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Cocaine use disorder (CUD) is a major public health concern with devastating social, 
economic, and mental health implications. A better understanding of the underlying 
neurobiology and phenotypic variations in individuals with CUD is necessary for the 
development of effective and targeted treatments. In this study, 39 women and 54 men 
with CUD completed a 6-min resting-state functional magnetic resonance imaging scan 
after intranasal oxytocin (OXY) or placebo administration. Graph-theory network analysis 
was used to quantify functional connectivity changes caused by OXY in striatum, anterior 
cingulate cortex (ACC), insula, and amygdala nodes of interest. OXY increased connectivity 
in the right ACC and left amygdala in males, whereas OXY increased connectivity in the 
right ACC and right accumbens in females. Machine learning was then used to associate 
treatment response (placebo minus OXY) in nodes of interest with years of cocaine use 
and severity of childhood trauma separately for males and females. Childhood trauma and 
years of cocaine use were associated with OXY-induced changes in ACC connectivity for 
both men and women, but connectivity changes in the amygdala were associated with 
years of cocaine use in men and connectivity changes in the right insula were associated 
with years of cocaine use in women. These findings suggest that salience network nodes 
(ACC and insula) are potential OXY treatment targets in CUD, with the amygdala as a 
treatment target for men and the accumbens as a treatment target for women.

Keywords: connectome, graph-theory, resting state, gender differences, functional connectivity

INTRODUCTION

Gender differences in addictive and affective disorders are well established (1, 2). Both gonadal 
and stress hormones can modulate brain function, leading to different levels of susceptibility to 
neuropsychiatric disorders and treatment response. Biomedical research focused on understanding 
hormonal modulation and gender differences in brain function may be advanced by including 
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neuroimaging markers of functional brain organization. One 
such marker is resting-state functional brain connectivity 
(RSFC), which uses functional magnetic resonance imaging 
(fMRI) to image the brain while an individual is alert and 
awake but not engaged in any particular cognitive task; that is, 
when the brain is at “rest.” This continuous resting-state fMRI 
(rsfMRI) paradigm can reveal brain regions that are temporally 
synchronized with other brain regions to characterize brain 
regions that seem to activate (or deactivate) in unison, revealing 
additional phenotypes that are not captured with current 
behavioral assessments or neurobiological markers. Therefore, 
the addition of rsfMRI as a tool in understanding psychiatric 
illness and gender-specific susceptibility to different disorders 
may ultimately lead to better treatments and outcomes.

rsfMRI has been widely used in addictions research, including 
studies in cocaine use disorder (CUD) (3, 4). Differences in 
RSFC between CUD and control subjects have been reported 
in numerous circuits, but there is no clear consensus that any 
particular circuit or resting-state network can be considered 
a reliable phenotype for CUD. Nevertheless, RSFC has been 
associated with important clinical variables, such as measures of 
cocaine use (5–7), impulsivity, inattention, or cognitive control 
(5, 6, 8–10) and risk for relapse (10–16). For example, years of 
cocaine use (which will be the primary cocaine use variable in 
the present study) have been associated with reduced RSFC in 
the ventromedial prefrontal, hypothalamic, insula, and anterior 
cingulate cortex (ACC) regions (7, 14). Although not all studies 
have shown an association between compromised RSFC and 
years of use (5), the collective findings point to RSFC as a 
promising imaging biomarker for relapse risk or other behaviors 
implicated in the addiction process (17).

However, two important variables that are known to modulate 
addiction neurocircuitry—gender and trauma exposure—have 
been less studied in rsfMRI studies of CUD. Sex differences 
were examined in only one RSFC study (7) and revealed greater 
connectivity between the medial hypothalamus and a critical 
node of the default mode network, the precuneus, in female 
cocaine users compared to males. A  recent study has also 
examined modulation of RSFC by history of childhood trauma 
in CUD (18). The CUD group reported that some childhood 
trauma showed greater amygdala RSFC with several striatal 
regions, the insula, medial temporal regions, and the brain 
stem. These studies are an important step toward understanding 
individual differences in RSFC, but more studies are needed to 
characterize RSFC phenotypes that may lead to the development 
of individualized treatment approaches.

One potential treatment being explored for substance 
use disorders (SUD) is the neuropeptide oxytocin (OXY). 
Childhood trauma (19, 20) and chronic substance use (21) can 
both lead to neuroadaptations in the OXY system. In addition, 
some studies have shown that exogenous OXY may reverse drug-
induced neuroadaptations [see Ref. (21), for review] or can alter 
neural response in stress-related circuitry (22–24). However, 
the effect of exogenous OXY may not be the same in men 
and women because of gender differences in neuropsychiatric 
sequelae of childhood trauma and the neurobiology of OXY  
(25, 26).

Few studies, however, have examined gender differences in 
RSFC changes caused by acute OXY administration, and no 
studies have examined these changes in individuals with CUD. 
Seeley and colleagues (27) reviewed 11 studies that examined 
changes in RSFC caused by acute intranasal OXY administration 
in healthy controls and individuals with anxiety disorders 
(posttraumatic stress disorder, generalized social anxiety 
disorder) or autism spectrum disorder. Most of these studies 
focused on connectivity of the amygdala with medial prefrontal 
or cingulate regions. Although findings are mixed as to whether 
OXY increases or decreases amygdala connectivity, individual 
differences like gender and psychopathology modulate this 
connectivity. Whole-brain analyses of RSFC have indicated that 
acute administration of OXY also increases connectivity in brain 
regions other than the amygdala, including the striatum, insula, 
and cingulated (28, 29). In addition, enhanced connectivity 
under OXY may depend on gender and trauma history, as well 
as the specific amygdala (24) or striatal nuclei (30) targeted in a 
given study.

Prior research has demonstrated that females with SUD 
associate relapse with interpersonal stress and negative affect 
(31, 32), whereas males with CUD show a more robust reward 
circuitry response to cocaine cues than females (33, 34). Potenza 
et al. (35) reported that corticostriatal-limbic hyperactivity was 
associated primarily with drug cues in men and stress cues in 
women. These findings suggest that stress circuitry may play a 
more important role in intrinsic functional brain organization 
in women with CUD, whereas reward circuitry may play a more 
prominent role in men with CUD.

To gain a better understanding of gender differences in 
neural response to OXY in CUD, the present study used RSFC to 
examine changes in stress- and addiction-related neurocircuitry 
in response to an acute dose of intranasal OXY in men and 
women with CUD. More specifically, the goal of this study was 
to understand the association between graph-theory-based 
network properties that reflect OXY treatment response and 
two individual subject variables of interest for SUD: childhood 
trauma and years of cocaine use. Predictive modeling was used 
to establish network profiles of OXY response associated with 
childhood trauma and years of cocaine use in men and women 
with CUD. The focus was on network connectivity of regions 
implicated in both substance use and childhood trauma, that is, 
the striatum, amygdala, insula, and ACC.

Given prior findings, the predictions of this study were that 
a) childhood trauma was expected to be more strongly associated 
with OXY connectivity changes in the amygdala because of its 
involvement in stress reactivity and trauma history (36, 37) 
and modulation of amygdala RSFC in posttraumatic stress 
disorder (PTSD) (24) and recent trauma exposure (38); b) years 
of cocaine use was expected to be more strongly associated 
with OXY connectivity changes in the striatum because of 
neuroadaptations of striatal circuitry in addiction (39); c) the 
major nodes of the salience network (insula, cingulate) were 
expected to be associated with both childhood trauma and years 
of cocaine use because of the role of this network in SUD (17) 
and psychiatric disorders more broadly (40); d) OXY response in 
network regions associated with childhood trauma and years of 
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cocaine use was expected to be different in men and women. Prior 
findings suggest that stress circuitry (e.g., amygdala) will exert a 
stronger network influence in females and reward circuitry (e.g., 
striatum) will exert a stronger network influence in males.

MATERIALS AND METHODS

Participants
Participants took part in a large study investigating the effect of 
OXY on subjective and neuroendocrine responses to stressors. 
The current crossover analysis included only data from the rsfMRI 
component of the study. A total of 93 non-treatment-seeking CUD 
individuals who responded to local media advertisements over 
a 54-month period completed the fMRI scanning procedures. 
Written informed consent was obtained before study assessments 
were administered. All procedures were conducted in accordance 
with Good Clinical Practice Guidelines and the Declaration of 
Helsinki and received institutional review board (IRB) approval. 
General exclusion criteria included 1) pregnancy, nursing, or plan 
to become pregnant during the course of the study; 2) women who 
had a complete hysterectomy, were postmenopausal, or receiving 
hormone replacement or hormonal contraceptive therapy; 3) history 
of or current significant hematological, endocrine, cardiovascular, 
pulmonary, renal, gastrointestinal, or neurological diseases;  
4) history of or current psychotic, panic, eating, or bipolar affective 
disorders; 5) current major depressive disorder and PTSD; 
6)  history of or current medical conditions that might affect 
hypothalamic pituitary axis (HPA)axis activity; 7) synthetic 
glucocorticoid or exogenous steroid therapy within 1 month 
of testing; 8) psychotropic medications (with the exception 
of selective serotonin reuptake inhibitors), opiates or opiate 
antagonists, benzodiazepines, antipsychotics, beta-blockers, and 
other medications that might interfere with HPA axis activity or 
physiologic measurements; 9) acute illness or fever; 10) Diagnostic 
and Statistical Manual of Mental Disorders-IV (DSM-IV) criteria 
for substance dependence except alcohol, nicotine, or marijuana 
within the past 60 days; 11) unwillingness or inability to maintain 
abstinence from cocaine and other drugs of abuse (except 
nicotine) for 3 days prior to the cue–reactivity sessions; or 12) MRI 
contraindications.

Assessment
Participants meeting prescreening criteria were evaluated for 
study eligibility with the Mini-International Neuropsychiatric 
Interview (MINI) (41). The substance use module of the 
Structured Clinical Interview for DSM-IV (SCID-IV) was used to 
assess current and lifetime SUD (42). Substance use in the 90 days 
before the study was assessed using the Time-Line Follow-Back 
(43). The Childhood Trauma Questionnaire (CTQ) (44) was 
used to assess the extent to which individuals experienced five 
domains of childhood abuse and neglect (sexual abuse, physical 
abuse, emotional abuse, emotional neglect, and physical neglect). 
Participants answered each of 25 questions using a 5-point 
Likert scale ranging from 1 (never true) to 5 (very often true). 
A medical history and physical examination were completed 

to assess for medical exclusions. Participants meeting inclusion 
criteria and no exclusion criteria were scheduled to complete 
the study procedures and instructed to not use cocaine or other 
drugs of abuse for a minimum of 3 days before the test sessions.

Study Procedures
Participants completed one 6-min resting-state fMRI session on 
each of two consecutive days (a cocaine cue reactivity task was 
also completed on each day, but those results are not reported 
here). On day 1 of testing, participants arrived at the Medical 
University of South Carolina’s (MUSC) Addiction Sciences 
Division research clinic at 10:00 a.m. Upon arrival, urine 
pregnancy tests were administered. Smokers were provided 
with a nicotine patch. Self-reports, urine drug screens (Roche 
Diagnostics, Indianapolis, Indiana), and breathalyzer tests 
(AlcoSensor III, Intoximeters, Inc., St. Louis, Missouri) were 
used to assess abstinence. If the pregnancy and drug tests were 
negative [with the exception of Tetrahydrocannabinol (THC)], 
study procedures continued. At 11:30 a.m., subjective ratings 
were obtained. A modified version of the Within Session Rating 
Scale was used to assess subjective ratings of craving, anxiety, 
and stress (45). This 1–10 visual analogue scale is anchored 
with the adjectival modifiers (“not at all,” “mildly,” “moderately,” 
and “extremely”). The Cocaine Craving Questionnaire (CCQ)-
Brief was used to assess cocaine craving. The State-Trait Anxiety 
Inventory (STAI) was used to assess anxiety symptoms (46). 
Participants were then provided a standardized lunch.

At 1:20 p.m., participants were administered 40 IU of 
OXY nasal spray or matching placebo (PBO). This dose was 
selected based on previous studies using similar doses of OXY 
(47–49) as well as our own previous work (50, 51). Timing of 
administration was also based on previous studies showing 
central activity of OXY 40  min after intranasal administration 
(50, 52). Intranasal OXY and matching PBO were compounded 
by the MUSC Investigational Drug Service. To achieve balance 
in sample size with respect to treatment order across genders, a 
block randomized design with randomly varying block sizes was 
used. Half of the participants were randomized to OXY on day 1 
and half to PBO.

Subjective measures were repeated at 1:55 p.m. Scanning 
procedures commenced at 2:00 p.m. The 6-min rsfMRI session 
instructed participants to fixate a centrally presented crosshair 
but otherwise had no specific instructions other than to remain 
awake and alert and minimize head movement.

fMRI data images were acquired on a Siemens Trio 3.0 Tesla 
scanner with a 12-channel head coil (Siemens Medical, Erlangen, 
Germany) at MUSC for the majority of subjects (36 females, 53 
males). Data from four of the subjects (one male) were collected 
on a Siemens PRISMA FIT 3.0 Tesla scanner with a 32-channel 
head coil, also at MUSC. During initial scanner tuning, 
localizing, and structural scanning, participants were shown 
relaxation images (i.e., 20 scenic pictures, each displayed for 
30 s, and repeated if necessary). A high-resolution T1-weighted 
MPRAGE anatomical scan (TR = 2.25 s, TE = 4.2 ms, flip angle = 
9°, 176 sagittal slices, field of view = 256 mm, 256 × 256 matrix, 
thickness = 1.0  mm) covering the entire brain and positioned 
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using a sagittal scout image was acquired for coregistration and 
normalization of functional images. T2*-weighted gradient 
echo EPI images were acquired with the following parameters 
(parameters were identical for the TRIO and PRISMA): TR  = 
2,000 ms, TE = 27 ms, flip angle = 76°, 36 axial slices (field of 
view  = 237  mm × 237  mm, thickness = 3.7  mm voxels, in 
interleaved order). A gradient field map image was collected to 
match the spatial parameters of the EPI images.

After completion of the first scan, participants returned 
the next day and completed identical procedures with the 
opposite treatment condition. At the end of the second scan day, 
participants were debriefed and compensated.

Data Analysis
Demographics and Subject Characteristics
Baseline demographic and subject characteristics as well as 
prescan subjective ratings were compared across genders using 
independent-samples t-tests for continuous variables and chi-
square tests across categorical characteristics. Data are reported 
as means and standard deviations for continuous variables and 
proportions for categorical variables.

An independent-samples t-test (unequal variances assumed 
because of unbalanced sample sizes) compared PBO minus 
OXY difference score for TRIO versus PRISMA scanner data in 
each of the 20 nodes of interest for clustering coefficient (CC) or 
eigenvector centrality (EC). Significance was determined using 
the false discovery rate (FDR) controlled at a 5% level (53, 54). 
Similarly, an independent-samples t-test (assuming unequal 
variances) examined whether PBO minus OXY difference score 
was different for smokers versus nonsmokers in each of the 20 
nodes of interest for CC or EC.

Although several measures were taken to minimize the 
contributions of head motion to the fMRI time series, there are 
more stringent approaches to control for the influence of head 
motion on fMRI time series (55) than used here. To address 
whether any residual head motion was correlated with graph-
theory measures of connectivity, we examined Spearman-rank 
correlations between head motion and any of the 20 nodes × 2 
graph-theory measures (EC and CC) × 2 genders × 2 treatment 
conditions (OXY or PBO) using FDR correction.

Finally, an exploratory analysis examined whether any of 
the five subjective rating measures collected before scanning on 
each visit (craving, anxiety, stress, STAI, CCQ) was correlated 
with graph theory measures. Spearman rank correlations were 
conducted for each of the five subjective measures × 20 nodes × 
2 graph-theory measures (CC and EC) × 2 genders × 2 treatment 
conditions (OXY or PBO) using FDR correction.

fMRI Preprocessing
FMRIB’s FSL package1 was used unless otherwise noted. Images 
in each participant’s time series on each day were corrected for 
geometric distortion and head motion. Slice timing correction 
and spatial filtering (FWHM = 7.5 mm) were applied to each 
time series, which was then submitted to multiple regression 

1 www.fmrib.ox.ac.uk/fsl

using FSL to remove effects of global signal and head motion. 
Regressors included global signal [extracted from gray matter, 
white matter and cerebrospinal fluid (CSF) masks, which 
were created using FSL’s FAST tissue segmentation tool], and 
six head motion parameters. The residual image from this 
regression step was then band-pass filtered (0.009 to 0.08 Hz) 
using AFNI (56). The spatially normalized image was then 
parcellated using a 294 region atlas—the 264 regions from Power 
et al. (57) with 30 additional subcortical regions (amygdala, 
hippocampus, striatum). Each region of interest (ROI) was 
represented by a 10-mm-diameter sphere. The BOLD signal 
time series was extracted in each of the 294 ROIs using FSL’s “feat  
query” function.

Connectome Measures
Before computing the 294 × 294 functional connectivity matrix, 
corrupt time points were identified with fractional displacement 
values using the “fsl_motion_outliers” command. For each 
corrupt time point, the preceding time point and two successive 
time points were removed from the time series for each subject 
and visit (57) using the RSFC Net toolbox2 implemented using 
the R software package (58). The mean percent scrubbed time 
points averaged over both visits was not significantly different 
between males (M = 0.13, SD = 0.06) and females (M = 0.12, 
SD = 0.06) according to an independent-samples t-test, t(91) = 
0.56, p = 0.58.

The connectivity matrix was a weighted, signed adjacency 
matrix representing a fully connected undirected graph. Each 
matrix element reflected the partial correlation between two 
discreters fMRI time series while controlling for all other 
time series. We applied a shrinkage factor as to create a well-
conditioned covariance matrix (59–61)3. The mixing parameter 
is largely an optimal weight as a function of N to combine the 
observed covariance and a target matrix, such as a diagonal (i.e., 
no covariance/correlation between regions).

The RSFC Net toolbox was used to compute two graph-theory 
measures: EC and CC. EC is a spectral, self-referential measure of 
centrality (62, 63). A node with a high EC is connected to other 
nodes with a high eigenvector score. EC considers connections 
to influential nodes to be more important than connections to 
marginal nodes. Hence, EC reflects the global influence of a node 
on the network.

C M xEig i i j j
j

N

[ ] ,=
′

=
∑1

1
λ

The eigenvector centrality of the ith node, CEig[i], is defined as 
the absolute value of the ith number in the eigenvector belonging 
to the principal eigenvalue of the matrix M, which is denoted λ′.

CC is a local measure of segregation representing the fraction 
of a node’s neighbors that are also neighbors of each other; these 
patterns effectively form triangles around the node (64–66). 

2 https://doi.org/10.5281/zenodo.1403924
3 http://strimmerlab.org/software/corpcor
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We used the CC formula for weighted and signed connectivity 
matrices provided by (66):

CC
w w w

w w
i

s j i i q s j q
i j

s j i s i q
i j

=
∑

∑ ≠

( , ) ( , ) ( , )
,

( , ) ( , )

CC reflects the degree of local influence in a network. In 
this  formula, the triangle is denoted by the direct connection 
of the ith and jth nodes and an indirect connection through a 
qth node; s(i,j,q). The numerator is the sum of the products 
of the signed edge weights between the pairs s(i,j), s(i,q), and 
s( j,q) divided by the sum of the absolute value of the product 
of the edge weights for pairs s( j,i) and s(i,q). The denominator 
represents the maximum magnitude of the value the numerator 
can obtain.

EC and CC measures were chosen because they reflect 
different aspects of network organization. Network measures 
were always calculated using all 294 nodes. Visualization of 
nodes used BrainNet Viewer (67).

Twenty nodes were used as ROIs in subsequent analyses 
(Table  1): five insula regions, five ACC regions, six amygdala 
regions, and four striatal regions. ROIs were selected based on 
being strongly implicated in addiction (3, 17) and trauma (68–
71). Of the eight ACC regions available in the Power atlas, two 
that fell on the midline were eliminated and five of the remaining 
six that sampled different aspects of the rostral to dorsal gradient 
were chosen. Of the seven insula regions available in the Power 
atlas (only two in the left hemisphere), five were chosen that 
sampled anterior, mid, and posterior aspects of the insula, 
primarily in the right hemisphere as there were more of those 

in the Power atlas. All six amygdala, two accumbens, and two 
caudate regions were selected. Importantly, the network measures 
reflected the connectivity of a given node with all other nodes 
in the whole brain network, not just the connectivity among the 
20 nodes of interest.

Generalized Linear Model Analysis (Analysis 1)
The purpose of this analysis was to isolate regions that 
showed effects of OXY treatment and establish that changes in 
connectivity caused by OXY were modified by gender, childhood 
trauma (CTQ), and years of cocaine use (YRSUSE).

Generalized linear mixed effects models were developed to 
assess Analysis 1 (IBM SPSS tatistics; Version 24.0; IBM Corp., 
Armonk, NY). Models were developed to specifically assess the 
effects of treatment (OXY, PBO) and node (20 ROIs described 
above) as repeated effects, with gender, head motion, CTQ, 
and YRSUSE as additional variables. All models further adjust 
for study-specific design variables, specifically study visit and 
treatment order. To assess the hypothesis that gender, CTQ, 
and YRSUSE may modify the relationship between OXY and 
node response, model interactions were included in subsequent 
analysis. Both main effects and interactions were considered 
significant if p ≤ 0.05. Separate generalized linear models were 
conducted with CC and EC as outcome variables. This step was 
conducted before model selection (Analysis 2) to investigate 
and establish important interactions among variables of interest. 
Analysis 2 will then examine such interactions in more depth 
using model selection.

Automatic Linear Modeling (Analysis 2)
The purpose of this analysis was to conduct model selection 
to select the best set of brain regions and network properties 
associated with differing levels of childhood trauma and years of 
cocaine use. Eight different models were examined based on the 
combination of two different outcome variables (CTQ, YRSUSE), 
two genders (male, female), and two different network measures 
(CC, EC). For each of the eight models, model selection was 
conducted over 10 replications.

Model selection used Automatic Linear Modeling (ALM; IBM 
SPSS Statistics). ALM is a linear modeling approach in which a 
set of variables (i.e., network properties in each of the 20 ROIs) 
predicts an outcome (i.e., CTQ or YRSUSE). The treatment 
effect was expressed as a difference score in either CC or EC 
in the PBO condition minus the OXY condition in each of the 
20 ROIs. A positive difference score reflected a reduction in 
connectivity because of treatment with OXY, whereas a negative 
difference score reflected increased connectivity because of OXY. 
ALM automatically trims outliers and transforms variables, if 
needed. ALM divides the full sample of subjects into a training 
set (70% of the data) and a test set (30% of the data; called the 
overfit prevention set in IBM SPSS Statistics). The modeling 
process used 10 replicated data sets, and training and test sets are 
randomly selected from each. Replicates were a random sample 
with replacement.

In ALM, if the number of predictor variables is 20 or fewer, a 
large subset of possible models is examined using “best subsets” 
(72). This approach determines the best subset of predictor 

TABLE 1 | Twenty regions of interest used as predictors.

Region name MNI coordinate

x y z

Right dorsal ACC 10 −2 45
Right posterior insula 36 −9 14
Right mid insula 37 1 −4
Left ACC −5 18 34
Left rostral ACC −11 45 8
Right rostral ACC 12 36 20
Left anterior insula −35 20 0
Right anterior insula 36 22 3
Right anterior ventral insula 34 16 −8
Right ACC 10 22 27
Left dorsal amygdala −22 −4 −12
Right dorsal amygdala 22 −4 −12
Left medial amygdala −14 −4 −20
Right medial amygdala 14 −4 −20
Left ventrolateral amygdala −28 −4 −22
Right ventrolateral amygdala 28 −4 −22
Left caudate −13 7 10
Right caudate 14 8 11
Left nucleus accumbens −10 12 −7
Right nucleus accumbens 10 10 −8

ACC, anterior cingulate cortex; MNI, Montreal Neurological Institute.
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variables using the average squared error (ASE) of the test set. The 
model with the lowest ASE is chosen by ALM as the best model. 
ALM yields a measure of model accuracy, which is 100 times the 
adjusted R2 of the final model, Akaike’s Information Criterion 
(AIC), as well as the importance and weight (coefficient) of each 
predictor.

Predictor importance is a relative measure of how important 
each variable was in the prediction. IBM SPSS Statistics uses 
the leave-one-out method to compute importance based on the 
residual sum of squares by removing one predictor at a time from 
the final full model. The importance values all sum to 1.

To determine whether EC or CC yielded a better model for 
predicting CTQ or YRSUSE for males and females separately, 
the average accuracy across the 10 replications were compared 
qualitatively, and the number of significant models (p ≤ 
0.05) across the 10 replications was considered. The network 
measure that yielded the highest average accuracy and more 
significant replications for a given gender and outcome variable 
combination was considered the better model. To determine the 
final set of predictors, the cumulative importance of predictors 
across the 10 replications was calculated. Predictors with 
cumulative importance >1 were considered for interpretation. 
Finally, to address potential collinearity among the predictors 
in the final models, the predictors with cumulative importance 
>1 were entered into a simultaneous linear regression, and 
variance inflation factors (VIFs) were determined for each model 
covariate; if a VIF exists greater than 4.0 (73), multicollinearity 
will be mitigated by choosing the collinear variable that produces 
the greatest model fit when included.

RESULTS

Demographics and Subject 
Characteristics
Males were older than females and reported more years of cocaine 
use (Table 2). However, males and females were not different 
on any of the other demographic, cocaine use characteristics, or 
subjective measures. There were no significant differences between 
TRIO and PRISMA scanner data in any of the 20 nodes of interest 
for either CC or EC. There were also no significant differences 
between smokers and nonsmokers in any of the 20 nodes of 
interest for either CC or EC. Therefore, scanner type and smoking 
status were not included as variables in subsequent analyses.

Head motion was not correlated with CC or EC in any of the 20 
nodes or treatment conditions. Although none met the threshold 
for significance, head motion was included in the two primary 
analyses below as a precaution given that only six head motion 
parameters were used as nuisance variables in preprocessing.

Finally, the exploratory correlation analysis between subjective 
ratings and graph theory measures yielded one significant 
correlation: males in the PBO condition who reported higher 
stress before scanning also showed higher EC in the left dorsal 
amygdala, rho = 0.53, p = 0.000046.

Analysis 1: Establish whether graph-theory measures 
reflecting treatment response are associated with childhood 

trauma and years of cocaine use and whether gender moderates 
these associations.

The generalized linear model with CC as the outcome variable 
and node, treatment, gender, head motion, CTQ, and YRSUSE 
as predictors yielded several significant effects and interactions 
(Supplement 1). CC varied by node (p = 0.0001), CTQ (p = 
0.009), and head motion (p = 0.0001). The node effect was 
further modified by treatment (Node × Treatment interaction, 
p < 0.0001), and significant three-way interactions indicated that 
the treatment effect in different nodes was further modified by 
gender (Node × Treatment × Gender, p = 0.0001), CTQ (Node × 
Treatment × CTQ, p = 0.0001), and YRSUSE (Node × Treatment 
× YRSUSE, p = 0.0001). Figure 1A illustrates the Node × 
Treatment × Gender interaction for CC. OXY increased CC for 
males in the right ACC and left dorsal amygdala, whereas OXY 
increased CC for females in the right accumbens.

The generalized linear model with EC as the outcome 
variable and node, treatment, gender, head motion, CTQ, and 
YRSUSE as predictors yielded a main effect of node (p = 0.0001) 
and higher-order interactions with node (Supplement 1). The 
node  effect was further modified by treatment and gender 
(Node × Treatment × Gender, p = 0.0001), treatment and CTQ 
(Node × Treatment  × CTQ, p = 0.0001), and treatment and 
YRSUSE (Node × Treatment × YRSUSE, p = 0.0001). Figure 1B 

TABLE 2 | Demographics and subject characteristics.

Characteristic Sex p value

Female Male

(n = 39) (n = 54)

Demographics
Age in years (SD) 40.0 (8.5) 44.5 (9.8) 0.024
Cigarette Smoker % (n) 84.6 (33) 75.9 (41) 0.305a

Cigarettes per day (SD) 11.5 (6.9) 10.8 (6.9) 0.715
Caucasian % (n) 30.1 (12) 22.2 (12) 0.352a

Cocaine use characteristics
Age at first use (SD) 22.1 (5.8) 21.1 (6.3) 0.427
Total years use (SD) 14.1 (7.7) 18.3 (8.2) 0.014
Age at dependence onsetb (SD) 29.2 (8.1) 29.5 (8.7) 0.849
Using days per month (SD) 17.5 (8.1) 17.0 (7.4) 0.753

Baseline trauma
CTQ total scorec (SD) 51.2 (21.4) 43.8 (14.3) 0.079

Prescan subjective ratings—Visit 1
Craving (SD) 2.3 (2.7) 2.7 (2.5) 0.563
Anxiety (SD) 2.4 (2.4) 2.3 (2.2) 0.857
Stress (SD) 1.5 (2.3) 2.2 (2.4) 0.167
STAI (SD) 32.2 (9.7) 35.2 (12.1) 0.210
CCQ (SD) 5.5 (1.3) 5.5 (1.1) 0.981

Prescan subjective ratings—Visit 2
Craving (SD) 2.2 (2.5) 2.5 (2.5) 0.534
Anxiety (SD) 2.0 (2.4) 2.1 (2.5) 0.726
Stress (SD) 1.5 (2.4) 1.7 (2.2) 0.747
STAI (SD) 32.4 (12.0) 34.4 (12.0) 0.430
CCQ (SD) 5.7 (1.3) 5.6 (1.2) 0.677

SD, standard deviation; STAI, State-Trait Anxiety Inventory; CCQ, Cocaine Craving 
Questionnaire.
ap value calculated using chi-square test.
bBased on responses from 37 females and 53 males.
cBased on responses from 36 females and 49 males.
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illustrates the Node × Treatment × Gender interaction for EC. 
OXY increased EC for females in the right dorsal ACC.

These analyses modeled the spatial correlation among the 20 
nodes and isolated treatment effects in some of the nodes. For 
both EC and CC, these treatment effects were modified by gender, 
CTQ, and YRSUSE. The goal of the next analysis was to use 
model selection and machine learning to establish the network 
profiles associated with OXY-related changes in connectivity 
measures and CTQ or YRSUSE. Because gender modified these 
effects in Analysis 1, these analyses are conducted separately in 
males and females.

Analysis 2: Conduct model selection to select the best set of 
brain regions and network properties associated with childhood 
trauma and years of cocaine use.

Table 3 summarizes the performance of the 10 replications for 
each of the 8 models.

Network Profile for CTQ in Males
In males, neither the CC nor the EC model was associated 
with CTQ reliably across replications. Only one replication was 
significant for CC, and no replications were significant for EC. 

FIGURE 1 | Significant effect of oxytocin (OXY) treatment (solid bars) versus placebo (PBO) (shaded bars) in CUD females (blue) and males (red). (A) Effect of OXY 
on clustering coefficient in three nodes of interest: right anterior cingulate cortex (R ACC), left dorsal amygdala (L dAMG), and right nucleus accumbens (R NA). 
(B) Effect of OXY on eigenvector centrality in one node: right dorsal ACC (R dACC). Error bars are standard error of the mean. Horizontal bars with asterisk indicate 
a significant difference of OXY versus PBO at p < 0.05.

TABLE 3 | Model accuracy (adjusted R2, top row) and p value (bottom row) for each replication for each model of interest.

Replication

Outcome 
Variable

Gender Graph-
theory 

Measure

1 2 3 4 5 6 7 8 9 10 Mean

CTQ Male CC 12% 7% 14% 1% 9% 7% 2% 19% 11% 13% 9%*
0.11 0.26 0.09 0.40 0.10 0.22 0.36 0.03 0.09 0.07

Male EC 0% 0% 1% 0% 0% 0% 3% 2% 3% 0% 1%
0.68 0.60 0.42 0.58 0.42 0.79 0.29 0.38 0.31 0.60

Female CC 15% 13% 15% 15% 9% 0% 11% 6% 6% 3% 9%
0.06 0.17 0.11 0.11 0.17 0.52 0.20 0.23 0.34 0.36

Female EC 28% 29% 39% 37% 23% 35% 31% 24% 21% 7% 27%*
0.04 0.02 0.01 0.01 0.03 0.01 0.01 0.03 0.03 0.29

YRSUSE Male CC 17% 5% 6% 2% 7% 15% 2% 0% 21% 4% 8%
0.05 0.18 0.26 0.36 0.17 0.11 0.34 0.64 0.03 0.29

Male EC 18% 23% 19% 10% 15% 17% 27% 3% 1% 22% 16%*
0.03 0.01 0.01 0.07 0.06 0.03 0.01 0.34 0.30 0.02

Female CC 6% 24% 11% 30% 24% 25% 14% 28% 21% 21% 20%*
0.23 0.01 0.16 0.01 0.02 0.02 0.10 0.01 0.03 0.05

Female EC 13% 21% 16% 37% 40% 34% 4% 6% 14% 11% 19%
0.16 0.06 0.06 0.01 0.01 0.02 0.34 0.27 0.09 0.18

*Indicates best model based on average accuracy and number of significant replications when comparing EC and CC.
CTQ, Childhood Trauma Questionnaire total score; YRSUSE, years of cocaine se; CC, clustering coefficient; EC, eigenvector centrality.
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These results indicate that OXY-related changes in graph-theory 
measures in the 20 nodes of interest are not associated with 
individual variations in CTQ scores in males.

Network Profile for CTQ in Females
In females, the best model for CTQ was based on EC. Across 
10 replications, this model had an average adjusted R2 of 0.27. 
Nine of the 10 replications yielded significant models. The model 
using CC as the graph-theory metric for CTQ had an average 
adjusted R2 of 0.09, and none of the replications was significant.

In the EC model, three predictors had cumulative importance 
>1 (Figure 2). The scatter plots (Supplement 2) illustrate that for 
the right ACC, a higher CTQ was associated with a greater global 
influence on PBO than OXY, but for the right dorsal ACC and left 
rostral ACC, a higher CTQ was associated with a greater global 
influence on OXY than PBO.

Network Profile for YRSUSE in Males
In males, the best model for YRSUSE was based on EC. Across 
10 replications, this model had an average adjusted R2 of 0.16. 
Six of the 10 replications yielded significant models. In contrast, 
the model using CC as the graph-theory metric for YRSUSE had 
an average adjusted R2 of 0.09 and only two replications were 
significant.

In the EC model, three predictors had cumulative importance 
>1 (Figure 3). The scatter plots (Supplement 2) illustrate that for 
the right dorsal ACC, higher CTQ was associated with greater 
global influence on PBO than OXY, but for the left medial 
amygdala, higher CTQ was associated with a greater global 

influence on OXY than PBO. Greater head motion was associated 
with fewer years of cocaine use.

Network Profile for YRSUSE in Females
In females, the best model for YRSUSE was based on CC. Across 
10 replications, this model had an average adjusted R2 of 0.20. 
Seven of the 10 replications yielded significant models. Although 
the model using EC as the graph-theory metric for CTQ had an 
average adjusted R2 of 0.19, only three of the replications were 
significant. Although the two models had comparable accuracy, 
the models using CC as a predictor had more replications that 
were significant, so it was considered a better model than the 
EC model.

In the CC model, four predictors had cumulative importance 
>1 (Figure 4). The scatter plots (Supplement 2) illustrate that for 
the right rostral ACC, a higher CTQ was associated with a greater 
local influence on PBO than OXY, but for the left rostral ACC 
and right anterior-ventral insula, a higher CTQ was associated 
with a greater local influence on OXY than PBO. Greater head 
motion was associated with more years of cocaine use.

For all of the final models, VIFs were less than 2 for all 
predictors, indicating no collinearity issues, so all variables were 
retained.

DISCUSSION

The overall goal of this study was to discover how OXY changes 
functional network organization in men and women with CUD 
and to isolate network profiles that are associated with severity 

FIGURE 2 | Association of Childhood Trauma Questionnaire (CTQ) scores with eigenvector centrality in females. Network nodes of interest are shown on a template 
brain in Montreal Neurological Institute (MNI) space, with left lateral (left panel), right lateral (right panel), and axial views (center). Anterior cingulate (ACC) nodes 
appear in red, insula nodes in yellow, striatum nodes in blue, and amygdala nodes in green. The size of each node reflects its cumulative importance across 10 
replications of predictive modeling. Nodes with cumulative importance >1 are labeled anatomically. The arrow next to each label indicates the sign of the regression 
coefficient for that node. Nodes that failed to appear in any of the 10 replications do not appear in this figure.
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of cocaine use and childhood trauma. OXY induced increases in 
connectivity differently in men and women with CUD. In women, 
OXY increased local influence of the right accumbens and increased 
global influence of the right dorsal ACC. In men, OXY increased 
local influence of the left dorsal amygdala and right ACC.

The first hypothesis that childhood trauma would be associated 
with OXY-related connectivity changes in the amygdala was not 
strongly supported. Network profiles associated with individual 

variations in childhood trauma for females did not include 
amygdala nodes, and modeling of network profiles in males did 
not reliably yield significant models. Although the amygdala 
was not implicated in individual variations in childhood 
trauma, OXY increased local influence (CC) of the left dorsal 
amygdala in men. In addition, a higher global influence of this 
same amygdala region was associated with higher stress ratings 
in men on PBO. Although the functions of different amygdala 

FIGURE 3 | Association of years of cocaine use with eigenvector centrality in males. Network nodes of interest are shown on a template brain in MNI space, with left 
lateral (left panel), right lateral (right panel), and axial views (center). ACC nodes appear in red, insula nodes in yellow, striatum nodes in blue, and amygdala nodes in green. 
The size of each node reflects its cumulative importance across 10 replications of predictive modeling. Nodes with cumulative importance >1 are labeled anatomically. The 
arrow next to each label indicates the sign of the regression coefficient for that node. Nodes that failed to appear in any of the 10 replications do not appear in this figure.

FIGURE 4 | Association of years of cocaine use with clustering coefficient in females. Network nodes of interest are shown on a template brain in MNI space, with left 
lateral (left panel), right lateral (right panel), and axial views (center). ACC nodes appear in red, insula nodes in yellow, striatum nodes in blue, and amygdala nodes in green. 
The size of each node reflects its cumulative importance across 10 replications of predictive modeling. Nodes with cumulative importance >1 are labeled anatomically. The 
arrow next to each label indicates the sign of the regression coefficient for that node. Nodes that failed to appear in any of the 10 replications do not appear in this figure.
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nuclei in higher-level human behaviors is still debated, the dorsal 
(i.e., superficial) amygdala is involved in emotion processing, 
whereas the other amygdala nuclei play a role in fear, anxiety, 
and fear conditioning (27). Consequently, the association 
between dorsal amygdala global influence and stress ratings on 
PBO (in males) may reflect current emotional state rather than 
trauma history. In the PBO condition, a higher reported stress 
in males was associated with stronger global influence and more 
widespread connectivity of the left dorsal amygdala in males. In 
other words, the amygdala is exerting a stronger influence on 
other brain circuitry in the PBO condition, especially for males 
reporting more stress. Notably, OXY increased local influence of 
the left dorsal amygdala in males, suggesting that OXY shifts the 
influence of the left dorsal amygdala from global to more local 
and segregated from other brain circuitry. This shift on OXY 
may reflect an adaptive process, whereby stress-related amygdala 
activity is reduced.

The second hypothesis that years of cocaine use would be 
more strongly associated with OXY connectivity changes in the 
striatum was also not strongly supported given that none of the 
striatum nodes in males or females had cumulative importance 
that exceeded 1. However, OXY increased local influence of 
the right nucleus accumbens in females, indicating that it was 
influenced by OXY in females. Bethlehem and colleagues (28) 
similarly showed that OXY increased connectivity of the striatum 
with a broad network of brain regions in non-SUD women.

The third hypothesis that the major nodes of the salience 
network (insula, ACC) were expected to be associated with 
both childhood trauma and years of cocaine use was largely 
confirmed. ACC nodes predicted CTQ scores in females, and 
ACC and insula nodes predicted years of cocaine use in both 
males and females. The ACC was an important predictor in all 
models while the insula was an important predictor in one model 
(prediction of years of use in females). Local influence of the 
right ACC also increased on OXY in men, and global influence 
of the right dorsal ACC increased on OXY in women.

The fourth hypothesis was that network profiles associated 
with childhood trauma and years of cocaine use would be 
different between men and women. Stress circuitry (e.g., 
amygdala nodes) was expected to be more influential on 
network organization in females, whereas reward circuitry (e.g., 
striatum nodes) was expected to be more influential on network 
organization in males. Whereas the network profiles were indeed 
different between males and females, the amygdala was an 
important predictor of cocaine use in males rather than females 
(and was modulated by OXY in males), and the striatum was not 
an important predictor for either males or females, but the right 
accumbens was modulated by OXY in females.

The finding that amygdala connectivity was modulated by OXY, 
was associated with stress ratings under PBO, and was a significant 
component in the network profile for years of cocaine use in males 
but not females was not predicted. However, preclinical studies have 
reported that male rodents show greater OXY receptor binding in 
the amygdala than females, which is also modulated by breeding 
status in males (74). In addition, maltreated female adolescent 
rodents show significantly decreased OXY receptor binding 
in the amygdala compared to female controls (75). Although 

caution should be taken when translating preclinical findings to 
human study results, it is possible that the more prominent role 
for amygdala connectivity in CUD males in the present study is 
driven by higher OXY receptor binding in males and lower OXY 
receptor binding in females, particularly in those reporting more 
severe childhood trauma. This speculation, however, would need 
to be tested more directly in humans in future studies.

The predominant finding of the present study was that the 
salience network emerged as a critical component for OXY-
induced changes in network profiles for childhood trauma and 
cocaine use in both males and females. Moreover, the ACC 
(rather than the insula) was the most prominent component in 
all models. The ACC is a critical node in the salience network 
that is functionally coupled to the insula. The ACC serves to 
influence external behaviors and motoric responses based 
on input from the insula (76), which processes interoceptive 
information and internal autonomic states (77). Given that the 
present study examined intrinsic connectivity (i.e., resting state) 
in the absence of external environmental input, the most salient 
information to be processed by subjects likely originated from 
internal bodily states. This may explain why the salience network 
was the primary influence on network organization. Had this 
study used external stimuli that could trigger reward responses, 
craving, or stress reactivity, the amygdala and striatum may have 
exerted a stronger influence on network organization.

Another potential explanation for the predominance of ACC 
nodes in influencing network organization is that the ACC is rich 
in OXY receptors (25). Because the present analysis focused on 
change in network connectivity related to OXY administration, 
those nodes that fall within brain regions with OXY receptors 
may have dominated network organization compared to regions 
that have fewer OXY receptors in humans, such as the striatum 
(25). It should be noted that the amygdala is also rich in OXY 
receptors, and this brain region emerged as an influential node 
in network profiles for individual variations in years of cocaine 
use in males. In addition, the exploratory analysis of subjective 
stress before scanning showed that higher reported stress was 
associated with greater global influence (EC) of the left dorsal 
amygdala in males in the PBO condition. These findings indicate 
that the amygdala may be an important locus for attenuating 
stress response in CUD males.

Wilcox and colleagues (17) have suggested that RSFC may be 
an important biomarker for treatment targets in SUDs. In their 
review of RSFC studies in SUD, they concluded that reduced 
connectivity between the salience network and executive control 
network and reduced connectivity within the executive control 
network are the most promising treatment targets for SUD. The 
present study has shown that OXY-related connectivity changes 
in components of the salience network, ACC, and insula are 
important for understanding individual variations in childhood 
trauma severity and cocaine use severity. Consequently, the 
present findings are consistent with the suggestion that the 
salience network is a potential treatment target.

It should be noted that associations between OXY-induced 
connectivity changes and childhood trauma or cocaine use 
severity were not universally in a single direction. In other words, 
higher cocaine use and greater childhood trauma were associated 
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with both increases and decreases in connectivity because of OXY 
relative to PBO. Because this analysis considered a node’s relation 
to all other nodes in the network, it is reasonable that connectivity 
in one region could increase on OXY, whereas connectivity 
in another region could decrease. This is particularly true for 
graph-theory measures like CC and eigenvector centrality, which 
consider not only the direct connections to a node but also the 
connections of the connected nodes.

The two graph-theory properties examined here represent 
different aspects of network organization—local influence 
(CC) versus global influence (EC) of a node on the whole-brain 
network. CC has been investigated in prior rsfMRI studies of SUD 
(78–83), and only one study has examined EC in smokers (83). In 
the present study, both properties showed utility in characterizing 
network profiles for CTQ and years of cocaine use in CUD, but 
EC explained more variance across models and replications. The 
present findings demonstrate that EC is a potentially more useful 
graph-theory measure to consider when characterizing network 
profiles associated with individual differences in CUD. However, 
CC was more sensitive to changes in RSFC because of OXY.

Limitations
One potential limitation of the present study is that we did not 
examine executive control network connectivity directly but 
focused instead on the influence of salience network, amygdala, 
and striatum nodes on intrinsic network organization. This 
could be viewed as a missed opportunity given a recent review 
suggesting that executive control network connectivity is a 
promising treatment target for SUD (17). However, the reason to 
limit the number of network nodes in the analysis was to avoid 
overfitting with automatic linear modeling. Nevertheless, the 
graph-theory measures used in this study reflect the connectivity 
of a given node with the entire brain, including frontal regions, 
thereby allowing for more specific hypotheses involving frontal 
cortex connectivity to be tested in future investigations.

The present analysis took several approaches to minimize 
contributions of head motion to graph-theory measures of 
connectivity (i.e., elimination of data sets with excessive head 
motion, temporal censoring, inclusion of six rigid-body head 
motion parameters as nuisance variables), and none of the graph-
theory measures in individual nodes of interest was correlated 
with head motion. Therefore, the effects of head motion did not 
contaminate the measures of connectivity. Nevertheless, there 
are many other approaches to head-motion nuisance regression 
that are more stringent than the approach used in the present 
study [e.g., Ref. (55)], which could be considered a limitation. 
In addition, head motion emerged as a significant predictor of 
years of cocaine use in the final models that resulted from ALM. 
These findings indicate that head motion was associated with the 
outcome variable years of cocaine use. However, this association 
was different in males and females. For males, more years of 
cocaine use was associated with reduced head motion, but for 
females, more years of cocaine use was associated with increased 
head motion. The reason for this gender-specific divergence is 
not immediately apparent, but the present findings suggest that 
the extent of head motion is linked to individual variations in 

cocaine use and should probably be included in analyses even 
when head motion effects on connectivity are minimized.

Another potential limitation is that several substance use 
characteristics were not considered in the analyses but could 
be additional influences on changes in connectivity because of 
OXY. For example, positive THC tests and length of abstinence 
period before scanning could all affect resting-state connectivity 
and change in connectivity because of OXY. Future studies with 
larger samples should examine the influence of these substance 
use variables on OXY treatment response in CUD.

CONCLUSION

In conclusion, this study adds to the evidence suggesting that 
RSFC may be an important biomarker in identifying treatment 
targets in SUDs. Salience network regions, especially the 
ACC, emerged as primary loci for OXY-induced changes in 
connectivity in both men and women with CUD, whereas the 
amygdala was an additional important locus for OXY response 
in males with CUD. These brain regions may serve as potential 
target areas for future OXY-based treatments. In addition, the 
present findings suggest that treatment strategies for CUD need 
to consider gender differences in OXY response.
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