
co
m

m
ent

review
s

repo
rts

depo
sited research

refereed research
interactio

ns
info

rm
atio

n

Open Access2006Macdonald and LongVolume 7, Issue 7, Article R67Research
Fine scale structural variants distinguish the genomes of Drosophila 
melanogaster and D. pseudoobscura
Stuart J Macdonald and Anthony D Long

Address: Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697-2525, USA. 

Correspondence: Stuart J Macdonald. Email: sjm@uci.edu

© 2006 Macdonald and Long; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Structural differences between Drosophila genomes<p>Comparative genomics reveals fine-scale structural variants, including microinversions, distinguishing two diverged Drosophila spe-cies</p>

Abstract

Background: A primary objective of comparative genomics is to identify genomic elements of
functional significance that contribute to phenotypic diversity. Complex changes in genome
structure (insertions, duplications, rearrangements, translocations) may be widespread, and have
important effects on organismal diversity. Any survey of genomic variation is incomplete without
an assessment of structural changes.

Results: We re-examine the genome sequences of the diverged species Drosophila melanogaster
and D. pseudoobscura to identify fine-scale structural features that distinguish the genomes. We
detect 95 large insertion/deletion events that occur within the introns of orthologous gene pairs,
the majority of which represent insertion of transposable elements. We also identify 143
microinversions below 5 kb in size. These microinversions reside within introns or just upstream
or downstream of genes, and invert conserved DNA sequence. The sequence conservation within
microinversions suggests they may be enriched for functional genetic elements, and their position
with respect to known genes implicates them in the regulation of gene expression. Although we
found a distinct pattern of GC content across microinversions, this was indistinguishable from the
pattern observed across blocks of conserved non-coding sequence.

Conclusion: Drosophila has long been known as a genus harboring a variety of large inversions that
disrupt chromosome colinearity. Here we demonstrate that microinversions, many of which are
below 1 kb in length, located in/near genes may also be an important source of genetic variation in
Drosophila. Further examination of other Drosophila genome sequences will likely identify an array
of novel microinversion events.

Background
A major aim of comparative and population genomics is to
elucidate the inter- and intraspecific genetic variation that
contributes to phenotypic change. Understandably, the com-
munity has focused on the most common source of genetic
variation, substitutions at the nucleotide level [1,2]. However,

any catalog of genetic variation is incomplete without an
examination of other, potentially more complex, forms of
sequence-level variation, for example, large insertions and
deletions of DNA, rearrangements, and translocations. Such
events have been shown to be important in human disease
susceptibility [3,4]. Using the tremendous genomic resources
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available for humans and chimpanzees, recent work has char-
acterized the pattern of large deletions segregating within the
human genome [5-8], polymorphic inversions in humans
[5,9], as well as structural genome differences between
humans and chimps [9,10].

Traditionally, species of the Drosophila genus have been an
important system for examining variation in chromosome
structure. This is largely due to the ability to directly observe
such variation from the banding patterns of salivary gland
polytene chromosomes [11]. As a consequence of this tech-
nique it has been shown that large paracentric inversions -
those that do not include the centromere - frequently segre-
gate in Drosophila species [12,13]. Since inversions can
become fixed during evolution, they can also drive architec-
tural differences between the genomes of diverged species.
The species D. melanogaster and D. pseudoobscura diverged
25 to 55 million years ago [14], and comparative analysis of
the sequenced genomes of the two species has shown radical
shuffling of regions within orthologous chromosome arms,
likely via a series of overlapping paracentric inversions [15].
Similar observations have also been made in comparisons of
other Drosophila species [16-18].

Most of the work on Drosophila inversions has examined
those large events, much greater than a megabase in length,
that disrupt chromosome colinearity and gene order. Never-
theless, very small paracentric inversions (below a few kilo-
bases in length) that do not affect gene order may also be
common in Drosophila. Indeed, Negre et al. [19] recently
demonstrated the existence of such microinversions in the
Drosophila genes labial and proboscipedia. Here, we re-
examine the D. melanogaster and D. pseudoobscura
genomes to identify fine-scale structural differences between
the species. Using a gene-by-gene sliding window BLAST
strategy we identify 95 large insertion/deletion events, the

majority of which represent insertions of transposable ele-
ments into one of the two genomes. We also identify 143
microinversions, 77.6% of which are below 1 kb in size.
Sequence conservation within the microinversion is high
(74.9%), suggesting they may harbor functional elements.
Since we find microinversions in introns and immediately
upstream and downstream of transcribed regions, it is plausi-
ble that microinversions act as regulators of alternative splic-
ing and gene expression. Our analyses further confirm the
role of inversions as an important source of genome variation
in Drosophila evolution, showing that inversions in Dro-
sophila can act to rearrange sequences at a sub-genic level.

Results and discussion
Using the genome sequences of the two fruitfly species D.
melanogaster [20,21] and D. pseudoobscura [15], we identi-
fied 11,011 orthologous gene pairs. This is not inconsistent
with the 10,516 orthologs identified by Richards et al. [15].
For each orthologous pair, using a sliding-window framework
we BLASTed overlapping, short 31 base-pair (bp) fragments
of the D. melanogaster gene sequence against the D. pseu-
doobscura ortholog. Recording the details of each BLAST hit
allowed fine-scale structural changes (inversions, insertion/
deletion events) occurring since the separation of the D. mel-
anogaster and D. pseudoobscura lineages to be identified.

The bulk of transcribed DNA sequence in Drosophila does
not code for protein, and may diverge rapidly between spe-
cies. As D. melanogaster and D. pseudoobscura are diverged
by 25 to 55 million years [14], many transcribed regions may
show generally low sequence conservation. In such cases, the
power of any approach to detect fine-scale structural varia-
tion will be limited. Although a pairwise whole-genome align-
ment of D. melanogaster and D. pseudoobscura is available,
just 48% of bases can be reliably aligned [15]. Hence, to be

Table 1

Distribution of fine-scale structural features across chromosome arms

Number of orthologous pairs

Chromosome arm* Tested† Harboring microinversions‡ Harboring intragenic indels‡

X 880 24 (0.111) 12 (0.889)

2L 997 34 (0.003) 19 (0.294)

2R 1,120 7 (<0.001) 15 (0.805)

3L 1,177 21 (0.752) 22 (0.279)

3R 1,560 26 (0.464) 18 (0.297)

All 5 major arms 5,734 112 86

*The chromosome arms are given the D. melanogaster designations, X, 2L, 2R, 3L, and 3R. These arms are known to be orthologous to D. 
pseudoobscura arms, XL, 4, 3, XR, and 2, respectively [58]. †The number of conserved orthologs residing on each arm. ‡Values in parentheses are P 
values from a two-sided Binomial test of whether the number of event-harboring orthologs per arm differs from expectation. For each test, the 
number of trials equals the number of conserved orthologs per arm, the number of successes equals the number of event-harboring genes per arm, 
and the probability of success is equal to the total number of event-harboring genes detected divided by the total number of conserved orthologs 
tested (5,738).
Genome Biology 2006, 7:R67
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confident that tested pairs of sequences are identical by
descent, we examined only transcribed regions showing clear
evidence for orthology. For analysis we retained 5,738/11,011
(52.1%) conserved orthologous gene pairs (see Materials and
methods and Additional data file 1). These orthologs span
42.2 Mb of sequence in D. melanogaster, which represents
35.6% of the 118.4 Mb release 4.2.1 D. melanogaster genome
sequence.

Intragenic insertion/deletion events
We detected 95 large, intronic insertion/deletion events
(indels) distributed across 86 of the 5,738 (1.5%) orthologous
gene pairs: 80 genes have a single indel, three genes have two
indels, and three genes have three indels (Additional data file
2). Since the 5,738 genes span 42.2 Mb of sequence in D. mel-
anogaster, this suggests the rate of large insertion/deletion
events is around 2.3 per Mb. The observed number of indel-
harboring genes on each of the five major Drosophila chro-
mosome arms is not significantly different from expectation
(Table 1). The size of the inserted sequence ranges from 1,372
bp to 46,889 bp (mean 7,869 bp; standard deviation (SD)
7,347 bp), and 79/95 (83.2%) of the indels have the insertion
in the D. melanogaster genome.

Large insertion/deletion events distinguishing orthologous
genomic regions can indicate the presence/absence of trans-
posable elements (TEs) [22]. To examine whether the indels
we detect represent insertions, we used TE annotations for
the D. melanogaster genome sequence [23,24], and also
compared insert sequences against Drosophila TE sequences
using BLAST (see Materials and methods for details). Of the
79 indel events showing the insertion in the D. melanogaster
genome, 70 (88.6%) map to an annotated TE, and 69 of these
also BLAST against known Drosophila TE sequences. For
those indels where the insertion is in the D. pseudoobscura
genome, 6/16 (37.5%) insertion sequences BLAST to TEs.
Since D. pseudoobscura TEs are less well curated than those
of D. melanogaster, it is possible that some/most of the
remaining ten indels with insertions in D. pseudoobscura are
also TEs. Thus, the majority of the indels we identify likely
represent TE insertions.

In our analysis we detect TEs indirectly, and in an unbiased
fashion, via the identification of large indels. Hence, our
observation that the majority of indels have the insertion in
the D. melanogaster genome suggests that D. melanogaster
introns harbor more TEs than D. pseudoobscura introns.
This corroborates the finding of Caspi and Pachter [22] that
most of the identifiable TEs in a four Drosophila species
genome alignment are present solely in the D. melanogaster
lineage, and represent recent insertions in this species. Given
these results, we might suspect that the size of orthologous
introns would be greater in D. melanogaster than in D. pseu-
doobscura. Indeed, while the lengths of orthologous introns
are highly correlated between these species [25], there is a
very slight skew towards larger introns in D. melanogaster

(see supplemental Figure S1 of Richards et al. [15]). However,
Yandell et al. [25] note that while some orthologous introns
with highly divergent lengths in the two species may be due to
TE insertions (validated by results presented here), most of
the differences in the size are subtle and not easily explained
by transposons.

Microinversions
We detected 121 small inversions within 93/5,738 (1.6%)
orthologous gene pairs: 75 genes harbor a single inversion, 10
genes have two inversions, six genes have three inversions,
and two genes have four inversions (Additional data file 3).
On average, there are 2.9 microinversion events per Mb of
transcribed sequence, suggesting that the rate of microinver-
sion may be similar to the rate of large insertion/deletion -
primarily TE insertion - events (2.3 events/Mb, see above).
One of the intragenic inversions (CG31481_inv1) corresponds
to the single D. melanogaster-D. pseudoobscura microinver-
sion detected by Negre et al. [19] in the proboscipedia gene.
The top panel of Figure 1 shows an example of a typical slid-
ing-window BLAST profile, highlighting an inversion event.
One possibility is that the events we identify as microinver-
sions are in fact the result of genome assembly artifacts. To
rule this out, three of the inversions (CG3578_inv1,
CG3936_inv4, and CG32139_inv1) were confirmed by PCR/
resequencing of the inversion breakpoints in both D. mela-
nogaster and D. pseudoobscura. Also, for each of the 54
intragenic microinversion events less than 500 bp in size in
both species we BLASTed the putatively inverted sequence,
including 100 bp flanking each breakpoint, against databases
of shotgun sequencing reads. When the orientation of the
inversion observed in the assembled genome (relative to
flanking sequences) is preserved in one or more reads, we can
be confident that the microinversion events we detect are not
due to errors in genome assembly. Over the 54 inversions, 51
(94.4%) correctly BLAST to at least one read for both species,
and on average, inversions correctly BLAST to 10.0 (6.6)
sequence reads in D. melanogaster (D. pseudoobscura).
There were no BLAST hits to reads with sequences inconsist-
ent with the inversion orientation in the genome assembly.
We conclude that the microinversions we detect are likely
real, and not caused by genome assembly artifacts.

Given our success identifying intronic microinversion events,
we sought to examine those regions flanking the 5,738 con-
served orthologs for microinversions that potentially disrupt
upstream or downstream regulatory domains. We extended
the sequence of each ortholog by 2 kb upstream and down-
stream in both D. melanogaster and D. pseudoobscura, and
repeated our sliding-window BLAST procedure. In compari-
son with our scan of intragenic regions, an analysis of short
regions flanking genes has lower power to detect microinver-
sion events for three reasons. First, intergenic sequence is
generally less conserved than transcribed intronic sequence,
although this difference may be slight [26]. Second, we only
scan 2 kb regions, and thus can detect only microinversions
Genome Biology 2006, 7:R67
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below this size. Finally, outside of transcribed regions synteny
between the two genomes can break down. Richards et al. [15]
report that the average number of genes within a D. mela-
nogaster-D pseudoobscura syntenic block is 10.7, or around
83 kb of sequence. Thus, the intergenic regions we compare
may not always be orthologous.

We discovered 22 microinversions in the 19.7 Mb of unique
intergenic sequence tested, or 1.1 events/Mb (Additional data
file 4). This is proportionally far fewer inversions than we
found in intragenic regions (121 microinversions were
detected in 42.2 Mb of transcribed sequence, or 2.9 events/
Mb), for the reasons stated above. Three of the 22 microinver-
sions were upstream or downstream of genes also harboring
an intragenic microinversion event. In total, over both of our
sliding-window BLAST tests, we identify 143 unique microin-
versions distinguishing the genomes of D. melanogaster and
D. pseudoobscura. These 143 events are in/near 112 different
genes.

In D. melanogaster the frequency of nested genes, genes
residing within introns of other genes, is around 7%, and the
frequency of overlapping genes is around 15% [27]. None of
the microinversions overlap a host gene exon, but 7/143
microinversions overlap an annotated exon from a nested/
overlapping gene in D. melanogaster (Additional data files 3
and 4). These seven microinversions were not identified by
direct scanning of the nested/overlapping genes, presumably
due to low sequence conservation of these genes between D.
melanogaster and D. pseudoobscura. It is unclear what, if
any, effect these seven microinversions may have on the abil-
ity of the orthologous D. pseudoobscura nested/overlapping
genes to function correctly. To verify that the inverted
sequences are single-copy in each of the tested genomes, we
BLASTed the sequence of all 143 microinversions against the
appropriate genome assembly. The sequences of 142/143 are
single copy, while the remaining intronic inversion,
CG1794_inv1, BLASTs six times to the genomes of both D.
melanogaster and D. pseudoobscura. The inverted region in
this case encompasses the cytosolic tRNA gene
tRNA:met3:46A (CR30003) that resides in an intron of the
Matrix metalloproteinase 2 (Mmp2) gene. We detect multi-
ple BLAST hits for this sequence because tRNA genes are
present in multiple copies throughout the fly genome.

The size of the 143 microinversions ranges from 46 bp to
4,006 bp (mean 628 bp; SD 635 bp) in D. melanogaster, and
from 40 bp to 4,408 bp (mean 706 bp; SD 731 bp) in D. pseu-
doobscura. The difference in length between the species is
due to insertion/deletion of nucleotides. There does not
appear to be any strong directional change in microinversion
length between the species, as the D. pseudoobscura arrange-
ment is longer in just 86/143 (60.1%) of cases. Overall, the
majority of microinversions are below 1 kb in both species
(111/143, 77.6%). Using Clustalx version 1.83.1 [28,29] we
aligned each D. melanogaster inversion event sequence with

the corresponding, reverse complemented D. pseudoobscura
sequence. Over the 143 events, ignoring alignment gaps, the
average percent nucleotide identity is 74.9% (SD 12.8%). We
expect a high level of conservation for the identified microin-
versions, as our ability to detect them was contingent on
sequence conservation. Within the D. melanogaster and D.
pseudoobscura genome alignment, only 46% of the D. mela-
nogaster bases are identical [15], and this may generally
obscure the signature of historical inversion events. Thus, the
143 detectable, conserved microinversions likely represent
only a fraction of the events that have occurred since the
divergence of D. melanogaster and D. pseudoobscura. Com-
paring the genomes of more closely related species of Dro-
sophila may reveal much greater numbers of
microinversions.

In total, 112 genes harbor a microinversion within the tran-
scribed region or just upstream or downstream. From Table 1
it is clear there is a significant excess of genes with microin-
versions on D. melanogaster chromosome 2L (Binomial test,
P = 0.003), and a significant dearth on chromosome 2R
(Binomial test, P < 0.001). What is not clear is why this might
be the case, as within the major chromosome arms genes con-
taining microinversions appear to be evenly distributed (Fig-
ure 2). If we consider the position of the intragenic
microinversions within the host genes, they appear to prefer-
entially reside within larger introns. Of the 121 intragenic
microinversions, 82 (67.2%) are within the largest host gene
intron, and 104 (85.2%) are within one of the largest two
introns. Similar values are found when considering only those
genes with greater than four introns (data not shown). How-
ever, within the host intron, the inversions show no positional
preference: over the 121 intronic inversions, the distribution
of the distance between the inversion breakpoints and the
flanking exons (weighted by the size of the host intron) is
approximately uniform (Additional data file 5). These obser-
vations are particularly interesting in light of the recent
observation that longer introns diverge more slowly than
shorter introns in Drosophila [30]. If longer introns are
under selective constraint, they may be expected to contain
many functional motifs, which could be disrupted and/or
shuffled around by an intronic microinversion event.

Impact of microinversions on gene regulation
Comparative genomics seeks to identify functional elements
by examining the pattern of sequence conservation across
species. The rationale behind this approach is that over evo-
lutionary time sequences will diverge, unless they are under
some form of functional or selective constraint. Thus, the
maintenance of sequence conservation despite inversion
makes the microinversion events we describe particularly
interesting, as they may be enriched for functional motifs.
Since the microinversions are present both within introns
and upstream of genes, this brings up the possibility that
inversions might impact the regulation of splicing and gene
expression. For example, shuffling transcription factor bind-
Genome Biology 2006, 7:R67
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ing sites within regulatory domains could alter the ability of
sets of factors to bind in a coordinated fashion, and thereby
up- or down-regulate expression, or alter the timing or tissue-
specificity of transcription.

We examined the position of the 143 microinversion events
we identify relative to annotated regulatory regions in the D.
melanogaster genome. We used two complementary
resources: the DNase I footprint database is a systematically
curated set of 1,362 Drosophila transcription factor binding
sites [31,32], and the REDfly database is a comprehensive col-
lection of 628 known cis-regulatory modules (CRMs;
sequences sufficient to regulate gene expression) in D. mela-
nogaster [33,34]. None of the DNase I footprints overlap the
sequence of any D. melanogaster microinversion. However,
three microinversions are present within a CRM. Microinver-
sion CG31481_inv1, initially detected by Negre et al. [19],
resides in intron 2 of the gene proboscipedia (pb), and is

present within a 10.4 kb sequence showing enhancer activity
[35]. Microinversion CG1030_inv1, situated just 3' of the
gene Sex combs reduced (Scr), is present within a 6.7 kb
region exhibiting enhancer activity [36]. Finally, the inver-
sion CG12287_inv1 resides in intron 3 of the gene POU
domain protein 2 (pdm2), and overlaps a 1.3 kb enhancer
region detected and validated by Berman et al. [37].

Of course, we do not know whether the microinversions we
identify actually have an effect on transcriptional regulation
in the two species. It is possible that in the three cases we
describe the microinversions have no impact on the spacing/
ordering of transcription factor binding sites. This may be
particularly true for the two large enhancer regions, which at
10.4 kb and 6.7 kb likely do not represent the minimal
enhancer. Work on the Sox21b gene, which shows a microin-
version in intron 1 (Figure 1), has demonstrated that the pat-
tern of Sox21b embryonic expression is conserved between D.

Sequence similarity between Drosophila melanogaster (D. mel) and D. pseudoobscura (D. pse) for the Sox21b (CG32139) geneFigure 1
Sequence similarity between Drosophila melanogaster (D. mel) and D. pseudoobscura (D. pse) for the Sox21b (CG32139) gene. Top panel: sliding-window 
BLAST profile. We stepped through D. melanogaster Sox21b gene in 15 bp increments, and at each position BLASTed a 31 bp segment against the D. 
pseudoobscura ortholog. Each line represents a BLAST hit with a score above 45, the endpoints show the position of the hit in each genome, and the color 
of the line represents the orientation of the hit (black = same sequence orientation in each genome, red = different orientations in each genome). Central 
panel: structure of the Sox21b gene in D. melanogaster. Filled boxes represent exons, and open boxes represent untranslated regions (UTRs). Bottom 
panel: VISTA plot. The appropriate region of the D. melanogaster-D. pseudoobscura genome alignment was downloaded from the VISTA Browser [44]. We 
stepped through the alignment in 5 bp increments, and for each 501 bp window calculated the percentage of identical nucleotides between the sequences. 
The plot is shown relative to the D. melanogaster sequence, and represents a smoothed curve through the data using the ksmooth function in the statistical 
programming language R [49]. Areas under the curve are painted if they show >70% nucleotide conservation (dark blue = within an exon, light blue = 
within a UTR, pink = intronic and >100 bp in size).
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melanogaster and D. pseudoobscura [38]. Thus, for this gene
at a particular stage in development, the transcribed microin-
version appears to be neutral with respect to expression pat-
tern. As the community begins to understand more about
binding site biology and the gene regulatory 'code', we may
also be able to determine if the inversions we identify gener-
ally have a significant impact on gene regulation.

Genomic signature of microinversions
In analyzing the breakpoints between the syntenic blocks of
D. melanogaster and D. pseudoobscura, Richards et al. [15]
provided evidence for a D. pseudoobscura-specific break-
point motif, which could in principle effect large inversions
via ectopic exchange. The motif is virtually absent from intron
sequences, and is thus unlikely to be the cause of the microin-
version events we describe here. In bacteria, short (12 to 23
bp) inverted repeat elements have been shown to permit
inversion of the intervening DNA segment [39]. However, the
precise mechanism by which very small inversion events
occur in eukaryotes in unknown.

As an initial investigation into this problem, we examined
whether the DNA sequence about the microinversion events
showed any detectable signature. Richards et al. [15] noted
that breakpoint junctions between syntenic blocks of D. mel-
anogaster and D. pseudoobscura were AT rich. The top panel
of Figure 3 shows data from a sliding-window analysis of
average GC content across the flanking regions and break-
points for the 143 D. melanogaster-D. pseudoobscura micro-
inversions. It is apparent that in both species, GC content in
the flanking region increases slowly towards the inversion
breakpoints, and drops dramatically in the first/last 20 bp of
the inversion. The average GC content for introns (where we
identify most microinversions) is 40.0% in D. melanogaster
and 44.0% in D. pseudoobscura, and 200 bp from the micro-
inversion, GC content returns to this genome-wide average.
Also, the GC content of the inversions themselves is similar to
the intronic average (the average GC content for D. mela-

nogaster inverted sequence is 42.5%, and for D. pseudoob-
scura is 44.6%).

One possibility is that the GC content pattern we observe
across microinversion breakpoints is due not to inversions
per se, but instead to a change in GC content between con-
served and non-conserved sequence: the microinversions we
detect essentially represent conserved sequence, present in
opposite orientation in the two genomes. We extracted
sequence from all 774 conserved non-coding sequence blocks
in the 93 genes harboring intronic microinversions (see
Materials and methods for details), and subjected these to the
same sliding window GC content analysis we performed for
the microinversions. As shown in Figure 3, the pattern of GC
content across microinversion breakpoints (top panel), and
the pattern across junctions between conserved and non-con-
served sequence (bottom panel), is identical. The GC content
patterns across conserved Drosophila sequence are very sim-
ilar to those recorded by Walter et al. [40] for 1,373 blocks of
non-coding sequence conserved between human and Tak-
ifugu rubripes (Fugu). The fact that the pattern is maintained
across vertebrate and invertebrate systems is deserving of
further work.

In an attempt to distinguish microinversions from conserved
blocks based on nucleotide sequence data, we investigated the
frequency of all 5-mer sequence motifs across the boundaries
of the events, and examined the nucleotide compositional
bias at the edges of the events [41]. Neither test clearly distin-
guished microinversions from conserved blocks (data not
shown), suggesting that if there is a general mechanism
underlying Drosophila microinversion, it is not easily dis-
cernible from primary sequence data alone.

Phylogenetic distribution of microinversion events
It is of interest to ask when the microinversions we identify
occurred in the Drosophila lineage, and which arrangement
(standard or inverted) is the ancestral state. Using data from
the 12 recently sequenced Drosophila genomes [42] we
extracted the orthologous regions surrounding 15 of the intra-
genic microinversions. For each region we then performed
the same sliding-window BLAST procedure we describe
above, in each case testing the D. melanogaster and the D.
pseudoobscura orthologs individually against each of the
other 11 species' orthologs. Figure 4 details the results of these
analyses.

For nine of the events (CG6464_inv1, CG9019_inv1,
CG9623_inv1, CG11354_inv1, CG12154_inv1,
CG12287_inv1, CG31762_inv1, CG32139_inv1, and
CG33529_inv1) the data are consistent with the inversion
occurring prior to the divergence of the melanogaster group
of species. For two events (CG3578_inv1 and CG3936_inv4)
the inversion likely occurred prior to the divergence of the
melanogaster subgroup of five species. Three microinversion
events (CG2872_inv3, CG4220_inv1 and CG15455_inv1)

Positions of the 112 microinversion-harboring genes in the D. melanogaster genomeFigure 2
Positions of the 112 microinversion-harboring genes in the D. melanogaster 
genome. Using data from release 4.2.1 of the D. melanogaster genome 
assembly, the physical position of each of the 112 microinversion-
harboring genes is mapped onto the D. melanogaster chromosomes. The 
midpoint of each gene is used to map to chromosome. The centromeres 
for chromosomes 2 and 3 are represented by filled black circles, and the 
positions of microinversion-harboring genes are indicated by vertical blue 
lines.
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GC content across microinversion breakpoints and conserved sequence blocksFigure 3
GC content across microinversion breakpoints and conserved sequence blocks. Top panel: 143 Drosophila melanogaster-D. pseudoobscura microinversions. 
For each microinversion breakpoint we extracted 200 bp flanking the breakpoint and 20 bp internal to the inversion as a contiguous section (we examined 
just 20 bp internal to each inversion breakpoint as the minimum inversion size was 40 bp). For each species, across all sequences for a given inversion 
breakpoint, we calculated GC content for all overlapping 5 bp windows. Each point in the plot represents the mean GC content for a single window. 
Vertical dashed lines indicate the inversion breakpoints. Note that the distance between these lines is variable across inversion events. Bottom panel: 774 
Drosophila melanogaster-D. pseudoobscura conserved non-coding blocks. Using sliding-window BLAST data we identified all blocks of conserved non-coding 
sequence from the 93 genes harboring intronic microinversions (see Materials and methods for details). Sequence data were extracted from in/around the 
conserved blocks and analyzed as described for the microinversion data.
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occurred along the obscura group lineage. Finally, one event
(CG4838_inv1) shows the inverted arrangement in the three
species D. willistoni, D. persimilis, and D. pseudoobscura,
and the standard arrangement in the remaining nine species.
Three explanations are compatible with the phylogenetic dis-
tribution of CG4838_inv1. First, the same inversion may have
occurred independently in the lineage leading to D. willistoni
and in the lineage leading to the obscura group species. Sec-
ond, the inversion may have occurred prior to the divergence
of D. willistoni and the obscura group species, but re-inverted
again in the lineage leading to the melanogaster group of spe-
cies. Alternatively, the state of the CG4838_inv1 microinver-
sion in D. willistoni may not be correct, and the inverted form
may actually be present only in the pair of obscura group spe-
cies. The latter possibility is conceivable as the current draft
assembly of the D. willistoni genome has not been subject to
the same scrutiny as the genomes of D. melanogaster and D.
pseudoobscura.

Due to ascertainment bias (the microinversion must distin-
guish D. melanogaster and D. pseudoobscura) we identify
only a particular subset of Drosophila microinversions. It will
be extremely interesting to extend our analyses to all pairs of
Drosophila species, and place identified microinversions on
the Drosophila phylogeny. We predict that many more micro-
inversions will be identified between other Drosophila spe-
cies pairs, and show different phylogenetic patterns.

Finally, we note that the presence of both the standard and
inverted arrangements of the 15 tested microinversions in
multiple species provides independent support that microin-
versions are real features of Drosophila genome architecture.

Using BLAST to examine genome architecture
A widely used method to examine sequence differences
between/among diverged species is to use VISTA plots of
aligned sequence data [43]. This highly informative method
allows the local nucleotide conservation between species to be
assessed, and VISTA plots can be generated for arbitrary
regions of aligned genomes using a web-based utility [44].
However, while the combination of genome alignment and
VISTA plots has been widely employed, the approach may
miss some architectural sequence features. For instance, in a
VISTA plot comparing two genomes, one is marked as the ref-
erence sequence, and the plot is drawn relative to that
sequence. Thus, insertions/deletions distinguishing the
sequences are not easily seen. This is demonstrated in Figure
1 - in the VISTA plot, using D. melanogaster as the reference
sequence, it is not possible to determine that the D. pseudoo-
bscura Sox21b gene is expanded relative to the D. mela-
nogaster homolog. However, our BLAST approach shows
that this is the case. Also, while there are methods available to
identify rearrangements during genome alignment [45],
these are not readily presented using the VISTA plot format.
Generally, examining VISTA plots of aligned sequence data
may capture much of the important differences between

orthologous regions of diverged species. However, some
ultrastructural features of the sequences may be missed in
some cases. Sliding-window BLAST-based procedures such
as that presented here, or those implemented in the GATA
software package [46], are likely to prove a worthwhile addi-
tion to the armory of those examining the causes and effects
of DNA sequence differences between diverged species.

Conclusion
We describe the use of a sliding-window BLAST-based
approach to examine micro-scale genome architectural fea-
tures. We almost certainly underestimate the actual number
of such events occurring since the most recent common
ancestor of these species, as in general there is considerable
divergence between the genomes. Nevertheless, the microin-
versions we identify in this survey may be a particularly inter-
esting class as they are conserved, and reside in introns or
upstream of genes, and could have regulatory effects on gene
expression and alternative exon splicing. We expect that
microinversions will be fairly frequent in many organisms,
not only Drosophila, and may be a particularly important
source of genetic variation both among species and within
populations.

Materials and methods
Genome sequences and annotation
The genome sequences of D. melanogaster (release 4.2.1) and
D. pseudoobscura (release 1.04), and the annotation features
for D. melanogaster (in GFF v.3 format) were downloaded
from FlyBase [47]. Details of all the D. melanogaster genes
were extracted from the GFF annotation files using a custom
perlscript. Orthologous regions of D. pseudoobscura were
identified via BLAST, using the standalone BLAST executable
function blastall [48].

Sliding-window BLAST comparison of orthologs
Release 4.2.1 of the D. melanogaster genome harbors 13,667
annotated protein-coding genes, each represented by a
unique CG identifier. We identified 11,011 D. melanogaster
protein-coding genes having orthologs in D. pseudoobscura.
For each D. melanogaster gene sequence we scanned through
the sequence in 15 bp steps, at each step BLASTing a 31 bp
query sequence against the putative D. pseudoobscura
ortholog. This was accomplished using a custom perlscript
calling the standalone BLAST executable function bl2seq
[48]. For each 31 bp D. melanogaster query sequence, we
recorded the position, score, orientation and sequence of the
best BLAST hit within the D. pseudoobscura ortholog. Only
BLAST hits with scores above 45 were considered in further
analyses. There were 5,738 orthologous pairs with at least two
above threshold BLAST hits, and greater than 5% of the D.
melanogaster gene sequence showing above threshold hits.
Only these genes were retained for further analysis (Addi-
tional data file 1).
Genome Biology 2006, 7:R67
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Identification of structural features
A custom script written in the freely available statistical pro-
gramming language R [49] was applied to each of the result-
ing sliding-window ortholog BLAST files. Inversions were
recognized as at least two consecutive, above-threshold
BLAST hits, where the D. melanogaster query sequences
BLAST D. pseudoobscura in reverse orientation, and the
order of the hits in the two genomes is reversed (that is, the D.
melanogaster query sequences A-B-C-D-E are reverse com-
plemented in D. pseudoobscura, and in reverse order E-D-C-
B-A). We placed no restriction on the distance between
BLAST hits defining a microinversion to avoid identifying
only small events with high levels of nucleotide conservation
throughout their length. This means that the threshold of
nucleotide conservation required to detect a microinversion
is not a constant across the genome. Large insertion/deletion
events distinguishing the two genomes were also identified.
To be detected, the endpoints of the BLAST hits flanking the
insertion had to be separated by greater than 1 kb, and be 10
times more distant than the endpoints flanking the deletion.

Plots for all 5,738 genes were manually checked to ensure the
accuracy of our automatic scripts (Additional data file 6 [50]).
Also, since we analyzed each gene independently, and genes
can overlap in the Drosophila genome [27], we ensured that
the inversion and insertion events we describe are unique.

Testing for transposable element insertion
To test whether the large insertion/deletion events we
observe are the result of TE insertion, we performed two tests.
For those events where the insertion is in the D. mela-
nogaster genome, we compared the position of each insertion
with the positions of 6,013 TEs annotated in the D. mela-
nogaster genome [23,24]. No corresponding database exists
for D. pseudoobscura. Second, using BLAST we compared
each insertion sequence to a set of TE sequences identified in
Drosophila. These sequences are present in the file
'D_mel_transposon_sequence_set.fasta' (version 9.4.1)
available from the BDGP natural transposable element
project website [51].

Phylogenetic distribution of fifteen microinversion eventsFigure 4
Phylogenetic distribution of fifteen microinversion events. For 15 microinversions distinguishing the genomes of D. melanogaster and D. pseudoobscura, we 
examined orthologous regions from 10 other Drosophila species to determine whether they harbor the standard (St; D. melanogaster-like) or inverted (In; 
D. pseudoobscura-like) arrangement. Some species could not be reliably shown to have either arrangement (shown with a dash). A consensus phylogeny of 
the 12 species is provided. The microinversion events are grouped according to phylogenetic position, and mapped onto the consensus phylogeny.
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Confirmation of microinversion events
To ensure that inferred inversion events are not generally the
result of genome assembly errors we designed 1 kb PCR
amplicons about three of the inversion events: CG3578_inv1,
CG3936_inv4, and CG32139_inv1. Products were amplified
in the fly strains used for genome sequencing, that is, D. mel-
anogaster stock number 2057 (Bloomington stock Center) or
D. pseudoobscura stock number 14011-0121.94 (Tucson Dro-
sophila species stock center). Accuracy of the genome assem-
blies was confirmed via dideoxy sequencing. PCR/sequencing
oligos are available in Additional data file 7.

The orientation of a putatively inverted sequence in a genome
assembly is likely correct if, relative to the flanking sequences,
the orientation is preserved within one or more single shot-
gun sequencing reads. Hence, for the 54 intragenic microin-
version events less than 500 bp in size in both species, we
extracted the sequence of the inversion and the 100 bp flank-
ing each breakpoint, and BLASTed against the appropriate
genome shotgun trace archive database using Mega BLAST
[52].

GC content analysis
For each breakpoint of the 143 D. melanogaster-D. pseudoo-
bscura microinversions we extracted a contiguous segment of
220 bp (200 bp flanking the breakpoint, and 20 bp internal to
the inversion) from each species. For each species, independ-
ently for each breakpoint, across all sequences we calculate
GC content for all overlapping 5 bp windows.

Conserved blocks were defined on the basis of the D. mela-
nogaster-D. pseudoobscura sliding-window BLAST proce-
dure described above. In the microinversions we identify, the
average number of above-threshold BLAST hits per 100 bp of
D. melanogaster sequence is 1.6. We therefore defined a con-
served block as a sequence having at least 1.6 BLAST hits per
100 bp of D. melanogaster sequence. All of these hits must be
between sequences having the same orientation in the two
genomes. Furthermore, the 200 bp flanking each edge of the
block must be free of above-threshold BLAST hits. Finally, the
conserved blocks must be at least 200 bp in length in both
species, and no part of the conserved blocks or flanking
sequence can be exonic. Using these rules we identified 774
blocks of non-coding sequence conserved between D. mela-
nogaster and D. pseudoobscura in the 93 genes harboring
intronic microinversions. To examine GC content change
across the boundaries of conserved and non-conserved
sequence, using the 774 blocks we performed an analysis
identical to that described for the microinversion breakpoints
above.

Phylogenetic distribution of microinversion events
For 15 intragenic microinversion events (CG2872_inv3,
CG3578_inv1, CG3936_inv4, CG4220_inv1, CG4838_inv1,
CG6464_inv1, CG9019_inv1, CG9623_inv1, CG11354_inv1,
CG12154_inv1, CG12287_inv1, CG15455_inv1,

CG31762_inv1, CG32139_inv1, CG33529_inv1), we identi-
fied the surrounding orthologous regions from 10 other Dro-
sophila species using BLAST via the DroSpeGe website [53].
For each of the 15 regions we performed the sliding-window
BLAST protocol described above, testing the D. melanogaster
sequence and the D. pseudoobscura sequence independently
against sequence from every other species. The presence of
the standard (D. melanogaster-like) or inverted (D. pseudoo-
bscura-like) sequence arrangement was recorded in each
case.

Orthologous sequences were extracted from the following
assemblies: dsim_wu050602 (D. simulans), dsec_br051028
(D. sechellia), dyak_caf051213 (D. yakuba), dere_caf051209
(D. erecta), dana_caf051209 (D. ananassae),
dper_br051028 (D. persimilis), dmoj_caf051209 (D.
mojavensis), dwil_caf060213 (D. willistoni), dvir_caf051209
(D. virilis), and dgri_caf051209 (D. grimshawi). The D.
simulans and D. yakuba assemblies were provided by the
Genome Sequencing Center, Washington University [54].
The D. erecta, D. ananassae, D. mojavensis, D. virilis, and D.
grimshawi assemblies were provided by Agencourt Bio-
science Corporation [55]. The D. sechellia and D. persimilis
assemblies were provided by the Broad Institute [56]. The D.
willistoni assembly was provided by the J. Craig Venter Insti-
tute [57].

Additional data files
The following additional data files are available with the
online version of this article. Additional data file 1 is a spread-
sheet providing details of all 5,738 genes that are sufficiently
conserved between Drosophila melanogaster and D. pseu-
doobscura to be tested. The number of microinversions and
insertion/deletion events detected within each gene is also
indicated. Additional data file 2 is a spreadsheet giving details
of all 95 insertion/deletion events. Additional data files 3 and
4 are spreadsheets giving details of all 121 microinversions
detected within genes, and all 22 microinversions detected
upstream and downstream of genes, respectively. Additional
data file 5 is a PDF showing histograms of the distance
between the microinversion breakpoints and the nearest
flanking exon for the 121 intragenic microinversions. Addi-
tional data file 6 is a zipped directory holding 5,738 PDFs,
each showing a sliding-window D. melanogaster-D. pseudoo-
bscura BLAST profile for a conserved pair of orthologs [50].
Additional data file 7 is a text file providing the sequences of
the PCR/sequencing oligos used for microinversion valida-
tion.
Additional data file 1Details of the 5,738 conserved orthologous gene pairs examinedTabulated data on all 5,738 tested orthologous gene pairs. Each row of the table represents a gene. The columns of the table are as fol-lows: Column 1 ('CG') holds the CG identifier for the gene. Column 2 ('gene.name') holds the name of the gene, if any. Column 3 ('Dmel.geneINFO') gives the position of the gene within release 4.2.1 of the Drosophila melanogaster genome. Column 4 ('Dpse.geneINFO') gives the position of the gene within release 1.04 of the D. pseudoobscura genome. Column 5 ('num.exons') gives the number of exons in the gene. Column 6 ('Dmel.gene.bp') provides the length in base pairs of the gene in D. melanogaster. Column 7 ('BLASThit.bp') gives the amount of D. melanogaster sequence, in base pairs, included in the set of above-threshold slid-ing-window BLAST hits. Column 8 ('num.BLASThits') holds the number of above-threshold sliding-window BLAST hits. Column 9 ('num.inserts') gives the number of large insertion/deletions events detected in the gene. Column 10 ('num.inversions') gives the number of microinversion events detected in the gene.Click here for fileAdditional data file 2Details of the 95 large insertion/deletion events detectedTabulated data on all 95 large insertion/deletion (indel) events detected. Each row of the table represents an indel. The columns of the table are as follows. Column 1 ('CG') holds the CG identifier for the gene. Column 2 ('Dmel.chr') gives the D. melanogaster chro-mosome on which the gene resides. Columns 3, 4, and 5 ('Dmel.geneSTART', 'Dmel.geneSTOP', and 'Dmel.geneORIENT') give the gene start position, stop position, and orientation, respec-tively, in release 4.2.1 of the D. melanogaster genome assembly. Column 6 ('Dpse.chr') gives the D. pseudoobscura chromosome on which the gene resides. Columns 7, 8, and 9 ('Dpse.geneSTART', 'Dpse.geneSTOP', and 'Dpse.geneORIENT') give the gene start position, stop position, and orientation, respectively, in release 1.04 of the D. pseudoobscura genome assembly. Columns 10 and 11 ('Dmel.insSTARTREL' and 'Dmel.insSTOPREL') give the position of the indel relative to the start of the host D. melanogaster gene. Columns 12 and 13 ('Dmel.insSTART.genome' and 'Dmel.insS-TOP.genome') give the position of the indel in release 4.2.1 of the D. melanogaster genome assembly. Columns 14 and 15 ('Dpse.ins-STARTREL' and 'Dpse.insSTOPREL') give the position of the indel relative to the start of the host D. pseudoobscura gene. Columns 16 and 17 ('Dmel.LEN' and 'Dpse.LEN') provide the lengths of the insertion/deletion in each genome. Column 18 ('insert.species') notes the species harboring the insert. Column 19 ('insert.amount') notes the amount of DNA inserted in base pairs. For those indels showing the insertion in D. melanogaster column 20 ('Dmel.insert.annot.TE') notes if the insertion overlaps the position of a known transposable element in the D. melanogaster genome. Column 21 ('insert.BLAST') shows the type of transposable ele-ment, if any, the inserted sequence BLASTs to.Click here for fileAdditional data file 3Details of the 121 microinversions detected within genesTabulated data on all 121 microinversions detected by scanning regions within genes. Each row of the table represents a microin-version. The columns of the table are as follows. Column 1 ('CG') holds the CG identifier for the gene. Column 2 ('Dmel.chr') gives the Drosophila melanogaster chromosome on which the gene resides. Columns 3, 4, and 5 ('Dmel.geneSTART', 'Dmel.geneSTOP', and 'Dmel.geneORIENT') give the gene start position, stop position, and orientation, respectively, in release 4.2.1 of the D. melanogaster genome assembly. Column 6 ('Dpse.chr') gives the D. pseudoobscura chromosome on which the gene resides. Columns 7, 8, and 9 ('Dpse.geneSTART', 'Dpse.geneSTOP', and 'Dpse.geneORIENT') give the gene start position, stop position, and orientation, respectively, in release 1.04 of the D. pseudoobscura genome assembly. Column 10 ('inv.num') applies an arbitrary number to each microinversion so independent events within a single gene can be distinguished. Col-umns 11 and 12 ('Dmel.invSTARTREL' and 'Dmel.invSTOPREL') give the positions of the microinversion breakpoints relative to the start of the host D. melanogaster gene. Columns 13 and 14 ('Dmel.invSTART.genome' and 'Dmel.invSTOP.genome') give the positions of the microinversion breakpoints in release 4.2.1 of the D. melanogaster genome assembly. Column 15 ('Dmel.exon.over-lap') is a 0/1 vector indicating whether the microinversion overlaps with an annotated D. melanogaster exon. Column 16 ('Dmel.gene.overlap') gives the identifier of the nested gene an inversion overlaps. Column 17 ('Dmel.invLEN') is the length of the microinversion in D. melanogaster. Columns 18 and 19 ('Dpse.invSTARTREL' and 'Dpse.invSTOPREL') give the positions of the microinversion breakpoints relative to the start of the host D. pseudoobscura gene. Column 20 ('Dpse.invLEN') is the size of the microinversion in D. pseudoobscura. Column 21 ('num.Dmel.introns') is the number of introns in the D. mela-nogaster host gene. Column 22 ('Dmel.invINTRON') is the number of the intron within which the microinversion resides, column 23 ('Dmel.invINTRON.size') is the size of that intron, and column 24 ('Dmel.invINTRON.sizerank') is the ranked size of that intron, with a 1 indicating the microinversion is present within the largest intron. Columns 25 and 26 ('Dmel.invINTRON.leftdist' and 'Dmel.invINTRON.rightdist') are distances between the 5'-break-point and the 3'-breakpoint, respectively, of the microinversion and the nearest flanking exon.Click here for fileAdditional data file 4Details of the 22 microinversions detected up- and downstream of genesTabulated data on all 22 microinversions detected by scanning 2 kb regions upstream and downstream of each conserved orthologous gene pair. Each row of the table represents a microinversion. The columns of the table are as follows. Column 1 ('CG') holds the CG identifier for the gene. Column 2 ('Dmel.chr') gives the D. mela-nogaster chromosome on which the gene resides. Columns 3, 4, and 5 ('Dmel.geneSTART', 'Dmel.geneSTOP', and 'Dmel.geneORI-ENT') give the gene start position, stop position, and orientation, respectively, in release 4.2.1 of the D. melanogaster genome assembly. Column 6 ('Dpse.chr') gives the D. pseudoobscura chro-mosome on which the gene resides. Columns 7, 8, and 9 ('Dpse.geneSTART', 'Dpse.geneSTOP', and 'Dpse.geneORIENT') give the gene start position, stop position, and orientation, respec-tively, in release 1.04 of the D. pseudoobscura genome assembly. Column 10 ('inv.num') gives an arbitrary number to each microin-version so independent events within a single gene can be distin-guished. Columns 11 and 12 ('Dmel.invSTARTREL' and 'Dmel.invSTOPREL') give the positions of the microinversion breakpoints relative to the start of the host D. melanogaster gene. Columns 13 and 14 ('Dmel.invSTART.genome' and 'Dmel.invS-TOP.genome') give the positions of the microinversion breakpoints in release 4.2.1 of the D. melanogaster genome assembly. Column 15 ('Dmel.invPOS.relgene') indicates whether the microinversion is 5' or 3' of the test gene. Column 16 ('Dmel.exon.overlap') is a 0/1 vector indicating whether the microinversion overlaps with an annotated exon in D. melanogaster. Column 17 ('Dmel.gene.over-lap') gives the identifier of the nested gene an inversion overlaps. Column 18 ('Dmel.invLEN') is the length of the microinversion in D. melanogaster. Columns 19 and 20 ('Dpse.invSTARTREL' and 'Dpse.invSTOPREL') give the positions of the microinversion breakpoints relative to the start of the host D. pseudoobscura gene. Column 21 ('Dpse.invLEN') is the size of the microinversion in D. pseudoobscura.Click here for fileAdditional data file 5The distribution of microinversion position within host gene intronsFor all 121 microinversions identified by scanning within genes, the distance between each breakpoint and the closest flanking exon was extracted, and divided by the size of the host intron. The plots are histograms of the 121 weighted distances, considering the 5'- and 3'-breakpoints separately. To test the distances against a uni-form distribution we used a two-sided Kolmogorov-Smirnov test, and the results are presented above the plots.Click here for fileAdditional data file 6Sliding-window BLAST profiles for all 5,738 orthologous gene pairs testedThis file is a zipped archive of the sliding-window BLAST profiles (as PDFs) for all 5,738 orthologous gene pairs tested. The file is available at [50]. The name of the plot is the CG identifier for the gene. We stepped through D. melanogaster gene in 15 bp incre-ments, and at each position BLASTed a 31 bp segment against the D. pseudoobscura ortholog. Each line represents a BLAST hit with a score above 45, the endpoints show the position of the hit in each genome, and the color of line represents the orientation of the hit (black = same sequence orientation in each genome, red = different orientations in each genome).Click here for file
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