, RASD1 and RALGDS were
lower than the control group.
Conclusion ‒ We identified seven hub genes NAMPT,
PHLDA1, RALGDS, GADD45B, FOSL2, RTP3, and RASD1.
The nomogram showed good performance in the predic-
tion of MASH and it had clinical utility in distinguishing
MASH from simple steatosis.

Keywords: nomogram, metabolic steatohepatitis, non-
alcoholic steatohepatitis, weighted gene co-expression
network analysis.

1 Introduction

Metabolic steatohepatitis (MASH), which was once named
nonalcoholic steatohepatitis (NASH), is one of the stages of
metabolic-associated fatty liver disease (MAFLD), which
was named nonalcoholic fatty liver disease (NAFLD). MASH
is developed from simple steatosis and can progress to
cirrhosis and even liver cancer. A previous study reported
that the overall global prevalence of NAFLD diagnosed by
imaging was approximately 25.24 and 7–30% of patients
with NAFLD had NASH, indicating the overall prevalence
of NASH was approximately between 1.5 and 6.45% [1].
NAFLD and NASH are becoming a global economic burden
[2] and result in a poor quality of life because of compli-
cations, including type 2 diabetes [3,4], cardiovascular
disease [5], and chronic kidney disease [4]. The current
methods of diagnosing NASH and NAFLD are serum tests
and imaging. However, these methods are not specific.
Present serum biomarkers are not ideal, and all bio-
markers have their limitations [6,7]. Despite NAFLD can
be assessed by imaging techniques such as ultrasonography,
controlled attenuation parameter, MRI-based proton density
fat fraction, magnetic resonance elastography, and transient
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elastography, these techniques primarily evaluate steatosis
and fibrosis, while inflammation is hard to differentiate [8,9].
The gold standard for diagnosing NASH is the biopsy, but the
biopsy is an invasive and costly method that is not easy to
be accepted by patients. Therefore, developing new, non-
invasive, and reliable biomarkers is undergoing. In addition
to traditional serum biomarkers, genetic biomarkers are
attracting much attention. Some studies identified mRNAs
or microRNAs or lncRNAs in NAFLD progression or diag-
nosis, for instance, UBE2V1, BNIP3L mRNAs [10], miR-192,
miR-21, miR-505 [11], and lncARSR [12].

In this study, we aimed to screen potential mRNAs for
the diagnosis of MASH. Differentially expressed genes
(DEGs) between NASH patients and healthy controls
were identified in GSE89632, GSE24807, and GSE63067.
Then we constructed weighted gene co-expression mod-
ules and screened significant genes in modules mostly
related to the status of NAFLD. The common genes in
DEGs and significant genes in modules were considered
as hub genes related to the disease. Based on the decision
curve analysis (DCA) and receiver operating character-
istic (ROC) curve, we validated the clinical utility of the
nomogram of hub genes in predicting MASH.

2 Materials and methods

2.1 Download microarray datasets

We conducted dataset searches from the Gene Expres-
sion Omnibus (GEO) database of the National Center for
Biotechnology Information (https://www.ncbi.nlm.nih.
gov/geo/), up to March 1, 2020. The searches included
the keywords (“NASH” OR “NAFLD” OR “nonalcoholic
fatty liver disease” OR “nonalcoholic steatohepatitis”
OR “non-alcoholic steatohepatitis” OR “non-alcoholic
fatty liver disease”) and (organism: Homo sapiens).

To be included in the bioinformatics analysis, data-
sets had to fulfill the following criteria: (i) study type was
expression profiling by array; (ii) samples were from liver
tissue; (iii) studies included control and case samples.
The search and selection process are shown in Figure S1.
We chose datasets with the top three sample sizes for
DEGs and chose datasets that included controls, steatosis
and NASH samples for weighted gene co-expression net-
work analysis (WGCNA) and validation.

The datasets GSE89632, GSE24807, GSE63067, and GSE
48452 were downloaded from the GEO database. GSE63067
included two steatosis samples, nine NASH samples, and

seven healthy samples [13]. GSE89632 included 20 samples
with steatosis, 19 with NASH, and 24 healthy controls [14],
and the clinical traits are listed in Table 2. GSE24807 included
12 NASH samples and 5 healthy controls [15]. GSE48452
included 14 samples with steatosis, 18 with NASH, 14 con-
trols, 27 with healthy obese [16], and samples’ clinical char-
acteristics are shown in Table S1. The clinical information of
GSE63067 and GSE24807 were not available. The data that
we download and analyzed were normalized by submitters.
The data in each dataset was in the same batch, except
GSE24807. Median-centered values in GSE24807 are indica-
tive that the data are normalized and cross-comparable.

GSE63067, GSE24807, and GSE89632 were used to
identify DEGs. GSE89632 was analyzed with the weighted
gene co-expression network. Finally, GSE48452 was used
to construct and validate the prediction nomogram.

2.2 Identify DEGs

The online analysis platform GEO2R (https://www.ncbi.
nlm.nih.gov/geo/geo2r/)was used to compare two groups
of samples to identify DEGs. DEGs between NASH samples
and healthy controls were analyzed in the datasets GSE63067
and GSE89632 respectively. p-value <0.05 and log FC abso-
lute value >1.2 were used as a filter for the datasets GSE63067
and GSE89632. Bioinformatics analysis was based on the R
software 3.6. With the Combat function in the SVA ver-
sion 3.5 R package, the batch effects in GSE24807 were
corrected [17], and DEGs were analyzed using the limma
R package. As log FC was generally large in the dataset
GSE24807, p-value <0.05 and log FC absolute value >2
were used as a filter. The common DEGs were listed and
the Venn diagram was made.

2.3 Weighted gene co-expression network
analysis

With WGCNA R package, clusters (modules) of highly
correlated genes were found and the correlation between
modules external sample traits was constructed for GSE89632
[18]. First, the top 25% of the variance of probe expression
was screened to WGCNA. Samples were clustered to
check samples and two samples were excluded. The
soft threshold power of β = 14 (scale-free R2 = 0.85) was
set to construct modules (Figure 2a and b). External traits
were related to modules and the correlation index was
calculated. Disease, one of the clinical traits, meant the
status of NAFLD, including simple steatosis, NASH, and
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healthy. The two modules most relevant to the disease,
brown and yellow modules, were chosen to identify hub
genes. To explore the function of genes in brown and
yellow modules, Gene ontology (GO) and Kyoto encyclo-
pedia of genes and genomes (KEGG) analyses were per-
formed on the Metascape database [19] (http://metascape.
org/gp/index.html#/main/step1).

2.4 Identification of hub genes

Based on the WGCNA R package, gene significance (GS)
and connectivity between genes and genes were calcu-
lated. Kwithin was the connectivity of a gene and other
genes that were in the same module. GS was the correlation
between gene expression and clinical data. Then, genes in
the brown and yellow module whose Kwithin was top 5%
and GS p-value for the disease was <0.05 were considered as
significant genes. Hub genes were the intersection of
DEGs and significant genes, which were NAMPT, PHLDA1,
RALGDS, GADD45B, FOSL2, RTP3, and RASD1. To further
observe the relation between hub genes and clinical data,
the heatmap of hub genes and samples was drawn with the
pheatmap R package.

2.5 Construction and evaluation of the
prediction model

GSE48452 was used to construct and validate the prediction
model with the rmda, rms, and pROC R package. The data
of patients with NASH or simple steatosis were normalized
by zero-mean normalization. The logistic regression analysis
was performed, and PHLDA1was little contributed toMASH.
Therefore, we constructed a prediction nomogram for MASH
which included NAMPT, RALGDS, GADD45B, FOSL2, RTP3,
and RASD1, and the predicted value of the nomogram for
MASH was obtained. To evaluate the nomogram, the ROC
curve, DCA, and calibration plot were performed.

2.6 Cell culture and quantitative
real-time PCR

The human normal liver cell line QSG-7701 was obtained
from the Cell Bank of Type Culture Collection of the

Chinese Academy of Sciences, Shanghai Institutes for
Biological Sciences (Shanghai, China). It was cultured
in RPMI-1640 medium (Gibco, USA) with 10% fetal bovine
serum, and incubated at 37°C in a humidified 5% CO2

atmosphere. At about 70% confluence, the cells were
treated with or without 0.2mM free fatty acid (palmitic
acid:oleic acid = 1:2; Sigma, USA). After 16 h treatment,
the cells were collected for further experiments.

Total RNA was extracted from collected cells using
miRNeasy Mini Kit (Qiagen, Germany) according to the
manufacturer’s instructions. The reverse transcription
was performed with Reverse Transcription Kit (Qiagen,
Germany) and the cDNAs were quantified by real-time
PCR by Roche LightCycler96 using QuantiNova SYBR Green
PCR Kit (Qiagen, Germany). Primers used for qRT-PCR
are listed in Table S2. qRT-PCR was carried out with the
condition of 2 min for initial denaturation, 45 cycles for
denaturation at 95°C for 10 s, annealing and extension at
55°C for 20 s, and melting curves analysis at default pro-
cedure. Relative mRNA levels were calculated by the
2−ΔΔCT method and normalized by β-actin. All operations
were repeated thrice.

2.7 Statistical analysis

Data were reported as mean ± SD. Student’s t-test was
performed to compare differences between groups. p < 0.05
was statistically significant.

Ethics and consent: The ethics approval and consent to
participate were not applicable.

3 Results

3.1 Identification of DEGs

The GEO2R and limma R package were applied to analyze
DEGs. A total of 296 DEGs were screened in GSE89632
(p-value <0.05, log FC absolute value >1.2); 83 DEGs were
screened in GSE63067 (p-value <0.05, log FC absolute
value >1.2); and 1,643 DEGs were screened in GSE24807
(p-value <0.05, log FC absolute value >2). The common
DEGs were presented in a Venn diagram (Figure 1) and
extracted in a list (Table S3).
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3.2 Construction of weighted gene
co-expression module

After the WGCNA, the cluster dendrogram is as shown in
Figure 2c. There were 14 modules shown in different
colors. Gray module represented genes that cannot be
clustered. Brown module was mostly related to disease
(correlation index = −0.77, p-value = 2 × 10−12) and stea-
tosis (correlation index = −0.59, p-value = 2 × 10−6).
Yellow module was second related to disease (correlation
index = 0.67, p-value = 1 × 10−6) and steatosis (correlation
index = 0.46, p-value = 3 × 10−4) (Figure 2d). Brown
module and yellow module had a negative and positive
relation to disease, respectively. Brown module inhibited
the progress of NAFLD, while the yellow module pro-
moted the progress of NAFLD. As a result, brown and
yellow modules were selected to further analyze.

There were 551 genes in the brown module and 412
genes in the yellow module. GO and KEGG pathway ana-
lyses for genes in the two modules were performed. The top
five significant GO molecular functions (MFs), biological
processes (BPs), and cellular components (CCs), and top
15 KEGG pathways were demonstrated (Figure 2e and f).

The enriched BPs were primarily associated with response
to lipopolysaccharide, leukocyte activation, cytokine, and
cell death, while MF mainly enriched in DNA-binding tran-
scription activator activity. CC chiefly enriched in secretory
granulemembrane and extracellularmatrix. The KEGG ana-
lysis indicated that the principal enriched pathways were
TNF signaling pathway, cytokine–cytokine receptor inter-
action, osteoclast differentiation, and AGE–RAGE signaling
pathway in diabetic complications. Together, these genes
highlight inflammation and inflammatory cytokines.

3.3 Identification of hub genes

Genes in the brown and yellow modules were calculated
Kwithin and GS p-value. The Kwithin of repeated genes
were averaged. Screened by Kwithin and GS p-value,
brown module and yellow module owned 27 and 20
significant genes, respectively. Intersected by significant
genes and DEGs, hub genes, seven in total, were NAMPT,
PHLDA1, RALGDS, GADD45B, FOSL2, RTP3, and RASD1
(Table 1).

The heatmap of hub genes and samples is shown,
which aimed to further study the relationship between
hub genes and clinical data (Figure 3). NAMPT, PHLDA1,
RALGDS, GADD45B, and FOSL2 were all in the brown
module, with a lower expression for steatosis and NASH
samples and with a higher expression for normal samples.
RTP3 in the yellow module was in high expression for
steatosis and NASH samples, while RASD1 in the yellow
module was in low expression for steatosis and NASH
samples.

3.4 Clinical traits and the expression of
hub genes

Through the above analysis, we finally kept 19 samples
with NASH, 20 samples with simple steatosis, and 18
controls in the dataset GSE89632. The clinical characteri-
stics and the expression of hub genes are shown in Table 2.
There was no difference in age and gender, and patients
with NASH or simple steatosis had higher BMI than healthy
controls. The steatosis of hepatocytes, fibrosis stage, lob-
ular inflammation severity, ballooning intensity, and NAS
indicated increasing histological severity from simple stea-
tosis to NASH. The expression of hub genes was higher in

Figure 1: Venn diagram of differentially expressed genes (DEGs).
Different colors represented different datasets, and the cross parts
stood for common DEGs. Seven DEGs were shared with GSE24807,
GSE63067, and GSE89632; nine DEGs were shared with GSE24807
and GSE63067; 29 DEGs were shared with GSE24807 and
GSE89632; 13 DEGs were shared with GSE89632 and GSE63067.
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samples with NASH than in healthy controls (p-value
<0.01). The expression of NAMPT, RALGDS, GADD45B,
FOSL2, RASD1, and RTP3 did not statistically differ between

NASH and simple steatosis, while the expression of
PHLDA1 was higher in NASH than in simple steatosis
(p-value <0.05).
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Figure 2: Construction of weighted gene co-expression modules and the relationship between module and trait. (a) Analysis of the soft
threshold, red line = 0.85. (b) Analysis of mean connectivity. (c) Cluster dendrogram based on the dataset GSE89632. Different colors
represented different co-expression gene modules. (d) Heatmap of the relationship between module and clinical trait. Each column
represented clinical data, and each row represented each co-expression module. Each small grid stood for each pair of the module and trait,
and indicated correlation index and p-value. Blue and red represented negative correlation and positive correlation, respectively. The
deeper the color of the grid, the stronger the correlation. (e) Top five significant GO MFs, BPs, and CCs enriched by genes in brown and
yellow modules. (f) KEGG pathway enriched by genes in brown and yellow modules (top 15).
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3.5 Model and the evaluation of nomogram

GSE48452 was used to construct a logistic regression
model. The model of NAMPT, RALGDS, GADD45B, FOSL2,
RTP3, and RASD1 is shown as the nomogram (Figure 4a).
The calibration curve of the nomogram presented when the
possibility of actual NASH was 0.4–0.8, and the nomogram
might underestimate the probability (Figure 4b). The nomo-
gram showed good prediction performance in differen-
tiating steatosis and MASH (Figure 4c), and the area under
the curve (AUC) was 0.897.

DCA calculated the net benefit without additional
clinical information, such as life-years saved or quality
of life improved [20]. In Figure 4d, where the threshold
probability for MASH was 0–0.8, the prediction model

was valuable, which meant the net benefit of the predic-
tion model was better than treat all and treat none. Where
threshold probability was more than 0.8, the prediction
model was of no value, which meant the prediction model
was as the same result as treat none. Therefore, the pre-
diction model could be used for the dataset GSE48452 if
the threshold probability was 0–0.8.

3.6 The relative expression of hub genes
in vitro

The expression of hub genes in QSG-7011 cells with or
without FFA was quantified by qRT-PCR, and the results

Table 1: List of hub genes. From top to bottom, hub genes in each module were arranged by the Kwithin from large to small

Module Hub genes Alias Ensembl ID Definition

Brown NAMPT PBEF, PBEF1, VF, VISFATIN ENSG00000105835 Nicotinamide phosphoribosyltransferase
PHLDA1 DT1P1B11, PHRIP, TDAG51 ENSG00000139289 Pleckstrin homology like domain family A member 1
RALGDS RGDS, RGF, RalGEF ENSG00000160271 Ral guanine nucleotide dissociation stimulator
GADD45B GADD45BETA, MYD118 ENSG00000099860 Growth arrest and DNA damage inducible beta
FOSL2 FRA2 ENSG00000075426 FOS like 2, AP-1 transcription factor subunit

Yellow RTP3 LTM1, TMEM7, Z3CXXC3 ENSG00000163825 Receptor transporter protein 3
RASD1 AGS1, DEXRAS1 ENSG00000108551 Ras-related dexamethasone induced 1

Table 2: Clinical data and the expression of hub genes in dataset GSE89632. Values given are mean (SD) or numbers of valid cases

Clinical traits n NASH n Simple steatosis n Healthy controls

Age (years) 19 43.47 (12.76) 20 44.70 (9.14) 18 38.67 (11.14)
Male, % (n) 19 47.4% (9) 20 70% (14) 18 44.4% (8)
BMI (kg/m2) 18 31.77 (5.45) 19 28.78 (4.23) 18 26.21 (4.00)
Steatosis (% of hepatocytes) 19 45.00 (26.45) 20 34.00 (24.37) 14 0.39 (0.74)
Fibrosis stage, 0/1/2/3/4 (n) 19 4/5/2/4/4 20 17/3/0/0 14 9/5/0/0
Lobular inflammation severity, 0/1/2/3 (n) 19 0/11/6/2 19 19/0/0/0 6 6/0/0/0
Ballooning intensity, 0/1/2 (n) 19 0/13/6 20 20/0/0 14 14/0/0
AST(U/L) 19 58.79 (28.11) 20 27.25 (8.51) 18 21.28 (5.94)
ALT (U/L) 19 83.47 (39.59) 19 50.84 (17.62) 18 20.94 (11.50)
Triglycerides (mmol/L) 17 2.38 (2.46) 18 1.52 (0.99) 15 0.96 (0.40)
Total cholesterol (mmol/L) 17 4.98 (1.23) 18 4.99 (1.17) 15 4.67 (1.09)
Fasting glucose (mmol/L) 17 6.18 (2.77) 17 5.71 (1.09) 18 5.03 (0.48)
HbA1c 16 6.04% (1.07%) 16 5.49% (0.44%) 18 5.41% (0.50%)
NAS, 0–8 19 4.84 (1.17) 19 1.68 (0.75) 6 0.00
NAMPT 19 13.31 (0.21) 20 13.31 (0.55) 18 14.63 (0.38)
PHLDA1 19 12.37 (0.43) 20 11.86 (0.80) 18 14.28 (0.38)
RALGDS 19 12.80 (0.32) 20 12.74 (0.68) 18 14.53 (0.55)
GADD45B 19 12.90 (0.23) 20 13.10 (0.60) 18 14.39 (0.15)
FOSL2 19 10.65 (0.27) 20 10.70 (0.84) 18 12.68 (0.46)
RTP3 19 14.30 (0.17) 20 14.17 (0.72) 18 12.36 (1.00)
RASD1 19 9.47 (0.72) 20 9.44 (1.10) 18 11.88 (1.07)

778  Shenling Liao et al.



are shown in Figure 5. The relative expressions of
NAMPT, GADD45B, FOSL2, RTP3, RASD1, and RALGDS
in QSG-7011 cells with 0.2 mM FFA were lower than con-
trols, but only the expression of FOSL2 was statistically
significant.

4 Discussion

In the study, we used the analysis of DEGs and WGCNA
to identify hub genes. Not a single gene, but clusters of
highly correlated genes were detected and related to clinical
traits with the use of WGCNA [18]. Through GO and KEGG
analyses, we found genes in brown and yellow modules
enriched in inflammation such as leukocyte activation,
cytokine interaction, and TNF signaling pathway. This
further confirmed that the two modules are indeed related
to the progression of MASH.

GEO2R analysis obtained the DEGs between NASH
samples and controls in the three datasets. These datasets
were from different platforms, and so we used common
DEGs to reduce the effect of different platforms. We com-
bined common DEGs and significant genes for disease
status inWGCNA to get hub genes that were able to predict
NASH and distinguish NASH from steatosis. Finally, seven
genes overlapped, which were NAMPT, PHLDA1, RALGDS,
GADD45B, FOSL2, RTP3, and RASD1. A prediction model
was constructed through logistic regression analysis. Then,
we visualized the model and performed the ROC curve and
decision curve analyses for the model.

Samples with NASH were different from simple stea-
tosis in histology, including steatosis of hepatocytes,
lobular inflammation severity, and ballooning intensity.
Although there was no significant statistical difference in
the expression of hub genes, the decision curve revealed
the prediction model had clinical utility, and it had net
benefit within certain risk probability. The area under the
ROC curve was 0.897, and the curve illustrated that
the sensitivity of the model was superior to specificity.
However, we did not compare other diagnostic methods
for MASH with our model, and whether the model was
better than other diagnostic methods still need to be ree-
valuated [21].

In our study, we identified seven hub genes: NAMPT,
PHLDA1, RALGDS, GADD45B, FOSL2, RTP3, and RASD1.
These hub genes were considered to have a contribution
to the pathogenesis of MASH. Because of the small sample
size, PHLDA1 showed little contribution to MASH in regres-
sion analysis; therefore, PHLDA1 was excluded and the
other six hub genes were made a logistic regression ana-
lysis. At the same time, we verified the expression of hub
genes in QSG-7701 cells with FFA, and the expression of
NAMPT, RALGDS, GADD45B, FOSL2, and RASD1 was con-
sistent with the results of the bioinformatics analysis.
However, the relative expression of RTP3 was lower in
QSG-7701 cells with FFA than in controls, which was con-
trary to the WGCNA. The expression of all hub genes
between groups was not statistically significant, except
FOSL2, possibly because of the small sample size.

NAMPT, nicotinamide phosphoribosyltransferase, or
visfatin, promotes nicotinamide to convert to nicotinamide

Figure 3: Heatmap of hub genes and samples. Each column represented one sample in the dataset GSE89632, which was annotated by
clinical data in different pairs of colors. Samples were clustered. For disease, 0 (white), 1, 2 (green) represented normal sample, steatosis
sample, NASH sample respectively. For steatosis, 0 (white) to 80 (purple) represented steatosis percentage. 0 (white) to 4 (blue) repre-
sented the fibrosis stage. Each row represented each hub gene. The expression of each hub gene in each sample was presented by red to
blue. Red and blue represented high expression and low expression, respectively.
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mononucleotide (NMN). NMN finally converts to nicotina-
mide adenine dinucleotide (NAD), which is a vital coenzyme
in cellular redox reactions in all organisms and partici-
pates in many signaling pathways [22]. NAMPT plays an
important role in inflammation, and it promotes inflam-
mation progress through NAD biosynthesis. Gerner et al.
found that the inhibition of NAMPT could decrease the
infiltration by inflammatory monocytes, macrophages,
and T cells [23]. In our nomogram, the Z-score normali-
zation of NAMPT is higher, and the points are higher,
which indicates that NAMPT plays an important role in
MASH. However, studies indicated that the deficiency of NAD
played a role in aged NAFLD [24,25], and the high expression
of NAMPT promoted the biosynthesis of NAD and indirectly
reduced the risk of NASH by stimulating Sirt1/SREBP1
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Figure 5: Relative expression of NAMPT, GADD45B, FOSL2, RTP3,
RASD1, and RALGDS in QSG-7011 cells with or without FFA
(*p < 0.05; mean ± SEM; n = 3).
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signaling pathway probably [26]. Therefore the effect of
NAMPT in MASH still needs to be explored. However, a
study revealed that the expression of NAMPT was of no
difference between simple steatosis and NASH [25]. NAMPT
also contributed to the regulation of insulin secretion in the
pancreatic β-cells [22] and diabetes mellitus [27,28].

PHLDA1, pleckstrin homology like domain family A
member 1, was a phosphatidylinositol-binding protein
and it could suppress AKT [29]. Zhang et al. found that
a high-fat diet decreased the expression of PHLDA1 in
mice study, subsequently, other genes decreasing, and
indicated PHLDA1 was an early biomarker of steatosis
[30]. JAK2-STAT3 pathway may induce PHLDA1 expres-
sion and these proteins probably play a significant role in
TLR2-mediated immune and inflammation [31].

RALGDS, Ral guanine nucleotide dissociation stimu-
lator, is an activator of RalA. RalA and RALGDS are
important to Ras-induced oncogenic transformation of
cells [32]. GADD45B, growth arrest and DNA damage
inducible beta, participated in p38 and JNK MAPK path-
ways to positively regulate apoptosis [33]. GADD45B
was abundant in the kidney, liver, and lung. GADD45B
was controversial in cell stress response, and it may be
protective or harmful [34,35]. FOSL2, FOS like 2, AP-1
transcription factor subunit, one of FOS proteins, was
implicated as regulators of cell proliferation, differentia-
tion, and transformation. FOSL2 played an important role
in diverse disease processes, mostly through the TGF-β
signaling pathway [36,37]. RTP3, receptor transporter
protein 3, is specific to the liver, and its expression in
other tissues is little [38]. RTP3 was probably a novel
candidate gene for femoral neck bone because of the
significant association with hip fracture [39]. RASD1,
Ras-related dexamethasone induced 1, was an activator
of G-protein signaling [40]. RASD1 was probably involved
in hepatic insulin resistance [41].

The study contributed to understanding the mole-
cular mechanism of MASH from the perspective of mRNA
and provided potential biomarkers for the prediction of
MASH. These potential biomarkers showed good perfor-
mance in predicting MASH and had clinical utility in
distinguishing MASH from simple steatosis. Because the
biopsy is affected by the quality of the material taken and
the experience of doctors, the results of the biopsy may
not fully reflect the condition of the patient. By detecting
the expression of hub genes in liver cells, a predicted
value is calculated by the model and it can help doctors
objectively evaluate the patient’s disease status to a cer-
tain extent according to the cut-off value, and provide a
reference index for less experienced doctors. Although

there is still a long way before clinical application, it
provides some new targets for future work.

However, the relation between hub genes and MASH
or MAFLD has been studied little. It needs further study to
provide more precise clinical information about diagnosis
and progression. The limitations of our study should be
aware of. The samples we used were not large enough.
These datasets were not suitable for joint analysis as they
were from different platforms. The clinical information of
GSE24807 and GSE63067 were not available, which might
affect the results. The baseline data of hub genes were not
available, and so no comparison with baseline gene
expression was made. Our model was from liver tissue,
and the specificity for MASH was good. However, the
expression of the model in serum needs to be observed
for further evaluation.

In conclusion, NAMPT, PHLDA1, RALGDS, GADD45B,
FOSL2, RTP3, and RASD1 were identified as the hub genes
in the progress of MAFLD. The combination of six genes
could act as a potential diagnostic model for MASH and
have clinical utility in distinguishing MASH from simple
steatosis. However, clinical studies with large samples
are needed to further research the applicability of the
model in the diagnosis for MASH.
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Appendix

Filters: Expression profiling by array

(n=50)

Records identified through database searching 

(n=1541)

Excluded records beyond 

study time (n=2)

Excluded records not  

NASH or NAFLD (n=21)

Excluded samples not  from 

liver tissue (n=6)

Excluded records with 

cases only (n=9)

Excluded records with data 

missing (n=2)

Datasets met the requirements

(n=10) 

Chose datasets with top three sample sizes for 

differentially expressed genes and chose datasets 

included steatosis and NASH samples for WGCNA 

and validation  

Excluded studies on 

lncRNA (n=2)

Figure A1: flow chart of screening datasets.

Table A1: Clinical data of dataset GSE48452. Values given are mean (SD) or numbers of valid cases

Clinical traits n NASH n Simple steatosis n Healthy controls

Age (years) 18 45.48 (8.93) 14 41.60 (11.22) 13 51.80 (19.21)
Male, % (n) 18 22.22% (4) 14 28.6% (4) 13 30.8% (4)
BMI (kg/m2) 18 45.97 (12.96) 14 48.28 (6.42) 13 25.10 (3.97)
Steatosis (% of hepatocytes) 18 71.94 (16.28) 14 35.74 (22.00) 13 0.69 (1.18)
Fibrosis stage, 0/1/2/3/4 (n) 18 3/11/0/2/2 14 10/4/0/0 12 8/3/1/0/0
Inflammation severity, 0/1/2/3 (n) 18 0/9/6/3 14 12/2/0/0 13 12/1/0/0
NAS 18 5.06 (0.87) 14 1.71 (0.83) 13 0.77 (0.28)
Bariatric surgery, NA/after surgery/before surgery (n) 18 14/1/3 14 2/5/7 13 11/2/0
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Table A3: Common differentially expressed genes in the datasets

Datasets Total Common differentially expressed genes

GSE24807 GSE63067
GSE89632

7 MBNL2, RTP3, PHLDA1, FOSL2, NAMPT, SPSB1, CASP4

GSE24807 GSE63067 9 BBOX1, COL1A1, CHI3L1, MCL1, PLIN1, ENO3, TSLP, CCDC71L, LGALS8
GSE24807 GSE89632 29 TGM2, ATF3, ANXA13, RAB26, CALCA, CYP7A1, KLF6, ANXA9, C2orf82, IER3, ZFP36, CSF3,

GRAMD4, DUSP10, GADD45B, IVNS1ABP, SLC22A7, IGFBP1, SLITRK3, RASD1, RRP12, RAB27A,
BCL3, MT1A, TRIM15, CYR61, SIK1, C2CD4A, IFIT3

GSE63067 GSE89632 13 NR4A2, SERPINB9, CEBPD, IGFBP2, RALGDS, S100A8, BCL2A1, AVPR1A, IL1RN, S100A12, PEG10,
CD274, BIRC3

Table. A2: RT-PCR primers for mRNA expression measurements

Gene name Forward Reverse

NAMPT TTGCTGCCACCTTATC AACCTCCACCAGAACC
GADD45B TGACAACGACATCAACATC GTGACCAGAGACAATGCAG
FOSL2 CCAGATGAAATGTCATGGC CTCGGTTTGGTAGACTTGGA
RTP3 CCTTCGCCAGGTTCCAGT GACTTCTCCTCACTCCAGTTCAT
RASD1 CGACTCGGAGCTGAGTATCC GGTGGAAGTCCTCGATGGTA
RALGDS TCCCAGCTGAGTCCCATCGA TCACTAACCCCCGTCTTGCATG
β-actin CTGGAACGGTGAAGGTGACA CGGCCACATTGTGAACTTTG

A nomogram for predicting metabolic steatohepatitis  785


	1 Introduction
	2 Materials and methods
	2.1 Download microarray datasets
	2.2 Identify DEGs
	2.3 Weighted gene co-expression network analysis
	2.4 Identification of hub genes
	2.5 Construction and evaluation of the prediction model
	2.6 Cell culture and quantitative real-�time PCR
	2.7 Statistical analysis

	3 Results
	3.1 Identification of DEGs
	3.2 Construction of weighted gene co-�expression module
	3.3 Identification of hub genes
	3.4 Clinical traits and the expression of hub genes
	3.5 Model and the evaluation of nomogram
	3.6 The relative expression of hub genes in vitro

	4 Discussion
	Abbreviations
	Funding information
	References
	Appendix


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU <FEFF0056006500720073006900740061002000410064006f00620065002000440069007300740069006c006c00650072002000530065007400740069006e0067007300200066006f0072002000410064006f006200650020004100630072006f006200610074002000760036>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


