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Abstract: Thanks to the guidance of an optical wave in air, hollow-core fibers may serve as sampling
cells in an optical spectroscopic system. This paper reviews applications of hollow-core optical fibers to
laser-based gas sensing. Three types of hollow-core fibers are discussed: Hollow capillary waveguides,
photonic band-gap fibers, and negative curvature fibers. Their advantages and drawbacks when used
for laser-based trace gas detection are analyzed. Various examples of experimental sensing systems
demonstrated in the literature over the past 20 years are discussed.

Keywords: hollow-core fiber (HCF); negative curvature hollow-core fiber (NC HCF); photonic
band-gap hollow-core fiber (PBG HCF); anti-resonant hollow-core fiber; Kagome hollow-core fiber;
laser spectroscopy; gas sensing

1. Introduction

Laser spectroscopy has become a powerful tool in trace gas detection with a variety of applications,
including environmental monitoring, breath analysis, industrial process monitoring, and leak detection.
Laser spectroscopy in the near- and mid-infrared spectral regions offers a high selectivity, high
sensitivity (typically down to parts-per-million (ppm) or parts-per-billion (ppb) levels), and short
measurement time (usually less than 1 s). Additionally, optical systems operating in the infrared
region may be equipped with thermo-electrically cooled (TEC) detectors and reliable and robust
semiconductor sources (laser diodes, interband cascade lasers, or quantum cascade lasers), which
enables out-of-lab operations with minimal maintenance. As a result, laser-based infrared gas sensors
have been successfully used in various environments.

Laser-based gas sensing primarily relies on measuring the absorption of light when its
frequency/wavelength overlaps with the molecular resonance (as shown in Figure 1). This process is
governed by the Beer–Lambert law:

I = I0·exp(−σNL), (1)

where I0 and I are the light intensities before and after the sample, respectively; L is the interaction
length; σ is the absorption cross-section; and N is the number density (concentration). Based on above
equation, one can deduce the molecular concentration simply by measuring the decay of the intensity
after the light beam has passed through the sample (assuming that the interaction length and the
absorption cross-section are known).
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Figure 1. Schematic diagram of laser-based gas sensing. 

The Beer–Lambert law leads to simple conclusions on how to increase the sensitivity of the 
optical-based sensing system. For a given noise level, two possible ways are increasing the absorption 
cross-section and increasing the interaction length. The first one can be achieved by selecting the 
spectral region where stronger molecular transitions are located, e.g., for methane (CH4), absorption 
lines near 3.3 µm are ~50 times stronger than overtone transitions near 2.3 µm and ~100 times stronger 
than absorption lines close to the telecom range (near 1.65 µm). Therefore, performing detection in 
the mid-infrared spectral region will generally result in lower detection limits. Sensitivity 
enhancement may also be achieved by increasing the interaction length (L). This is often 
accomplished using multi-pass cells (MPCs). Some examples include White [1] and Herriott designs 
[2], astigmatic Herriot cells [3–5], multi-pass cells with spherical mirrors [6], and circular cells [7–9]. 
An important parameter of every MPC is the path length to volume ratio and it varies from a few 
centimeters per mL [5,7] to almost 0.25 m/mL for the most compact designs [6]. Unfortunately, in 
MPCs, a high compactness may lead to drifts and instabilities, as demonstrated in [10]. In this respect, 
optical fibers with a hollow-core seem to be an attractive alternative to MPCs. When a hollow-core 
fiber (HCF) is filled with a gas sample it may offer a long interaction length. At the same time, since 
an HCF core is typically on a micrometer scale (usually from a few to a few hundreds of micrometers), 
a very small sample volume is required. With fiber-based technology, one can also expect 
compactness (because the fiber can be coiled) and a good thermal stability and robustness. 

The aim of this review is to collect and discuss examples of gas sensing systems that use HCFs 
as gas sampling cells. The paper comprises six sections. In Section 2, configurations of HCF-based 
gas sensing systems are discussed. Sections 3 to 5 review applications of three types of hollow-core 
fibers for gas sensing: Section 3 is focused on capillary tubes/waveguides with a reflective inner 
coating, Section 4 is devoted to hollow-core microstructure optical fibers in which the photonic band-
gap (PBG) is responsible for light propagation, and Section 5 presents sensing setups that use Kagome 
and negative curvature hollow-core fibers (NC HCFs) which rely on an inhibited coupling (IC) 
guiding mechanism. Advantages, drawbacks, opportunities, and challenges associated with the use 
of each HCF type in laser-based gas sensing are discussed. Section 6 contains conclusions. 

2. Configurations of HCF-Based Gas Sensing Systems 

In order to perform gas sensing inside an HCF, it is necessary to couple the light in/out and, 
simultaneously, let gas enter and exit the fiber. One potential and common approach (shown in 
Figure 2a) is to butt-couple a standard single-mode fiber with HCF and leave a small (few 
micrometers to tens of micrometers) gap between them. This type of coupling is shown in Figure 2b. 
In this case, a coupling efficiency of 50 to 55% can typically be obtained [11]. An alternative solution 
is to splice a standard fiber with HCF and drill side microchannels to allow gas to access the hollow 
core (Figure 2c). Microchannels may be drilled using femtosecond laser pulses. Another approach is 
to use side coupling, which was recently demonstrated in [12]: A standard single-mode fiber and 
HCF were twisted together and pulled in opposite directions after being heated using a hydrogen 
flame. The advantage of this solution is that the hollow core remains open and undisturbed. 
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The Beer–Lambert law leads to simple conclusions on how to increase the sensitivity of the
optical-based sensing system. For a given noise level, two possible ways are increasing the absorption
cross-section and increasing the interaction length. The first one can be achieved by selecting the
spectral region where stronger molecular transitions are located, e.g., for methane (CH4), absorption
lines near 3.3 µm are ~50 times stronger than overtone transitions near 2.3 µm and ~100 times stronger
than absorption lines close to the telecom range (near 1.65 µm). Therefore, performing detection in the
mid-infrared spectral region will generally result in lower detection limits. Sensitivity enhancement
may also be achieved by increasing the interaction length (L). This is often accomplished using
multi-pass cells (MPCs). Some examples include White [1] and Herriott designs [2], astigmatic Herriot
cells [3–5], multi-pass cells with spherical mirrors [6], and circular cells [7–9]. An important parameter
of every MPC is the path length to volume ratio and it varies from a few centimeters per mL [5,7] to
almost 0.25 m/mL for the most compact designs [6]. Unfortunately, in MPCs, a high compactness may
lead to drifts and instabilities, as demonstrated in [10]. In this respect, optical fibers with a hollow-core
seem to be an attractive alternative to MPCs. When a hollow-core fiber (HCF) is filled with a gas
sample it may offer a long interaction length. At the same time, since an HCF core is typically on a
micrometer scale (usually from a few to a few hundreds of micrometers), a very small sample volume
is required. With fiber-based technology, one can also expect compactness (because the fiber can be
coiled) and a good thermal stability and robustness.

The aim of this review is to collect and discuss examples of gas sensing systems that use HCFs as
gas sampling cells. The paper comprises six sections. In Section 2, configurations of HCF-based gas
sensing systems are discussed. Sections 3–5 review applications of three types of hollow-core fibers
for gas sensing: Section 3 is focused on capillary tubes/waveguides with a reflective inner coating,
Section 4 is devoted to hollow-core microstructure optical fibers in which the photonic band-gap
(PBG) is responsible for light propagation, and Section 5 presents sensing setups that use Kagome and
negative curvature hollow-core fibers (NC HCFs) which rely on an inhibited coupling (IC) guiding
mechanism. Advantages, drawbacks, opportunities, and challenges associated with the use of each
HCF type in laser-based gas sensing are discussed. Section 6 contains conclusions.

2. Configurations of HCF-Based Gas Sensing Systems

In order to perform gas sensing inside an HCF, it is necessary to couple the light in/out and,
simultaneously, let gas enter and exit the fiber. One potential and common approach (shown in
Figure 2a) is to butt-couple a standard single-mode fiber with HCF and leave a small (few micrometers
to tens of micrometers) gap between them. This type of coupling is shown in Figure 2b. In this
case, a coupling efficiency of 50 to 55% can typically be obtained [11]. An alternative solution is to
splice a standard fiber with HCF and drill side microchannels to allow gas to access the hollow core
(Figure 2c). Microchannels may be drilled using femtosecond laser pulses. Another approach is to
use side coupling, which was recently demonstrated in [12]: A standard single-mode fiber and HCF
were twisted together and pulled in opposite directions after being heated using a hydrogen flame.
The advantage of this solution is that the hollow core remains open and undisturbed.
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Figure 2. Potential configurations of hollow-core fiber (HCF)-based gas sensing systems: (a) HCF is 
butt-coupled with a standard single-mode fiber; (b) picture of a standard SMF-28 fiber coupled with 
negative curvature (NC) HCF; (c) HCF is spliced to a solid-core fiber from both sides, and gas 
enters/exits the fiber through microchannel drills along the HCF; (d) light is coupled into HCF using 
bulk optics, mirrors, or lenses (OAPM—off-axis parabolic mirror); (e) picture of air-tight housing 
which allows the HCF to be aligned with the photodetector and filled with a gas sample. 

Fiber-to-fiber coupling can be used in the near-infrared range, at 1.55 or 2 µm. When HCFs are 
used in the mid-infrared region, free space coupling is necessary, using, e.g., mirrors (Figure 2d) or 
lenses. Some kind of air-tight housing which will allow flowing gas through the fiber must also be 
designed. An example is shown in Figure 2e. 

3. Gas Sensing Using Capillary Fibers/Waveguides 

Early work on hollow capillary fibers/waveguides was conducted in the 1960s [13]. Their main 
advantage is that good transmission in the mid-infrared can be obtained relatively easily, i.e., by 
choosing an appropriate inner coating of the fiber. Hollow waveguides made of glass [14], plastic 
[15], and even metal [16] have been demonstrated, with their inner surface coated with a metallic 
layer (usually silver) and dielectric film (for enhanced reflectivity). Delivering high power beams 
from CO2 lasers (which emit near 10.6 µm) was the main motivation for the progress in this field 
[14,17]. Figure 3 shows a schematic diagram of the construction of a typical glass hollow waveguide. 

 
Figure 3. Schematic diagram of the construction of a typical glass hollow waveguide. Metallic and 
dielectric layers are usually made of silver (Ag) and silver iodine (AgI), respectively. 

Figure 2. Potential configurations of hollow-core fiber (HCF)-based gas sensing systems: (a) HCF
is butt-coupled with a standard single-mode fiber; (b) picture of a standard SMF-28 fiber coupled
with negative curvature (NC) HCF; (c) HCF is spliced to a solid-core fiber from both sides, and gas
enters/exits the fiber through microchannel drills along the HCF; (d) light is coupled into HCF using
bulk optics, mirrors, or lenses (OAPM—off-axis parabolic mirror); (e) picture of air-tight housing which
allows the HCF to be aligned with the photodetector and filled with a gas sample.

Fiber-to-fiber coupling can be used in the near-infrared range, at 1.55 or 2 µm. When HCFs are
used in the mid-infrared region, free space coupling is necessary, using, e.g., mirrors (Figure 2d) or
lenses. Some kind of air-tight housing which will allow flowing gas through the fiber must also be
designed. An example is shown in Figure 2e.

3. Gas Sensing Using Capillary Fibers/Waveguides

Early work on hollow capillary fibers/waveguides was conducted in the 1960s [13]. Their main
advantage is that good transmission in the mid-infrared can be obtained relatively easily, i.e., by choosing
an appropriate inner coating of the fiber. Hollow waveguides made of glass [14], plastic [15], and even
metal [16] have been demonstrated, with their inner surface coated with a metallic layer (usually silver)
and dielectric film (for enhanced reflectivity). Delivering high power beams from CO2 lasers (which
emit near 10.6 µm) was the main motivation for the progress in this field [14,17]. Figure 3 shows a
schematic diagram of the construction of a typical glass hollow waveguide.
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Some of the earliest work on gas sensing inside flexible hollow capillary fibers was demonstrated
in [18] and later in [19]. In both cases, absorption spectroscopy was performed in the near- and
mid-infrared spectral regions. Multipath propagation in the waveguide with a relatively large diameter
(1 mm [18]) was found to produce background noise which could be suppressed when a capillary with
a smaller size was used [19]. A similar noise issue was found by Chen et al. in [20]. In their setup,
a 2.3 µm vertical-cavity surface-emitting laser (VCSEL) enabled targeting the molecular transition
of carbon monoxide. A 3-m-long fiber with an inner diameter of 750 µm was used (1.2 mL volume).
The detector housing was filled with a reference gas (methane) that served as a wavelength reference.
The multimode propagation inside the hollow fiber (indicated by the speckle pattern in the far field
visible in Figure 4a) produced background signals in the measured spectra which could only be removed
by applying vibrations to the fiber end and integrating the recorded signal. Sample absorption spectra
recorded using wavelength modulation spectroscopy (WMS) are shown in Figure 4b. The absorption
features of carbon monoxide (inside HCF) and methane (inside photodetector housing) are visible,
with and without vibration of the fiber. Despite issues related to multimode propagation, the presented
setup was capable of resolving absorbance of less than 10−4, which was comparable to the performance
obtained using conventional gas cells.
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spectroscopy [22]), a sample is located inside the magnetic coil and the presence of the magnetic field 
causes the molecular transitions to split. As successfully demonstrated in [21], this allows the gas 
sample to be modulated (when a modulated magnetic field is used) and enables one to distinguish 
between the modulated spectral signature of the molecule and unmodulated background. 
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be simultaneously recorded. More recently, laser-based gas sensing inside hollow waveguides has 
been demonstrated using quantum cascade lasers (QCLs) operating in the mid-infrared spectral 
region. In [24], pulsed QCL operating at 7.82 µm was used to detect methane inside 5- and 10-m-long 
hollow waveguides. A short response time (less than 1 s for a 5-m-long fiber with a 1000 µm inner 
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Figure 4. (a) A far field of the hollow waveguide/fiber used in [20]. Speckle pattern indicates multimode
propagation inside HCF. It led to the presence of optical fringes in the recorded spectra, which could be
washed out by applying vibration to the fiber; (b) wavelength modulation spectroscopy (WMS) spectra
(second harmonic signal) measured with and without vibration of the fiber (blue/solid and red/dashed
curves, respectively). Also shown is the simulated/theoretical spectrum (black/dotted). Reprinted with
permission from [20],© The Optical Society.

The issue of optical fringes was later addressed by the same group by employing Zeeman
modulation spectroscopy [21]. In this technique (which is essentially very similar to Faraday rotation
spectroscopy [22]), a sample is located inside the magnetic coil and the presence of the magnetic
field causes the molecular transitions to split. As successfully demonstrated in [21], this allows
the gas sample to be modulated (when a modulated magnetic field is used) and enables one to
distinguish between the modulated spectral signature of the molecule and unmodulated background.
Unfortunately, Zeeman spectroscopy can only be used for paramagnetic species (e.g., O2, NO, or NO2),
so its potential applications are limited. A similar hollow fiber was also used in [23], where a broad
transmission bandwidth of the waveguide enabled methane transitions near 3.3 and 7.7 µm to be
simultaneously recorded. More recently, laser-based gas sensing inside hollow waveguides has been
demonstrated using quantum cascade lasers (QCLs) operating in the mid-infrared spectral region.
In [24], pulsed QCL operating at 7.82 µm was used to detect methane inside 5- and 10-m-long hollow
waveguides. A short response time (less than 1 s for a 5-m-long fiber with a 1000 µm inner diameter)
and a very decent limit of detection were obtained. It is also worth mentioning the coupling of HCF
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used in this work. As shown in Figure 5, both ends of the fiber were placed in elbow gas fittings from
Swagelok. They were modified, enabling light coupling in and out of the fiber, as presented in Figure 6.Materials 2020, 13, x FOR PEER REVIEW 5 of 19 
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In [25] and [26], broadly tunable external cavity QCLs were coupled in a 3-m-long hollow fiber.
A similar approach was also used in [27], but the length of the hollow waveguide was only 2.5 cm.
In these three examples, widely tunable lasers were used for broadband spectral analysis. It is
particularly worth noting the simultaneous multi-species measurement that was demonstrated in [26],
which takes full advantage of the broad transmission bandwidth offered by the capillary fiber with an
inner surface coated with silver. In [28], a photothermal interferometry (PTI) technique that benefits
from this spectral property of hollow waveguides was shown. In this work, the two waves, the first
at 4.46 µm and the second at 1.55 µm, were simultaneously coupled in the 25-cm-long hollow fiber.
The mid-infrared beam was modulated and used as a pump source. Due to the photothermal effect,
the absorption of modulated light produced changes of the effective refractive index inside the fiber,
which were measured as phase variations of the probe (near-infrared) beam. A detection limit of less
than 1 parts-per-million (ppm) at a 1 s integration time was obtained using nitrous oxide as a target
molecule and a pump power of only 6 mW. Other interesting demonstrations of laser spectroscopy
inside a hollow fiber/waveguide are shown in [29] and [30]. In [29], the real-time measurement of
isotopologue ratios is presented. This type of measurement is very challenging since it requires a high
sensitivity and high precision at the same time. In [30], a setup for the mid-infrared sensing of methane
is demonstrated, with a 3.3 µm light emitting diode (LED) as a source. This combination provides a
perspective for simple, low-cost, and fiber-based mid-infrared gas sensors.

To summarize this section, broad transmission is the biggest advantage of hollow capillary
waveguides when application to gas sensing is considered. It not only allows one to target strong,
fundamental transitions located in the mid-infrared range, but also enables one to measure broad
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absorption features or detect multiple species simultaneously. Over the last 20 years, several examples
of laser spectrometers based on flexible hollow capillary waveguides have been reported. Setups that
operate in the near- and mid-infrared spectral regions and use various spectroscopic techniques have
been demonstrated.

4. Gas Sensing Inside Photonic Bad-Gap Hollow-Core Fibers

Light guiding inside a hollow-core photonic crystal fiber (PCF) was demonstrated for the first
time in 1999 [31]. A few years later, PBG HCFs attracted the attention of researchers working on
optical-based gas sensing. The first basic experiments were reported in 2014 by Hoo et al. in [32].
Figure 7 shows the experimental setup and cross-section of the PBG-HCF used in this work. The light
from a distributed feed-back (DFB) laser diode was coupled in the HCF by splicing it to a standard
single-mode fiber (SMF). The other end of the HCF was placed inside a tight gas chamber. A multi-mode
fiber (MMF) was used to collect the light from the HCF and deliver it to the photodetector (PD). A small
gap (approximately 50 µm) between the HCF and MMF was left to enable gas diffusion into the HCF.
The DFB laser wavelength was periodically scanned across the absorption line of acetylene (C2H2).
When pure acetylene was blown into the gas chamber, a minimum of the transmittance was recorded
with the photodetector.
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A few months after the first demonstration, Ritari et al. presented optical spectroscopy inside 1- and
10-m-long PBG HCFs [33]. The absorption spectra of acetylene (near 1.52 µm), hydrogen cyanide (near
1.535 µm), and methane (near 1.33 µm) were recorded using light emitting diodes (LEDs) as sources
and an optical spectrum analyzer as a detector. Between 2007 and 2009, Cubillas et al. demonstrated
the first laser-based high-resolution spectroscopy inside PBG HCF [34–36]. The 5.1-m-long fiber was
made by the Optoelectronics Research Centre in Southampton (UK) and had a core diameter of 12 µm.
A 1645 nm light from a tunable laser was used to measure the absorption lines of methane. The laser
light was directly coupled in the HCF from a standard single-mode fiber that was cleaved and placed
very close to the HCF end. A small gap that was left between the two fibers allowed gas to enter and
exit the HCF. The other end of the HCF was spliced to a standard single-mode fiber and the signal after
the sample was analyzed with an optical power meter. After the fiber was filled with the mixture of
methane and nitrogen, multiple absorption lines of methane could be measured. These early works
exposed two major issues, which will be tackled and addressed in almost all further papers on gas
sensing inside PBG HCFs: Long gas filling times and optical fringes.

The first issue is the gas diffusion time inside the fiber. Recently, this subject was analyzed
numerically and experimentally by Masum et al. [37]. In this work, the gas flow inside the hollow-core
fiber was modeled using a numerical model based on the Navier–Stokes and diffusion equations.
The model was validated with experimental analysis. According to these studies, the gas filling time is
affected by various experimental parameters, such as the HCF diameter and length, gas parameters
(e.g., viscosity or density), and pressure difference between the inlet and outlet of the HCF. The authors
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demonstrated the possibility of reducing the gas filling time for a 1.1-m-long PBG HCF with a core
dimeter of 10 µm to less than 30 s. However, this required using a very high pressure difference (4 atm).
In practice, the filling times reported in many other papers are longer, e.g., in [35], it took 7 min to fill a
5.1-m-long fiber with a gas sample. Some other results reported in the literature are summarized in
Table 1, where filling times vary from a few minutes up to even more than an hour.

Table 1. Filling times measured in various systems with photonic band-gap (PBG) HCFs.

Reference Fiber Length
(m)

Approximate Diffusion
Time (minutes)

Core Diameter
(µm) Sample Gas

[35] 5.1 7 12 CH4
[38] 0.55 4 −

1 H2S
[39] 0.74 10 14.5 CO2
[40] 1 20 10.5 CO2
[40] 20 90 10.5 CO2
[41] 0.3 60 10 CH4
[42] 0.45 80 10 CH4

1 Core diameter was not provided in the paper.

Two main approaches for tackling the challenge of long filling times can be found in the literature.
Parry et al. proposed dividing an HCF into sections, so that each section is filled independently [43].
A similar idea was also demonstrated in [44]. However, this solution eliminates some of the benefits
of using HCFs instead of multi-pass cells (e.g., connections between segments of the fiber will be
prone to thermal drifts). The second way to improve the response time of the PBG HCF-based gas
sensor is to drill side microchannels which allow gas to enter the hollow core from the sides of the
fiber. Figure 8 shows a cross-section of the fiber used in [45] with a visible microchannel. Other
examples were presented in [46] and [47]. In the first paper, a 7-cm-long HCF with seven vertical
microchannels was demonstrated. Microchannels were drilled using 120 fs pulses and had a diameter
of 10 µm. The laser wavelength was stabilized at the center of the methane transition near 1665.5 nm.
The light from a laser was sent through the HCF that was spliced to the SMF on both ends and placed
inside a gas chamber. The optical power after passing the HCF was measured with the photodetector:
The higher the methane concentration inside the HCF, the lower the voltage at the output of the
detector. Seven side holes helped to reduce the gas filling time from almost one minute to only 3 s,
without a significant increase of transmission losses. In [47], 242 microchannels were drilled along a
2.3-m-long HCF, resulting in a response time of only approximately 40 s.
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The second issue which can be noticed in the early work shown in [34] is the presence of
interference fringes in the recorded spectra. The authors said that these background signals are due to
reflections from the fiber facet. However, later papers on laser spectroscopy inside PBG HCFs suggest
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that the origin of these fringes is the propagation of higher-order spatial modes which interfere at the
output. Similar background signals can be found in many other papers (e.g., Figure 9 shows spectra
presented in [39]), and various ways to suppress them have been proposed. For example, in [43],
the HCF was thermally cycled so that the fringe pattern could be washed out through averaging. Some
improvement was obtained, but the demonstrated heating cycle was very long (a few minutes).
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Figure 9. Photodetector signals recorded as the laser diode were tuned across the carbon dioxide
transition. Spectra were measured for different CO2 concentrations. In each spectrum, optical fringes
are strong and clearly visible. Reprinted from [39].

In [42], two lenses were used to optimize the light coupling in the HCF. A reduction of mode
interference was reported, but the complexity of the setup increased. A few different approaches to
fringe reduction were also proposed by Yang et al. In [48], not only was the spacing between the
standard single-mode fiber and the HCF adjusted and optimized, but an additionally measured signal
was post-processed to filter-out the fringe pattern. An example of original and filtered signals is
shown in Figure 10. Unfortunately, this approach can only be applied when full spectral scans are
recorded (which is often not the case when the WMS technique is used) and when the fringe pattern is
significantly more dense than molecular spectral features.
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In [47], the HCF was spliced from both sides and the gas sample entered the fiber through side
holes. In this case, a large mode-area (LMA) fiber (placed between the standard fiber and the HCF)
served as a filter for higher-order spatial modes. On the other side, the HCF was directly spliced to a
standard fiber, but the process of splicing was carefully optimized: By changing the current of the arc
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fusion splicer collapse of the cladding, air holes could be controlled and adjusted so that higher-order
modes were attenuated and mode interference was suppressed.

Some researchers decided to avoid the issue of optical fringes by using spectroscopic techniques
which, to some degree, suppress these unwanted background signals, e.g., in [45], photothermal
interferometery was used. This technique (already described in the previous section) is essentially
background-free, i.e., if there are no molecules, there will be no photothermal signal (from gas or
fringes). Therefore, when this method is used, the contribution from mode interference inside the HCF
is expected to be much less troublesome compared to techniques in which absorption is measured
directly. Another example where an appropriate detection method can be used to suppress optical
fringes was demonstrated by Jaworski [40], who used chirped laser dispersion spectroscopy (CLaDS)
to measure the molecular transition of carbon dioxide near 1572 nm. Fundamentally, CLaDS is a
technique where molecular information is encoded into the phase difference between multiple waves
that are sent through the sample. If the spacing between those waves is chosen appropriately (so that
it matches the period of the fringes), an unwanted interference pattern can be suppressed. In [40],
this approach was demonstrated for two different lengths of the HCF (1 and 20 m).

PBG HCF-based gas sensing has mainly been performed in the spectral region between 1530 and
1700 nm (HC-1550-02 fiber from NKT Photonics, shown in Figure 8, is by far the most popular choice,
and has been used in multiple papers presenting HCF-based gas sensing [40–43,45–50]). However,
as mentioned in the introduction, the mid-infrared spectral region offers stronger molecular transitions.
Therefore, performing sensing and spectroscopy at a longer wavelength is highly desired. In 2005,
Shephard et al. reported the first silica-based PBG hollow-core fiber with guidance beyond 3 µm [51].
A few years later, the same group demonstrated mid-infrared spectroscopy inside an 80-cm-long PBG
HCF, using an optical parametric oscillator (OPO) as a source and a Fourier transform spectrometer
(FTIR) as a detector. The potentially achievable detection limit was roughly estimated as 50 ppm of
methane [52]. Continuation of this work can be found, e.g., in [53], where the spectra of acetylene
(near 3.05 µm) and ethane (near 3.35 µm) were recorded using a supercontinuum source and optical
spectrum analyzer. Good agreement between the measurement and theoretical predictions (based on
HITRAN and Pacific Northwest National Laboratory databases) was achieved. However, although
both papers ([52] and [53]) present mid-infrared optical spectroscopy inside PBG HCFs, they should be
primarily considered as proof-of-concept demonstrations. In both cases, precise characterization of
the system performance (e.g., in terms of the detection limit or linearity) was impossible because only
highly absorbing samples were measured and spectra were recorded with a low optical resolution.

Table 2 summarizes the advantages and drawbacks of using PBG HCFs as gas cells in trace gas
sensing. PBG HCFs have been commercially available for many years and exhibit very low losses,
especially in the near-infrared spectral region. They are flexible and robust and can be easily spliced to
standard single-mode fibers using ordinary fusion splicers. Some approaches for suppressing mode
interference have been proposed. Unfortunately, the filling times are very long (a few minutes and
more), even when relatively short (less than 1 m) PBG HCFs are used. The response time of HCF-based
sensors can be improved by drilling multiple microchannels along the fiber, but it is hard to imagine
that this approach can be successfully used in out-of-lab environments, where, e.g., the sensor is
exposed to dust.

Table 2. Advantages and drawbacks of PBG HCFs when used for trace gas sensing.

Advantages Drawbacks

• Commercially available with lengths beyond tens of meters • Very long filling times
• Can be easily spliced with other silica-based fibers using
xxxstandard fusion splicers • Optical fringes usually visible in the background

• Low losses • Expensive

The slow response time of the system is not an issue when a gas-filled HCF is used as a permanent
gas cell, which can be used, e.g., as frequency reference in optical metrology. This requires an HCF



Materials 2020, 13, 3983 10 of 19

to be filled with gas and sealed from both sides (e.g., through splicing to a standard fiber). In this
scenario, the most important drawbacks of PBG HCFs are not present. The slow response time is not
an issue anymore because the fiber only needs to be filled once. Additionally, because a sample with
a high concentration can be used, the contribution from optical fringes is not as troublesome as in
trace-gas detection. Some examples of PBG HCF-based reference gas cells can be found in [54–59].

5. Trace-Gas Detection Using Hollow-Core Fibers with Inhibited Coupling Guidance

The Kagome fiber was presented for the first time in 2002 [60]. In its very first demonstration,
the Kagome HCF was already filled with gas (hydrogen in that case). However, the aim of this study
was not to perform optical spectroscopy, but to analyze nonlinear effects inside the gas-filled HCF.
The Kagome HCF guides light due to the coupling between core and cladding modes (so-called
inhibited guidance mechanism), rather than due to photonic bandgaps [61]. Many authors also agree
that antiresonance plays an important role in light guidance inside NC HCFs [62]. Further studies in
this field led to the discovery that transmission losses primarily depend on the core wall shape [63]
and demonstration of the simplified, tubular structure of the fiber [64]. SEM images of cross-sections
of three different NC HCFs are shown in Figure 11.
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Negative curvature HCFs have few advantages compared to PBG HCFs, including broader
transmission (divided into several bands) and lower overlap between light and glass material.
The latter makes it easier to obtain good transmission in the mid-infrared region, even when silica is
used as a host glass. Both features can be particularly beneficial when NC HCFs are used in optical
spectroscopy, especially in photothermal interferometry, where two different wavelengths have to be
coupled in the fiber, e.g., one in the mid-infrared region (pump light) and the other in the near-infrared
region (probe light). Additionally, the core size in Kagome or tubular/revolver-type HCFs is typically
larger than in PBG HCFs, which should result in shorter gas filling times (recent studies suggest that
this is true, even when fibers with similar core sizes are compared [68]). This property of NC HCFs was
confirmed in a 2016 conference paper by Challener et al. [69]. A 1.5-m-long fiber from the University of
Bath (UK) was used to measure the absorption of methane using tunable diode absorption spectroscopy
(TDLAS). Although not many details about the system were provided in this paper, the authors have
shown that when a small pressure difference between the two fiber ends is applied, the gas diffusion
time through the fiber is reduced to only a few seconds. A more detailed analysis was performed in [70].
A light from a differential frequency generation (DFG) source operating near 3.33 µm was coupled
in a 1.3-m-long Kagome HCF from GLO Photonics (France). The other end of the fiber was placed
in air-tight housing, which enabled the HCF to be filled with gas (air, nitrogen, or methane/nitrogen
mixture). A CaF2 lens was used to focus the light onto a mercury-cadmium-telluride (MCT) detector.
Using a WMS technique, a minimum detection limit of 4.11 ppm was obtained. This result was limited
by optical fringes and when fringes were removed (through post-processing), the detection limit of
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~0.5 ppm was achieved. More importantly, the sensor response time was less than 10 s. The same
fiber was also used in [71], but this time, it was combined with the CLaDS technique. In this case,
a detection limit of less than 1 ppm was obtained for the integration time of 1 s (and 65 ppb when
averaged for 100 s).

In [11], laser spectroscopy inside a tubular (revolver) NC HCF was presented. A 1.35-m-long fiber
with a core dimeter of 70 µm was made in the Institute of Electronic Materials Technology (Poland).
The fiber had two transmission bands in the near-infrared region, from 1350 to 1600 nm and from 1790
to 2220 nm. In a gas sensing experiment, a discrete mode (DM) laser diode operating near 2004 nm was
used. The standard single-mode fiber at the output of the laser diode was butt-coupled to the NC HCF
(Figure 2b). The coupling efficiency was approximately 50%. The other end of the HCF was placed
inside the custom-made housing, enabling the fiber to be filled with a gas sample. A WMS technique
was used for concentration monitoring. A minimum detection limit of 5 ppm (3 s averaging) and a
response time of 5 s were obtained. It has also been demonstrated that significant suppression of the
optical fringes can be achieved when coupling between the input fiber and HCF is carefully adjusted.
In [72], Yao et al. presented a setup for carbon monoxide sensing at 2.3 µm using direct laser absorption
and WMS. A gas filling time of 5 s was measured and a detection limit of only 0.4 ppm was obtained
(30 s averaging). The same fiber was also used in [66], where carbon monoxide was detected with PTI.
The system used in this paper is shown in Figure 12. A 1.55 µm light was used as a probe to measure
the photothermal signal employing an interferometer formed between two fiber couplers (FC1 and
FC2). A hollow-core fiber was placed in one arm of the interferometer. A dichroic mirror (DM) was
used to couple the mid-infrared light in the HCF. A piece of standard fiber was coiled around a piezo
transducer (PZT) and was used to make sure that the interferometer operated at the quadrature point.
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Figure 12. A schematic diagram of the photothermal interferometry (PTI) setup from [66]. A distributed
feed-back (DFB) laser diode at 2.3 µm was used as a pump laser. The interferometric measurement
was performed at 1.55 µm (pump laser). PD—photodetector, LPF—low-pass filter, and DAQ—data
acquisition card. (a) shows an SEM image of the fiber, and (b,c) show the beam profile of the pump
beam after and before passing through the hollow-core fiber (HC-NCF), respectively. Reprinted with
permission from [66],© The Optical Society.

Figure 13 demonstrates the photothermal signal as a function of the carbon monoxide concentration
and the inset shows the PTI spectra recorded for four different samples. A linear response and noise
equivalent concentration of less than 100 ppm were reported.
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Figure 13. Linear response of the PTI sensor shown in [66] to the CO concentration. Inset shows
the PTI spectra measured at different CO concentrations. Reprinted with permission from [66],
© The Optical Society.

In [73], the same group presented another system, operating at 3.6 µm. The fiber was 1.2-m-long,
had a core diameter of 65 µm, and had a transmission band from 1.6 µm to the mid-infrared region.
An interband cascade laser (ICL) was used to detect nitrous oxide (N2O). A detection limit comparable
to standard spectroscopic systems was obtained. The authors also pointed out that, in order to reduce
optical fringes, light coupling conditions must be optimized.

Photothermal spectroscopy inside an NC HCF was also recently presented in [74] and [75].
The experiments in [74] were performed near 1.53 µm. Two fiber-based cells were used, made with
4.67- and 0.74-m-long NC HCFs. A response time of 44 s was measured for the shorter cell, but in this
case, the gas did not enter through the end of the HCF, but through microchannels drilled from its side.
The setup in [75] used a shorter piece of the NC HCF (a few cm). It was placed between the SMF to
form a Fabry-Perot interferometer. Again, the sensing was performed near 1.53 µm. Not only was the
long term performance analyzed, but also the impact of the modulation frequency in PTI on the signal
amplitude was investigated.

As mentioned above, NC HCFs have the ability to transmit light in the spectral region, where
losses of the glass material are relatively high. This property was demonstrated in [67], where a
silica-based NC HCF was used to detect nitrous oxide near 4.53 µm. The fiber used in this study
(made in the Institute of Electronic Materials Technology, Poland) was optimized for light transmission
near 4 µm and had exceptionally low bending losses [76]. A schematic diagram of the sensor used
in [67] is shown in Figure 14a. A 3.2-m-long fiber was used for gas sensing. A light from a distributed
feedback QCL was coupled in the HCF using an off-axis parabolic mirror. The other end of the fiber
was positioned in front of the MCT detector (as shown in Figure 2e). Tight housing connected with a
pump was built to enable gas flow through the fiber. The sample absorption spectrum measured when
the laser wavelength was scanned across the nitrous oxide transition near 2203.75 cm−1 is presented in
Figure 14b. When the WMS technique was implemented, the detection limit of a few parts-per-billion
was obtained and the response time was 23 s.
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Figure 14. (a) A schematic diagram of the setup used in [67] for the laser spectroscopy of nitrous oxide.
The hollow-core fiber used in this work has already been shown in Figure 11c; (b) direct laser absorption
spectrum (solid line) and model (based on HITRAN database; dashed line) for the trace concentration
of N2O. Fitting residual is shown below. Reprinted with permission from [67],© The Optical Society.

The NC HCFs described above were made of fused silica and enabled molecular transitions up to
4.5 µm to be achieved [67]. Transmission at even longer wavelengths has been obtained using other
glass types. NC HCFs made of various materials have been demonstrated, including borosilicate [77],
tellurite [78], and chalcogenide [79–81] glass. In [82], a 1.15-m-long borosilicate NC HCF with a core
dimeter of more than 100 µm was used for gas sensing near 5.26 µm. A QCL was used as a source to
detect nitric oxide (NO). A gas filling time of approximately 9 s was obtained, which is consistent with
other published results.

Table 3 summarizes examples of using NC HCFs for trace gas sensing. With only one exception,
all described experiments were performed for wavelengths beyond 2 µm. Multiple groups presented
optical spectroscopy of fundamental ro-vibrational transitions (i.e., beyond 3 µm) with detection
limits at ppm or ppb levels for various molecules, including methane and nitrous oxide (both potent
greenhouse gases) and nitric oxide (a hazardous pollutant). More importantly, the reported gas diffusion
times were below 10 s for fiber lengths of approximately 1 m. For the 3.2-m-long HCF presented in [67],
a 23 s time was obtained, which is still acceptable in many trace gas detection applications.

Table 3. Summary of the performance of gas sensing with NC HCFs reported in the literature.

Ref. Fiber
Length

Diffusion
Time (s) λ (µm) Target

Molecule
Detection
Technique Detection Limit

[11] 1.35 m 5 2 CO2 WMS 5 ppm in 1 s

[65] 1 m 19 1.57 and 3.33 CO2 and
CH4

WMS 63 ppb (CH4) and
153 ppm (CO2) in 1 s

[66,72] 85 cm 5 [72] 2.3 CO TDLAS, WMS,
PTI 0.4 ppm in 30 s [72]

[67] 3.2 m 23 4.53 N2O TDLAS, WMS 5.4 ppb in 1 s
[70,71] 1.3 m <10 3.33 CH4 WMS, CLaDS 500 ppb in 1 s [71]

[73] 1.2 m not specified 3.6 N2O TDLAS 35 ppm (TDLAS)
[74] 74 cm 44 1 1.53 C2H2 PTI 15 ppt in 100 s 2

[82] 1.15 m 9 5.26 NO TDLAS, WMS 30 ppb in 1 s
1 Gas freely diffused through side microchannels, not through fiber ends. 2 Result obtained with a 4.67-m-long HCF.

It should also be mentioned that there are several papers which show Kagome HCFs used as
permanent gas cells [83–85]. These experiments were primarily performed in the near-infrared region,
at around 1.55 µm (with the HCF filled with acetylene) or near 2.05 µm (where absorption lines of
carbon dioxide were used as the frequency reference).
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6. Conclusions

This paper summarizes the examples of using hollow-core fibers for trace gas detection in the near-
and mid-infrared spectral regions. Setups that use three types of fibers (hollow capillary waveguides
with an inner reflective coating, photonics band-gap fibers, and negative curvature fibers) have been
described. With all HCFs, low transmission losses (below 1 dB/m) can be obtained. This is acceptable
in many sensing applications in which the required interaction length is up to a few meters.

The biggest advantage of hollow waveguides is broadband transmission, which makes them
particularly useful in the mid-infrared region, where the strongest molecular transitions are located.
Moreover, those waveguides have a relatively large core diameter, which becomes beneficial when
they need to be filled with a gas sample. This is different with photonic band-gap HCFs. In their case,
the reported filling times vary from a few to a few tens of minutes, even for short (~1 m) pieces of fiber.
Additionally, strong optical fringes are typically present when PBG HCFs are used, which directly
impacts the measurement sensitivity. However, because PBG HCFs are commercially available and
can be relatively easily spliced to standard single-mode silica-based fibers, they can be conveniently
transformed into all-fiber-based permanent gas cells and used, e.g., as reference frequency standards.
In this application, the fiber only has to be filled once, which eliminates the biggest drawback of
PBG fibers.

In the last two years, several papers have reported trace gas sensing inside negative curvature
HCFs. These fibers have broader transmission than PBG HCFs, produce relatively small optical fringes,
and have reasonably short filling times. If necessary, they can also be spliced to standard solid-core
fibers. Rapid progress has been observed over the last few years in terms of developing NC HCFs
with small bending losses and good transmission also in the mid-infrared region. These features make
them very promising components for compact and robust trace-gas detection systems, particularly
in applications such as environmental monitoring, where an instantaneous response time is not
always critical.

Sensitivity is an important parameter of gas sensing systems and the detection limit was determined
in almost every paper presenting gas sensing inside an HCF. Unfortunately, the methodology was not
consistent among papers, which often makes it difficult to compare reported results and accurately
evaluate the performance of HCF-based sensors. However, in some papers (e.g., [20] or [71]),
a comparison with standard, free-space systems was provided. The results obtained in these papers
suggest that when optical fringes are suppressed (e.g., using proper alignment or by applying vibrations
to the fiber [20]), the detection limits obtained using an HCF are similar to those achieved with free-space
sensing. Moreover, HCFs become particularly useful when photothermal spectroscopy is used. In this
case, due to tight light focusing and a long interaction length, the sensitivity can be much higher than
in free-space detection [45].

Currently, the response time of the HCF-based sensor seems to be the biggest challenge.
Even though hollow capillary waveguides and NC HCFs provide much shorter diffusion times
compared to PBG HCFs, it may be difficult to obtain an instantaneous response when an HCF that is a
few meters long is used. Another aspect related to the response time that has not been discussed in
detail so far is the sampling issue. Some molecules can bind to the inner wall of the HCF, which may
eventually lead to measurement inaccuracies. This issue was recently analyzed in [37]. However,
it would be interesting to see systematic experimental measurements with some ‘sticky’ molecules,
e.g., ammonia.

Apart from the many experimental results that have been published over the last 15 years, some
authors have also reported theoretical analyses devoted to gas sensing inside hollow-core fibers. In [37],
a numerical model of gas flow through HCF was described. In [86], the single-mode performance of
NC HCFs was analyzed numerically. In [75], a simple analytical model was developed to describe the
dynamics of the signal in photothermal spectroscopy/interferometry. These analyses may be useful in
designing and optimizing HCF-based gas sensors.
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