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Besides locomotion, organ protection, and

calcium–phosphorus homeostasis, the three classical

functions of the skeleton, bone remodeling affects energy

metabolism through uncarboxylated osteocalcin, a recently

discovered hormone secreted by osteoblasts. This review

traces how energy metabolism affects osteoblasts through

the central control of bone mass involving leptin,

serotoninergic neurons, the hypothalamus, and the

sympathetic nervous system. Next, the role of osteocalcin

(insulin secretion, insulin sensitivity, and pancreas b-cell

proliferation) in the regulation of energy metabolism is

described. Then, the connections between insulin signaling

on osteoblasts and the release of uncarboxylated osteocalcin

during osteoclast bone resorption through osteoprotegerin

are reported. Finally, the understanding of this new bone

endocrinology will provide some insights into bone, kidney,

and energy metabolism in patients with chronic kidney

disease.
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The three classical functions of bone are locomotion, organ
protection such as the skull, and calcium–phosphorus
homeostasis. Locomotion has been critical for survival
throughout evolution. Indeed, maintaining an excellent bone
quality with good biomechanical properties is essential for
locomotion and fracture prevention. To achieve this goal,
bone tissue is constantly renewing itself through a physio-
logical process called ‘bone remodeling’, which repairs
microdamage and participates in fracture healing. Bone
remodeling involves specialized cells, starting with osteo-
clasts, which resorb preexisting bone. The osteoclasts then
leave the lacunae, and osteoblasts deposit bone matrix that is
secondarily mineralized to fill the lacunae. In healthy adults,
bone remodeling is well balanced and can be seen as a true
homeostatic function. With aging, major physiological
functions including bone maintenance are altered. Osteo-
porosis, a major age-related disease, is characterized by
unbalanced bone remodeling, low bone mass, and altered
bone architecture, leading to increased susceptibility to
fractures, reduced mobility, and altered quality of life. In
chronic kidney diseases (CKD), bone health is also a major
issue.1,2 CKD-related mineral and bone disorder has been
defined as the systemic disorder of mineral and bone
metabolism because of CKD manifested by one or more of
the following: (1) abnormalities of calcium, phosphorus,
parathyroid hormone, or vitamin D metabolism; (2)
abnormalities in bone turnover, mineralization, volume,
linear growth, or strength; (3) and vascular or other soft
tissue calcifications.1

Bone remodeling is an active process that requires a large
energy input. This led to the hypothesis of Karsenty et al.3

that states that energy metabolism may regulate bone
remodeling. This hypothesis was supported by the following
clinical facts: obesity protects from osteoporosis, low body
mass index increases fracture risk, and osteoporosis develops
in patients with hypogonadism (for example, postmenopau-
sal women, senior men, chemical castration). These observa-
tions suggest that appetite, reproduction, and bone might
be regulated by a common hormonal system. From an
endocrine viewpoint, if energy metabolism is able to regulate
bone remodeling, there must be a feedback loop, and bone
remodeling should affect energy metabolism. In the last few
years, our understanding of these processes has developed
greatly. This article will trace the course of development of
our understanding of this new bone endocrinology.
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ENERGY METABOLISM REGULATES BONE MASS: THE ROLES
OF LEPTIN, SEROTONIN, AND SYMPATHETIC TONE
Association of leptin with bone mass

Leptin was the first focus of research into the link between
energy metabolism and bone mass for several reasons:
(1) leptin is an adipocyte hormone that regulates appetite
(through inducing satiety and increasing energy expenditure)
and reproduction through its receptor expressed in the
hypothalamus and brainstem;4,5 (2) leptin and bone
remodeling emerged at the same time in evolution;6 and
(3) leptin-deficient mice (ob/ob mice) have been observed to
be obese and sterile. The known hypothalamic mediation of
leptin’s regulation of appetite and reproduction is of interest
as most homeostatic functions are hypothalamically regu-
lated, and bone remodeling may be considered as a
homeostatic function. Analyses of bone from ob/ob mice
showed that they have an increased bone mass.7 The bone
mass phenotype of ob/ob mice can be rescued by intracer-
ebroventricular (ICV) infusion of leptin, suggesting that
leptin exerts an indirect influence on bone mass.7

Mechanism of leptin’s influence on bone mass

Further investigations have explored the pathway of leptin’s
indirect control of bone mass. Clinically, human reflex
sympathetic dystrophy is characterized by a rapid onset of
osteoporosis in the affected region with labile vasomotor
activity, trophic skin changes, pain, and swelling, because of
dysregulated sympathetic tone. In some cases, b-blockers
such as propranolol resolve reflex sympathetic dystrophy-
associated symptoms and osteopenia.8 Outside the context of
reflex sympathetic dystrophy, people receiving b-blockers
experience 24–32% reductions in the risk of fractures, as
shown in several large studies (Table 1).9–12 Interestingly,
leptin-deficient mice show a low sympathetic tone. Taken
together, these observations suggest that leptin may exert its
bone control through a neuronal pathway involving the
sympathetic nervous system. This hypothesis has been tested
in a number of in vivo studies.

The first key experiment was a parabiosis experiment in
which one of two ob/ob mice with a surgically established
common blood circulation received ICV leptin. Bone analysis
of both animals showed that bone volume was corrected in
the ICV leptin-treated mouse, but not in the related partner,
suggesting that leptin’s control of bone is exerted in a
neuronal rather than an endocrine manner.13 Moreover, the

treatment of ob/ob mice with isoproterenol, a b-agonist, does
not affect appetite and body weight but does correct bone
volume to normal levels, suggesting that leptin’s effect on
bone may involve b-adrenergic stimulation.13

Further leptin ICV experiments in ob/ob mice, using
chemical ablation of specific nuclei in the hypothalamus,
established that leptin separately inhibits appetite through
the arcuate nucleus and bone mass through the ventromedial
hypothalamus (VMH) nucleus. These experiments indicate
that hypothalamic integrity is required in bone regulation.
However, specific deletion of the hypothalamic leptin
receptor (ObRb) does not inhibit ICV leptin correction,14

suggesting that leptin first acts in a different brain region to
affect a neuromediator that signals secondarily to hypotha-
lamic neurons to modulate bone mass and appetite.

Serotonin as a neuromediator for leptin activity

Serotonin was identified as a candidate neuromediator for leptin
activity on the basis of the clinical observation that antisero-
toninergic antidepressant drugs such as selective serotonin
reuptake inhibitors increase patients’ appetite and osteoporotic
fracture risk,15 supporting a role for serotonin in appetite
regulation and control of bone mass.16 Serotonin is distributed
throughout the body: 95% circulating in blood and 5% in the
brain as a neuromediator. Serotonin does not cross the
blood–brain barrier.17,18 In the brain, serotonin is formed from
tryptophan by the brain-specific enzyme tryptophan hydroxylase
2 (Tph2), which is highly expressed in the brainstem but not in
the hypothalamus. Tph2-null mutant mice with brain serotonin
deficiency have high sympathetic tone and low bone mass
because of high bone resorption and low bone formation.16

Neuronal connection between leptin and serotonin

Further experiments have explored neuronal connections
between leptin and serotonin. Serotoninergic neurons (expres-
sing Tph2) and leptin receptors are both located in the
brainstem, but until recently it was not clear whether these
serotoninergic neurons project on hypothalamic neurons
(VMH) to regulate bone mass. Yadav et al.16 examined this
aspect in four experiments. The first one used mice expressing a
fluorescent protein in the axons of brainstem Tph2þ neurons
through a Cre recombinase-mediated technology to show that
these axons project to the VMH nucleus. The second
experiment demonstrated histologically by anterograde and
retrograde rhodamine dextran axon tracing that VMH neurons

Table 1 | Effect of b-blockers on fracture risk12

Study Study design Subjects Fracture type
Hazard or

odds ratio (95% CI) Reference

SOF Prospective cohort 8412 (13.1% users) Hip 0.76 (0.58–0.99) Reid et al.10

GPRD Retrospective case–control 120,819 controls
(17.6% users), 30,601
cases (16% users)

Any 0.77 (0.72–0.83) Schlienger et al.11

Hip 0.68 (0.52–0.89)
Geelong
Osteoporosis Study

Population-based
case–control

775 controls (14.5% users),
569 cases (10.4% users)

Any 0.69 (0.49–0.96) Pasco et al.9

Abbreviations: CI, confidence interval; GPRD, General Practice Research Database; SOF, Study of Osteoporotic Fractures.
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receive neuronal projections from Tph2 neurons in the
brainstem. The third experiment demonstrated that VMH
neurons express serotonin receptor (Htr2c) and that brainstem
serotonin neurons express leptin receptor (ObRb). In the fourth
experiment, Htr2c–/–-deficient mice have a low bone mass
phenotype that is recapitulated by the double knockout strain
(Htr2cþ /–, Tph2þ /–), genetically establishing the action of
serotonin on bone mass in the hypothalamus.

These experiments demonstrate that serotoninergic brain-
stem neurons (Tph2þ ) project axons to VMH neurons
expressing serotonin receptor (Htr2c) and that serotonin is
the signal link between the brainstem, where leptin acts on its
receptor (ObRb), and the VMH nucleus in the hypothalamus.
Taken together, these studies show that leptin inhibits bone
formation through a serotonin central relay (brainstem to
hypothalamus) and through hypothalamus-generated sympa-
thetic tone (Figure 1). These key studies showed that fat (energy
metabolism) controls bone mass, but did not address whether
bone exerts a reciprocal influence on energy metabolism.

THE ROLE OF OSTEOCALCIN IN REGULATION OF ENERGY
METABOLISM BY THE SKELETON
Esp, an osteoblast-specific gene with a metabolic phenotype

Researchers have examined the role of bone in energy meta-
bolism using a three-step research strategy: identification of

osteoblast-specific genes; generation of global and osteoblast-
specific knockout mutant mice for these genes; and finally
studies of their energy metabolism phenotype.

The candidate gene Esp encodes osteotesticular protein
tyrosine phosphatase, expressed in embryonic stem cells,
Sertoli cells, and osteoblasts, but not in adipose tissue or
pancreas. Its function was initially unknown in mice and
humans. Esp-deficient mice (Esp–/–) have early postnatal
lethality, which is not because of a skeletal defect but because
of low blood glucose at birth. Esp–/– mice have lifelong low
blood glucose and an improved glucose tolerance compared
with wild-type mice.6 Interestingly, these characteristics
reflect hyperinsulinemia, resulting from increased insulin
secretion, increased size and number of pancreatic b-cells,
and improved insulin sensitivity, with reduced visceral fat
and increased adiponectin. Conversely, overexpressing Esp,
specifically in osteoblasts, impairs glucose handling and
induces a type 2 diabetes-like phenotype with reduced
glucose tolerance because of reduced insulin secretion and
increased peripheral insulin resistance. Thus, osteoblastic
expression of Esp regulates pancreatic insulin production and
adipose insulin sensitivity.6 These findings suggested that an
osteoblast-specific tyrosine phosphatase deletion in mice
improves insulin handling and reduces fat mass. However,
osteotesticular protein tyrosine phosphatase is intracytoplas-
mic and therefore cannot act directly on distant cells to
regulate energy metabolism. Therefore, the next question was
to uncover which specific hormone is secreted by osteoblasts
and acts on adipocytes and pancreatic b-cells.

Osteocalcin: a bone hormone regulating energy metabolism

Co-cultures of osteoblasts with adipocytes or osteoblasts with
b-cells showed that an osteoblast-secreted factor regulates
insulin and adiponectin expression. This factor, osteocalcin,
shares several properties with other hormones: secretion,
circulation in blood, and regulation. Indeed, osteocalcin is
present in all vertebrates, is secreted by osteoblasts into the
bloodstream and bone matrix, is specific to osteoblasts, and
exists in carboxylated and uncarboxylated forms, suggesting a
regulatory mechanism. Its function has been unknown
until recently. However, we know that osteocalcin-deficient
mice have a moderate late bone phenotype but an early devel-
opment of obesity, even on a regular diet. The osteocalcin
gene is located in a genomic region that confers risk of
diabetes. Furthermore, the metabolic phenotype of osteocal-
cin-deficient mice is a mirror image of that of Esp-deficient
mice. Osteocalcin-deficient mice have high blood glucose,
hypoinsulinemia, few pancreatic b-cells, and reduced insulin
sensitivity.6 In addition, treating wild-type mice with
continuously infused uncarboxylated osteocalcin increases
insulin secretion, improves glucose tolerance, and in higher
doses also decreases fat mass.19

Osteocalcin has been shown to act partly through
adiponectin, which is secreted by adipocytes in response to
osteocalcin, promotes insulin sensitivity, and is reduced in
obese or diabetic persons. Skeletally, adiponectin is correlated
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Figure 1 | Interactions between bone and energy metabolism.
Leptin inhibits bone formation through a serotonin central relay
(brainstem to hypothalamus) and through hypothalamus-
generated sympathetic tone. In turn, osteoblasts secrete
osteocalcin, a hormone regulating energy metabolism, through its
stimulation on insulin secretion and sensitivity. Adrb2, b2-adrenergic
receptor; AN, arcuate nucleus; Gla-OCN, carboxylated osteocalcin;
Glu-OCN, uncarboxylated osteocalcin; ObRb, leptin receptor;
OST-PTP, osteotesticular protein tyrosine phosphatase;
SNS, sympathetic nervous system; VMH, ventromedial hypothalamic
nucleus. Adapted from Confavreux.22
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with decreasing bone mineral density and independently
predicts low bone mass.5

In humans, epidemiological studies, such as the MrOS
(Osteoporotic Fractures in Men) Sweden study in Swedish
men20 or the First Nations Bone Health Study in Canadian
women of aboriginal and European heritage,21 have found
that osteocalcin levels are negatively correlated with fasting
blood glucose in non-diabetic subjects.

In conclusion, osteocalcin is an osteoblast hormone
regulating energy metabolism through its effects on insulin
secretion and sensitivity. Osteoblastic osteocalcin secretion is
partly controlled by the hypothalamus through sympathetic
tone. Sympathetic tone is in turn controlled by leptin
through serotoninergic signaling from the brainstem to the
hypothalamus (Figure 1).22,23

Osteoblast transcription factors involved in energy
metabolism

Osteoblasts are regulated by the osteoblast transcription
factors, Osx and Runx2, which induce mesenchymal cells to
differentiate into osteoblasts. Activating transcription factor 4
(ATF4) belongs to the cAMP-responsive element-binding
protein transcription factor family, is regulated by sympa-
thetic tone, and controls osteoblast functions such as bone
formation, matrix mineralization, and receptor activator of
nuclear factor kB ligand production. ATF4 also regulates
osteoblast endocrine functions by inducing Esp and Ocn
(the osteoblast endocrine genes). Indeed mice deficient in
ATF4 show enhanced glucose tolerance and insulin sensitiv-
ity.24 The transcription factor FoxO1, which upregulates the
enzymes of gluconeogenesis, is regulated by insulin.25

Deleting FoxO1 specifically in osteoblasts reduces Esp
expression and increases osteocalcin, resulting in a metabolic
phenotype protective against diabetes (Figure 2).26

Connection between osteocalcin and insulin signaling
through bone remodeling

Until recently, experiments had not yet elucidated how the
tyrosine phosphatase osteotesticular protein tyrosine phos-
phatase influences synthesis or activity of the hormone
osteocalcin. Moreover, it was not established whether this
process exists in humans as ESP in humans is a pseudogene.
From an endocrine perspective, the fact that osteocalcin
affects insulin raised the hypothesis that insulin should affect
active osteocalcin in a feedback loop. A recent study by
Ferron et al.27 provided a new key step in deciphering the
interactions between bone and energy metabolism (Figure 3).
Ferron et al. showed that insulin receptor (InsR) is expressed
in osteoblasts and, interestingly, that mice lacking InsR
specifically in osteoblasts have high blood glucose, low serum
insulin, and altered glucose tolerance. Uncarboxylated
osteocalcin was decreased in these mice. Karsenty’s group27

established genetically that InsR in osteoblast and osteocalcin
were in the same genetic pathway, as double-mutant hetero-
zygous mice (InsRob

þ /–; Ocnþ /–) have the same impaired
glucose metabolic phenotype as osteocalcin-deficient mice

(Ocn–/–). Next, they showed that insulin affects active
osteocalcin in two ways: (1) insulin receptor is a substrate
of the tyrosine phosphatase osteotesticular protein tyrosine
phosphatase in mice and of protein tyrosine phosphatase 1B
in humans; and (2) insulin receptor-deficient mice (InsR ob

–/–)
have decreased bone resorption because of overexpression of
osteoprotegerin, which blocks osteoclastogenesis and bone
resorption. During bone resorption, the osteoclast vacuolar
proton pump acidifies the sealed extracellular compartment,
which decarboxylates osteocalcin into active uncarboxylated
osteocalcin released into the bloodstream. This was estab-
lished using osteoclast proton pump Tcirg1-deficient mice
(Oc/Oc), which have an impaired glucose phenotype. In
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Figure 2 | Osteoblast signaling pathways involved in energy
metabolism regulation. Effects of insulin and sympathetic
nervous system (SNS) on osteocalcin (OCN), osteotesticular
protein tyrosine phosphatase (OST-PTP), and osteoprotegerin
(OPG). Adrb2, b2-adrenergic receptor; ATF4, activating
transcription factor 4; InsR, insulin receptor. Adapted from
Confavreux.22
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Figure 3 | Insulin and bone resorption affect circulating
uncarboxylated osteocalcin (Glu-OCN). Insulin binds its
receptor (InsR), which reduces osteoprotegerin (OPG) expression,
thus enhancing osteoclast formation and activity. During bone
resorption, acidification of the extracellular compartment
decarboxylates inactive osteocalcin (Gla-OCN) to Glu-OCN.
Glu-OCN is then released into the blood stream to affect target
tissues. OST-PTP, osteotesticular protein tyrosine phosphatase.
Adapted from Cell,27 with permission from Elsevier.
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contrast, wild-type mice treated with receptor activator of
nuclear factor kB ligand to obtain high bone resorption have
an improved glucose tolerance.27

In summary, insulin signaling in osteoblasts improves
glucose handling directly by increasing secretion of active
uncarboxylated osteocalcin and indirectly by enhancing
bone resorption, which releases uncarboxylated osteocalcin
into the bloodstream; uncarboxylated osteocalcin then affects
energy metabolism. Together, these findings raise many
metabolic questions regarding the level of bone remodeling
in diseases, and the effect of widely used antiresorptive
therapies.

INSIGHTS INTO BONE, KIDNEY, AND ENERGY METABOLISM

The role of leptin in bone, kidney, and energy metabolism is
still under investigation. Recently, it was shown that leptin
administered to leptin-deficient mice stimulated fibroblast
growth factor-23 synthesis and inhibited renal 1a-hydrox-
ylase. Thus, leptin reduces serum calcium, serum phosphate,
and active 1,25(OH)2D3 formation. Leptin replacement in
ob/ob mice also significantly reduced renal NaPi-2a, NaPi-2c,
and 1a-hydroxylase expression. These effects required the
leptin receptor, as mice lacking leptin receptor (db/db) did
not increase Fgf-23 or 1a-hydroxylase expression in response
to leptin.28 Moreover, leptin appears to promote osteoblastic
differentiation of vascular smooth muscle cells and thus may
contribute to vascular calcification stimulated by hyperphos-
phatemia in CKD.29,30

Some other bone–energy–kidney connections have also
been suggested. In patients with CKD, serum adiponectin is
inversely correlated with integral and cortical volumetric
bone mineral density and cortical thickness, and serum
osteocalcin is positively correlated with serum adiponectin.31

A randomized controlled trial is currently examining the
effect of vitamin D supplementation on insulin resistance,
serum adiponectin, serum osteocalcin, and multiple inflam-
matory markers in patients with CKD.32

In conclusion, the nascent field of bone–energy metabo-
lism, a paradigm of integrative physiology, has only been
made possible by the onset of mouse genetics.23 Future
research is needed to decipher the mechanisms of the
bone–energy endocrine axis and its relationship to other body
systems. The transfer of discoveries made in mouse models
into research in humans is in progress.
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