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1 Unidad Monterrey, CIMAT, Monterrey, N.L., México, 2 Consejo Nacional de Ciencia y Tecnologı́a, México
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Abstract

The Effective Reproduction Number Rt provides essential information for the management

of an epidemic/pandemic. Projecting Rt into the future could further assist in the manage-

ment process. This article proposes a methodology based on exposure scenarios to perform

such a procedure. The method utilizes a compartmental model and its adequate parametri-

zation; a way to determine suitable parameters for this model in México’s case is detailed. In

conjunction with the compartmental model, the projection of Rt permits estimating unob-

served variables, such as the size of the asymptomatic population, and projecting into the

future other relevant variables, like the active hospitalizations, using scenarios. The uses of

the proposed methodologies are exemplified by analyzing the pandemic in a Mexican state;

the main quantities derived from the compartmental model, such as the active and total

cases, are included in the analysis. This article also presents a national summary based on

the methodologies to illustrate how these procedures could be further exploited. The sup-

porting information includes an application of the proposed methods to a metropolitan area

to show that it also works well at other demographic disaggregation levels. The procedures

developed in this article shed light on how to develop an effective surveillance system when

information is incomplete and can be applied in cases other than México’s.

Introduction

Simple compartmentalized epidemiological models have proven their usefulness for different

infectious agents. Nevertheless, to model an infectious process at a regional or global level, it is

important to consider the structure of subpopulations and their heterogeneous relations

because, frequently, they are induced by the spatial structure and the associated mobility [1–4].

Following this approach, reaction-diffusion models on metapopulation networks have played

an essential role in journals with a physics focus [5–7]. Even though several theoretical results

can be derived, the parameter selection or statistical inference in these models has been done

with numerically intensive methods like Markov Chain Monte Carlo (MCMC), Approximate

Bayesian Computation (ABC), or Particle Filtering, that involve Monte Carlo simulations with
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algorithms such as Gillespie or Agent-Based [8, 9]. This characteristic prohibits their use for

regions where the total population size is of the order of hundreds of millions of inhabitants.

This article considers a SEIRD compartmental epidemiological model that describes the

most important transmission characteristics of COVID-19. It is assumed that the cities, or

states, go through an epidemiological evolution described by the compartmental model and

that such evolution is related to the inhabitants’ mobility between these locations. The mobility

between subpopulations is integrated into the model through the evolution of the effective

reproduction number Rt of each subpopulation and exposure scenarios. This number not only

captures the intrinsic dynamics of the pandemics in a subpopulation and the impact of the

interaction with other subpopulations, but it also captures the dynamics related to autono-

mous controls and the instruments that local and national governments implement, such as

the social distancing of the inhabitants [10]. An essential aspect of the present work is that it

employs exposure scenarios; such scenarios intend to reflect plausible conditions of the evolu-

tion of the pandemic.

The emergence of SARS-CoV-2 has motivated the publication of a plethora of epidemic

models and methods to target specific questions based on particular local circumstances and

available data. Many of these works highlight the importance of questions beyond the predic-

tion of the number of cases and/or propose new models/methods to introduce relevant vari-

ables that characterize this virus, its evolution in the individuals, local population

characteristics or local interventions implemented by governments. For example, in [11] the

authors address the non-pharmaceutical intervention (NPI) known as test-trace-and-isolate

(TTI), to study its effectiveness and the existence of a stable equilibrium at low case numbers.

There are other works that propose epidemiological models used in conjunction of the analysis

of scenarios. For example, [12] proposed a change point estimation for the transmission rate β
of a SIR model, with a predefined number of change points. The scenario specification is

relaxed using Bayesian MCMC and introducing prior distributions for the transmission rate

associated with a percentage of decrease after each change point. The change point analysis of

Rt (or β(t)) can reflect the encouraged social distancing and mobility restrictions; however as

new controls are implemented, the marginal effects can be confounded in the resulting Rt (β
(t)). Other works extend compartmental models to heterogeneous populations introducing

compartments and parameters, for each subpopulation, that can describe the within and

between contacts. These types of models, also known as patch models, have been studied in

works such as [2, 13, 14]. Their findings shed light on the heterogeneity/mobility impact on

the resulting R0, Rt, but due to the large number of parameters usually involved, even for mod-

erate numbers of subpopulations, performing statistical inference is prohibitive.

The main goal of this work is to introduce a tool, based on exposure scenarios, for regional

epidemic management under incomplete data. The tool consists of a SEIRD compartmental

model with a parametrization based on age groups and data from different publicly available

sources. In this context, incomplete data means a situation where not all the data necessary to

satisfactorily estimate the SEIRD model are available. The proposed parametrization allows

that the parameters in the SEIRD model can be elicited from other sources. The data employed

in such a parametrization comprises mobility, population density, the prevalence of comorbid-

ities in a region, among others.

The reparametrized SEIRD model in conjunction with its confidence bands is called the

epidemiological calculator (EC). The EC provides approximations of the evolution of several

essential features that could assist the authorities in managing an epidemic. These features

include, but are not restricted to, active cases, the total population infected at the end of the

pandemic, and the number of deaths. The EC also allows a better evaluation of the time-

dependent effective reproduction number and computing better approximations of crossings
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consulted at: Clave Única de Establecimientos de

Salud (CLUES). Secretarı́a de Salud; 2021. http://

www.dgis.salud.gob.mx/contenidos/intercambio/

clues_gobmx.html. Available upon request to the

corresponding institutions/entities: The database

provided by Google, COVID-19 Community

Mobility Reports; 2021 (https://www.google.com/

covid19/mobility/) shows daily epidemic

information but does not provide historical data. A

contact for the COVID-19 Community Mobility

Reports for Mexico is accesoabierto@conacyt.mx,

managed by the Mexican National Council of

Science and Technology (CONACYT). Some

reports about mobility have been published on the

website: https://salud.conacyt.mx/coronavirus/

investigacion/proyectos/movilidad.html, a website

managed by CONACYT. The database for the

Mexican Health care units’ information from the

IRAG Network (2021) may contain sensitive

individual information (https://www.gits.igg.unam.

mx/red-irag-dashboard/reviewHome), and it IS

NOT publicly available. A contact for the IRAG

Network is sistema.redirag@salud.gob.mx and the

previous website, which belong to the Mexican

Secretariat of Health.

Funding: JUMU, LLRR, GGF, DIRG All authors

were awarded with the partial support of the grant:

Proyecto No. 20429 INEGI.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0261650
https://epidemiologia.salud.gob.mx/anuario/html/principales_estatal_grupo.html
https://epidemiologia.salud.gob.mx/anuario/html/principales_estatal_grupo.html
https://www.inegi.org.mx/programas/mortalidad/
https://www.inegi.org.mx/programas/mortalidad/
http://www.dgis.salud.gob.mx/contenidos/intercambio/clues_gobmx.html
http://www.dgis.salud.gob.mx/contenidos/intercambio/clues_gobmx.html
http://www.dgis.salud.gob.mx/contenidos/intercambio/clues_gobmx.html
https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
mailto:accesoabierto@conacyt.mx
https://salud.conacyt.mx/coronavirus/investigacion/proyectos/movilidad.html
https://salud.conacyt.mx/coronavirus/investigacion/proyectos/movilidad.html
https://www.gits.igg.unam.mx/red-irag-dashboard/reviewHome
https://www.gits.igg.unam.mx/red-irag-dashboard/reviewHome
mailto:sistema.redirag@salud.gob.mx


of such features like active and hospitalized cases by group age. All these curves contain 95%

confidence bands, based on functional data analysis, to measure their level of uncertainty.

A complete list of the input and output data for the SEIRD model and its parametrization is

presented in Tables 1–7. Besides, the workflow of the EC appears in Fig 1. The process starts

Table 1. SEIRD model parameters based on Nuevo León.

Parameter Epidemiologic Meaning Value Calculation

β Contagious rate Time-varying Estimated from Rt

σ Latency period distribution rate 0.36 (mean 5.56 days) Left constant (explored and adjusted from data and

literature)

αi1 Probability of being asymptomatic for age group i Time-varying Fitted from observed data (see Eq 4)

αi2 Probability of having mild symptoms for age group i Time-varying Fitted from observed data (see Eq 4)

αi3 Probability of being hospitalized in normal bed for age group

i
Time-varying Fitted from observed data (IRAG [36])

αi4 Probability of being hospitalized in ICU for age group i Time-varying Fitted from observed data (IRAG [36])

γ1 Infectious period distribution rate for asymptomatic cases 0.1666 (mean 12 days) Left constant (explored and adjusted from data and

literature)

γ2 Infectious period distribution rate for mild symptoms cases 0.1666 (mean 12 days) Left constant (explored and adjusted from data and

literature)

γ3 Infectious period distribution rate for hospitalized cases in

normal bed

0.1405 (mean 14.24 days) Left constant (explored and adjusted from data and

literature)

γ4 Infectious period distribution rate for hospitalized cases in

ICU

0.1405 (mean 14.24 days) Left constant (explored and adjusted from data and

literature)

δi1 Probability of death for asymptomatic cases for age group i 0 (no deaths for

asymptomatic)

Left constant

δi2 Probability of death for mild symptoms cases for age group i Time-varying Fitted from observed data (COVID-19 data [26], excess

mortality [33])

δi3 Probability of death for hospitalized cases in normal bed for

age group i
Time-varying Fitted from observed data (COVID-19 data [26])

δi4 Probability of death for hospitalized cases in ICU for age

group i
Time-varying Fitted from observed data (COVID-19 data [26])

N Total population size 5, 610, 153 Left constant [31]

Ni Population of age group i N1 = 915, 056

i N2 = 4, 080, 198

N3 = 614, 899

Left constant [31]

https://doi.org/10.1371/journal.pone.0261650.t001

Table 2. SEIRD model variables.

Variable Epidemiologic Meaning

Si Total remaining susceptible in age group i
Ei Exposed individuals in age group i
Ii1; I0i1 Active infectious cases that remain asymptomatic in age group i

Ii2; I0i2 Active infectious cases that have mild symptoms in age group i
Ii3; I0i3 Active infectious cases hospitalized in normal bed in age group i

Ii4; I0i4 Active infectious cases hospitalized in ICU bed in age group i

Yi1 Total accumulated cases that remained asymptomatic in age group i
Yi2 Total accumulated cases that had mild symptoms in age group i
Yi3 Total accumulated cases hospitalized in normal bed in age group i
Yi4 Total accumulated cases hospitalized in ICU bed in age group i
Ri Total recovered cases in age group i
Di Total deceased cases in age group i

https://doi.org/10.1371/journal.pone.0261650.t002
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with the reception and cleaning of México’s COVID-19 data. Such data includes, at the munic-

ipal level, information of daily number of confirmed cases and deaths, the occupancy of regu-

lar and ICU beds in hospitals, and Google’s mobility information. The next step is the

definition of exposure scenarios taking into account the most recent events and conditions for

Table 3. EC parameters based in Nuevo León.

Parameter Epidemiologic Meaning Value Calculation

K Adjustment for excess mortality Depends on population

density

Explored and assumed (excess mortality [33, 35],

population density [31, 44])

Morbi Estimated morbidity for diseases that increase the risk of

developing severe COVID-19

Morb1 = 0.0092

Morb2 = 0.0190

Morb3 = 0.0341

Inferred from observed data (morbidity [32], mortality

[34])

pi3 Proportion of normal beds from observed hospitalized cases in

age group i
0.778 Calculated from observed data (IRAG [36])

pi4 Proportion of ICU beds from observed hospitalized cases in age

group i
0.222 Calculated from observed data (IRAG [36])

pwi Proportion of not hospitalized cases that remain asymptomatic pw1 = 0.7

pw2 = 0.6

pw1 = 0.5

Derived from literature

Npert Number of perturbations to generate confidence bands 100 Left constant

https://doi.org/10.1371/journal.pone.0261650.t003

Table 4. EC inputs.

Parameter Epidemiologic Meaning Value Calculation

Rt Effective reproduction number at time t Time-varying Estimated from observed data

Expt Level of exposure to COVID-19 at time t (defines exposure scenario) Time-varying Explored (Proposed)

Mt Percentage decrease in mobility t Time-varying Shared by the research center INFOTEC

Ci Observed confirmed cases for age group i Time-varying Retrieved from México’s official COVID-19 platform

Hi Observed confirmed cases in hospital for age group i Time-varying Retrieved from México’s official IRAG system

ICUi Observed confirmed cases in ICU for age group i Time-varying Retrieved from México’s official IRAG system

Defi Observed deceased cases for age group i Time-varying Retrieved from México’s official COVID-19 platform

https://doi.org/10.1371/journal.pone.0261650.t004

Table 5. EC outputs.

Variable Epidemiologic Meaning

I Active infectious cases

Y Total accumulated cases

Is1 Active infectious cases that remain asymptomatic

Is2 Active infectious cases that have mild symptoms

Is3 Active infectious cases hospitalized in normal bed

Is4 Active infectious cases hospitalized in ICU bed

Iai Active infectious cases in age group i
H Active hospitalized cases in normal bed

ICU Active hospitalized cases in ICU

Hti Active hospitalized cases (both in normal bed and ICU) in age group i
D Total deceased cases

Di Total deceased cases in age group i
S Remaining susceptible

R Total recovered cases

RIt Effective reproductive number with all infected cases

https://doi.org/10.1371/journal.pone.0261650.t005
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the pandemic for each region under consideration. After this, Rt is estimated from the pan-

demic’s beginning to the current date using confirmed cases’ data. The next action in the

workflow is setting the initial parameters for the SEIRD model using proper

reparametrization in terms of observable available quantities. Then, the SEIRD model is run to

obtain an initial approximation of the epidemic curves. Some parameters are updated using

the information of the first run of the epidemic model (EM). Then, Rt is projected into the

future through a proper weighting of the exposure scenario and the remaining susceptible

population, which produces an Rt curve for all the pandemics. This Rt curve is employed for a

new run of the EM, which generates a new curve for the susceptible population. This new

curve for the susceptible population is used for a new projection of Rt through the weighting

defined before. This process of running the EM and projecting Rt is repeated until Rt con-

verges, which means future projections remain unchanged. With the converging Rt, a final run

of the EM is obtained. Using this last Rt and the EM, epidemic curves are simulated inducing

random perturbation on the initial cases; these curves are employed to determine 95% confi-

dence bands using functional data analysis. Besides, the epidemic curves of the last run of the

EC are used to recalculate a final Rt employing [15] and generate all the possible reported

quantities.

In México, as in most countries, there were delays in data availability regarding the pan-

demic’s evolution that hindered the decision-making process. On the other hand, some vital

data required to get a realistic picture of the pandemic was unavailable. For example, there was

no screening test data to estimate the actual size of the pandemic. These situations created an

incorrect perception of some fundamental aspects of the pandemic; for instance, the Mexican

COVID-19 mortality rate was inflated due to the lack of this information. The EC aims to pres-

ent a better, more realistic picture of an epidemic/pandemic in scenarios with incomplete data

as those described above. For example, it provides approximations of the size of the infected

Table 7. Rt variables.

Variable Epidemiologic Meaning Value

kt Times series of new daily confirmed COVID-19 cases by first symptoms date Observed

ks
t Smoothed times series of new daily confirmed COVID-19 cases by first

symptoms date

Observed

ka
t Times series of new daily confirmed COVID-19 cases by first symptoms date

adjusted for symptoms to confirmation delay

Observed

Delay Distribution of days passed between first symptoms and COVID-19 confirmation Inferred from

observed data

Rt Estimated effective reproduction number Inferred from

observed data

https://doi.org/10.1371/journal.pone.0261650.t007

Table 6. Rt parameters.

Parameter Epidemiologic Meaning Value

σ Standard deviation for the proposed normal distribution for the a priori

probability

Fitted

γ Serial interval for the proposed Poisson distribution for likelihood 1/12 Left constant

R0 Basic reproduction number Left constant

d Number of omitted days at the end of the new daily cases time series 12 days Left

constant

s Window size of moving average for smoothing the new daily cases time series 7 days Left constant

https://doi.org/10.1371/journal.pone.0261650.t006
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population, including undetected cases, and for the level of stress for the local and national

healthcare systems. Thus, the information produced by the EC supports the decision-making

process helping to detect regions requiring more resources and more stringent social distanc-

ing measures.

The epidemiological model proposed in this article assumes that those who recover will

enjoy a period during which they will be immune. Nevertheless, COVID-19 reinfection cases

have been reported [16] and it could require a modification of the proposed model [17]. The

vaccination campaign implemented in several countries will also affect the pandemic’s dynam-

ics, and it may be necessary to incorporate it into the model. The models and the methodolo-

gies proposed in this article can be generalized to include the effect of reinfections and

vaccination. The updating of the newly susceptible and the schedule of the vaccine’s effects will

be accomplished in a future publication. The data to update the model are not yet available in

México (February 5th, 2021), and it is not clear when they will be.

The section “Models and Methods” presents a SEIRD model parametrized with a specific

reparametrization. To exemplify the proposed methodologies, the section “Results and Discus-

sion” presents results obtained from the EC in two examples. In the supplemental material, the

proposed EC is applied to the Metropolitan Area of México City. It is important to remark

that despite the procedures developed in this article are based on México’s case, the ideas and

procedures can be adapted to other frameworks with incomplete data.

Methods

Epidemic model

The base epidemiological model consists in a compartmental SEIRD model with which each

of the subpopulations of interest (states and metropolitan areas) are modeled. This model is

numerically solved given the initial conditions and the values of the parameters.

Fig 1. EC workflow. The figure presents the workflow for the EC.

https://doi.org/10.1371/journal.pone.0261650.g001
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The local model is based on a SEIRD compartmental model, to which we introduce some

synthetic compartments I0s. This allows the consideration of the distribution of time

infectivity with an Erlang distribution. This distribution can capture in a more realistic form

these epidemiological periods and, even though the model here presented considers an Erlang

distribution with parameter of k equals 2, it can be modified easily to consider an arbitrary

value of k.

The local model is applied to each of the m subpopulations, each of them composed

by three subsubpopulations defined by age groups. For each region, the sociodemographic

information is considered to establish the composition of the age groups: 0–9, 10–60 and

60–+ years old. Fig 2 represents the compartmental model for a region; the model is formally

expressed with the equation at (1) which corresponds to the dynamic for the i-th age group

Fig 2. Compartmental SEIRD model for México. The diagram presents the compartmental model to describe COVID-19’s dynamic in México

divided by subpopulations.

https://doi.org/10.1371/journal.pone.0261650.g002
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(i = 1, 2, 3).

_Si ¼ � bðtÞSiI?=N

_Ei ¼ bðtÞSiI?=N � siEi

_I 0i1 ¼ siai1Ei � g1I0i1

_I 0i2 ¼ siai2Ei � g2I0i2

_I 0i3 ¼ siai3Ei � g3I0i3

_I 0i4 ¼ siai4Ei � g4I0i4

_I i1 ¼ g1I0i1 � g1Ii1

_I i2 ¼ g2I0i2 � g2Ii2

_I i3 ¼ g3I0i3 � g3Ii3

_I i4 ¼ g4I0i4 � g4Ii4

_Di ¼ g2di2Ii2 þ g3di3Ii3 þ g4di4Ii4

_Ri ¼ g1Ii1 þ g2ð1 � di2ÞIi2 þ g3ð1 � di3ÞIi3 þ g4ð1 � di4ÞIi4

where d12 ¼ 1 and 0 < di2 < 1 for i ¼ 2; 3:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð1Þ

It is assumed that within a population of size N, the infectious contacts for the group of ages

i result from the interaction between those who are susceptible in i and all those infected in the

population across age groups, identified as I?. Then I? is the total number of infectious individ-

uals who are not in the hospital. This total is across all the severities and age groups, so we

assume that the contact pattern is homogeneous among these groups. At the end of the latent

(exposure) period, the individuals become infectious and this status is divided into four possi-

ble illness scenarios that are defined by the severity of the disease. It is assumed that the indi-

viduals can be asymptomatic infected (I1), experience mild symptoms (I2), develop more

severe symptoms that will require hospitalization in regular bed (I3), or will require attention

in an intensive care unit (I4). It is assumed that the distribution of the exposed individuals that

will develop the different levels of illness can vary by age group [18]. Thus αij> 0, i = 1, 2, 3,

j = 1, 2, 3, 4 where ∑j αij = 1 for i = 1, 2, 3.

Since the severity of the illness may correspond to different infectious periods [19], we con-

sidered four different rates γ1, γ2, γ3 and γ4 for the individuals to be able to complete this

period.

Finally, at the end of the infectious period we assume that an individual can recover (R) or

they die (D). Following the results reported in the literature, like [20], at the beginning we con-

sidered that only the individuals who have experienced important or severe symptoms could

die. However, given the saturation of hospitals and the consequent deaths of infected
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individuals at home, the model was modified to include the possibility that those returning

home could expire. Thus, we assume that the individuals that require hospital attention or an

intensive care unit die with probabilities that vary according to the severity of illness and age

group δij> 0, i = 1, 2, 3, j = 3, 4; and that the people in the age groups i = 2, 3 with mild symp-

toms also can die, with probabilities δi2 > 0.

The model proposed seeks to capture the variations of the most important parameters by

age groups while keeping the model parsimonious. For instance, as initially mentioned, conta-

gions are considered as the effect of a common rate in a population that is mixing without con-

sidering preferences by age groups.

Given the initial conditions and the values of the parameters, the model is solved using the

Runge-Kutta method of order 4 implemented in R [21]. The numeric solution enables incor-

porating non-constant values for β, σ and γj, j = 1, 2, 3, 4, which can be introduced as functions

evaluated at discrete times t0, t1, . . .. Such functions may correspond to constant functions at

certain time intervals, or the values can be linearly interpolated between values at consecutive

time points to obtain a continuous function. This is detailed later. Considering parameters

that vary with time allows contemplating the effects of intervention measures and/or the effect

on the evolution of other related subpopulations. This important element of the global model

will be described later.

For a region r, the SEIRD model with the proper parametrization and confidence bands is

called the epidemiological calculator (EC) for r. As pointed out before, the EC provides

approximations of the evolution of several essential features that could assist the authorities in

managing an epidemic. For regions divided into disjoint subregions, each with a local EC, the

conjunction of all the local ECs is called the global EC. For example, the ECs for the states/

departments in a country combine into a (global) national EC. Adding the local ECs makes it

possible to obtain global approximations of the same quantities that the local ECs provide. In

the following discussions, when considering the EC, it is assumed that it is a local EC unless

stated differently.

México case: An application

We present a way to adjust the parameters in the SEIRD model using the official information

available for México. The methodology results in a reparametrization of the SEIRD model in

terms of observable quantities. This reparametrized SEIRD model, in conjunction with the

confidence bands, is what defines the EC.

The calculator may have multiple applications. In this article, it is used to obtain local

(state) and global (national) projections of some of the variables that help manage an epidemic.

Such a projection is based on scenarios for the local evolutions (states). For example, for a

given exposure scenario, the EC permits estimating the group of asymptomatic, light symp-

toms, or hospitalized cases for each age group; also, it allows to count their consequences in

deaths, recovered, and the remaining susceptible population. It is important to mention that

the EC can be initialized even at the early pandemic stages because it permits updating its

parameters as the pandemic evolves. In the supplemental material, the EC is applied to the

Valle de México metropolitan area to show that it also works at other demographic disaggre-

gation levels.

To initialize the calculator, notice that the value of the transmission parameter β� β(t) can

be established as a function of Rt [22, 23]. Considering that Rt moves faster to zero than the

number of susceptible available, the representation chosen in the present work is

bðtÞ ¼ C � Rt �
N
SðtÞ

; ð2Þ
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where N is the size of the susceptible population and C is a positive constant. After multiple

analysis, it was found that C ¼ 1=E provides the best fit, where E represents the expectation of

the infectious period.

The EC also requires initial information for each stratum about the population density, the

health condition of the population by age group, and excess mortality to initialize its parame-

ters. A complete list of the required information is listed in Figs 3 and 4. The population’s

health condition is measured by the prevalence of the main comorbidities associated with

COVID-19—all of these in accordance with reports from different scientific sources. The EC

also requires the specification of an exposure scenario which is used to project Rt and the epi-

demic curves into the future. The motivation to include in the EC all the information listed in

Figs 3 and 4 comes from reports in the literature suggesting they influence the evolution of the

pandemic.

It is important to emphasize that, in strictly statistical terms, the EC’s parameters are not

estimated. However, proposals about calculating them from external sources and the pandem-

ic’s behavior in time are presented. In this context, we should take into consideration that, for

México and for a long time, the only available information was the number of hospitalized

cases. Fig 1 presents the complete workflow associated with the EC. Later in the section we

describe more detail about the figure. In the following, we describe how mobility information

is employed to project Rt into the future and how all the parameters in the SEIRD model are

adjusted.

Effective reproduction number estimation and projection

A fundamental input to obtain the EC is the contagion rate given by Rt for the whole duration

of the pandemic; that is, it is necessary to determine the observed Rt and its projection to the

future. In the following, is described the process to compute the observed effective reproduc-

tion number Rt and how it is projected into the future based on exposure scenarios.

Observed Rt. The effective reproduction number Rt is a temporal parameter that is calcu-

lated using the Bayesian procedure proposed in [15], based on the elicitation of the parameter

Fig 3. Data workflow 1.

https://doi.org/10.1371/journal.pone.0261650.g003
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σ; the method presented [15] is a dynamic modification of the method developed in [24]. Fig 5

presents the complete workflow for Rt associated with the EC. The proposal in [15] is based on

the number of new symptomatic COVID-19’s cases fktgt2T, T ¼ 0; 1; . . . ;K, where K is the

maximum number of days observed since the beginning of the outbreak.

The procedure also considers that in a particular day t, kt depends on the effective repro-

duction number Rt of that day. To model such dependence, it is assumed that kt|Rt* Poisson
(λt) with λt = kt−1 exp (νRt−1), where ν is the reciprocal of the serial interval. For México we

consider a serial interval of 12 days, i.e. ν = 1/12, in contrast with the 7 days assumed by the

original publication. The serial interval varies from country to country, in accordance with

public policies, as it has been reported in [25].

Fig 4. Data workflow 2.

https://doi.org/10.1371/journal.pone.0261650.g004

Fig 5. Observed Rt workflow.

https://doi.org/10.1371/journal.pone.0261650.g005
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The method in [15] also assumes that the effective reproduction number Rt at day t depends

on Rt−1 through Rt|Rt−1 * Normal(Rt−1, σ), where it is used Normal(μ, ρ) to denote a normal

density with mean μ and variance ρ2. For this continuous-time Hidden Markov Model, the

value of σ is selected to maximize the likelihood of P(k0) � � � P(kK) for the interval of σ pro-

posed. In our case, we observed that it was better to maximize the variance of each stratum

and not the maximum variance of all of the strata. The estimation process is updated as new

information becomes available.

Thus, knowing R0 and the number of new daily cases fktgt2T and using the Bayes Theorem

and the distributions of kt|Rt and Rt|Rt−1, it is possible to calculate the posterior distribution of

Rt|kt. It must be noted that in the reference [15] is used the same value of R0 (=3) for all of the

states of the USA; however, in the case of México, the value of R0 was recalculated for each

state because of the extreme heterogeneity among them.

The new daily cases by the date of the first symptoms are provided by the platform of open

data of the Mexican Government [26]. To compensate for the days that pass between the

beginning of the symptoms and the date of confirmation of COVID-19, the last twelve days

are eliminated to adjust the calculator and Rt. The data of daily new cases is smoothed with a

weighted moving average.

Projection of Rt: Rt, mobility, and exposure scenarios. This subsection discusses how to

project Rt into the future based on exposure scenarios. The exposure scenarios are constructed

from mobility information and the public policies regarding the limitation of social activities.

Discussions highlighting the relation between mobility and Rt and the limitations of only con-

sider mobility for projecting Rt are included.

From the beginning of the pandemic, we searched for reliable sources of mobility informa-

tion. Given the public policies that restricted mobility, the purpose was to evaluate the efficacy

of such measures. The data obtained was provided by Google and Twitter -for more details on

this mobility data, see [27, 28]. We found that the effective reproduction number Rt is corre-

lated with mobility, as reported by [29]. However, as time passes, this correlation decreases

[30]. This situation is caused by a decrement in the size of the susceptible population. Thus, an

accurate description of Rt should include both mobility and the size of the susceptible popula-

tion. This point will be critical for maintaining the EC updated for the different phases of this

pandemic.

The effective reproduction number Rt can be predicted from the rate of mobility previously

described using a linear regression with Autoregressive Moving Average (ARMA) errors.

However, it is well known that these models can provide only short-term predictions. The sup-

porting information includes an exercise where Rt is predicted using a regression model with

ARMA errors. However, the exercise provided us with a good insight of how to construct a

more reliable Rt measurements taking in account the number of susceptible people under

study.

As discussed, it is not possible to perform a prediction for Rt. In this work, instead of pre-

dicting such a quantity, it is proposed to project Rt into the future in terms of plausible expo-

sure scenarios. These scenarios are constructed from the mobility information, the remaining

susceptible population, and the announcements of openings proposed by the state and federal

governments. For the construction of such scenarios, mobility was considered only to the

point where it has been observed.

In Fig 6, three exposure scenarios are presented: the first, in green, represents a scenario in

which the population reduces its exposure to the virus through strong distancing measures

and additional precautions such as hygiene measures and the use of face masks; the second, in

orange, exhibits a scenario with measures of social distancing in those activities where it can be
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implemented; and the third, in red, presents a scenario in which no measures to limit the con-

tagions are applied. These ideas are used to implement the effect of mobility, public policies,

and susceptible populations interacting jointly. The construction of the scenarios was inspired

by the mobility’s weekly variability before the pandemic and during the strictest confinement

measurements. The first scenario is called the restrictive scenario, the second one the con-

trolled scenario, and the third one is the uncontrolled scenario, respectively. The uncontrolled

and the restricted scenarios are defined based on the dynamics before the pandemic and dur-

ing the strictest confinement measurements, respectively; we used the average functional trend

of the observed Rt for the controlled scenario. The results obtained in this work through the

EC strongly depend on these scenarios. Thus, it is required to be constantly monitoring public

policies in each of the population strata under study to be able to calculate them appropriately.

A projection of Rt can be computed through a weighted average of the exposure scenario

and the size of the susceptible population. This procedure requires knowing the size of the sus-

ceptible population in time. Since the susceptible population is unknown, an iterative method-

ology to project Rt using the EC is discussed later. Fig 1 presents a general description of such a

method.

In the following section is discussed a reparametrization of the SEIRD model in the EC.

That is, a method to select the parameters β, σ, αij, γj and δij, i = 1, 2, 3, j = 1, 2, 3, 4 from the

available information for México’s case. To do that, the initial value of the parameters based

on several information sources and international studies are described, and later, they are

changed as functions in time, as described in the next section.

Parameters for the epidemiological calculator

Fig 2 shows all the parameters that need to be adjusted in the SEIRD model in which the EC is

based. In the following, the parameters’ adjustment using available epidemiological, demo-

graphic, mobility, and other types of information for México is presented. As already has been

Fig 6. Exposure scenarios for the state of Nuevo León. The figure presents the observed mobility up to November

19th, 2020; from that point, it shows a projection of the mobility until the most recent date of this study (February

10th, 2021), followed by the three exposure scenarios.

https://doi.org/10.1371/journal.pone.0261650.g006
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mentioned, some of these parameters are constants, and others are functions of time. All the

necessary information is contained in the databases available in [26–28, 31–35]. The informa-

tion contained in IRAG’s network is also used; a summarized version of the data in this net-

work can be found in [36], although the whole database is not public. A complete list of the

variables, parameters, inputs, outputs and the information employed in the adjustment

appears listed in Tables 1–7. Besides, Fig 1 shows the complete workflow associated to the

adjustment of the EC.

Parameter β. As it has been mentioned before, the EC is designed to read the input

parameter β as a time function. Given Rt for the whole duration of the pandemic, β is adjusted

using (2). The functional relation (2) between the effective reproduction number Rt and β is

used to be able to describe the contagion dynamics. This transmission process depends, at

time t, on the mobility, the effective reproduction number Rt, and the size of the susceptible

population under study. In addition, the relation (2) provides us with a stop rule for the input

of new cases into the EC.

It is necessary to determine the observed Rt and its projection into the future to determine

β. The previous section detailed how the observed Rt is calculated. An iterative process was

designed for projecting Rt into the future. This algorithm requires the observed Rt, the

observed mobility, and an exposure scenario. For the observed mobility, the indices provided

by Twitter and Google [27, 28], as we explained before, were considered. The exposure scenar-

ios used as input are analogous to those described in Fig 6. The initial projection of Rt is calcu-

lated considering the observed mobility and a plausible exposure scenario through a linear

regression where the predictor is the observed Rt. This is the initial value in the iterative pro-

cess, every time the data is updated.

This initial projection of Rt is used as an input in the EC. This run of the EC produces a

curve of the susceptible population, which is used for a new projection of Rt through a new

weighting as the one defined before, producing a new curve R0t of Rt. This curve R0t is used as a

new input in the EC, and the previous steps are repeated to determine a new curve for Rt. This

process is repeated iteratively until the curve of the susceptible population remains unchanged,

generating a converging adjustment for the curve Rt. With the infected cases provided by the

last run of the EC, the final version of Rt is calculated outside the EC with the same method

used for the observed Rt [15].

The EC needs to stipulate 21 parameters to run, of which only 5 are not time functions. The

following paragraphs describe a way to determine such parameters.

Parameters σ and γj. As it was specified before, a susceptible person enters the calculator

while the value of β, that depends on Rt, allows it. For an individual in any of the compart-

ments Si, i = 1, 2, 3 in the SEIRD model, the times to enter and leave the calculator are ruled by

the parameters σ, γi, i = 1, . . ., 4. These 5 parameters are not time-dependent but depend on

the conditions of the compartmental model of the severity of the disease. Their values are

assigned in accordance with several epidemiological national registries from the Mexican

National Council of Science and Technology (CONACYT) (e.g. [26]) and others Mexican

institutions such as Secretarı́a de Salud, IMSS, INEGI, and CONAPO. For this task, the Mexi-

can data was also compared with international sources that were issuing reports almost daily,

such as [25, 37, 38], along with multiple reports in Science, Nature, The Lancet, The New

England Journal of Medicine, medRxiv, and reports from CDC, Georgia; and notes from well-

respected international newspapers such as The Economist, Financial Times, The New York

Times, among others. The previous information was complemented by data from websites

such as https://ourworldindata.org/ and https://www.euromomo.eu/.

The parameter σ controls the distribution of the latency period between the moment an

individual is exposed to the virus and the moment it becomes infectious. The parameters γj,
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j = 1, ‥, 4, have a similar role for the time between the infection and its end (recovery or death)

and depend on the compartment Iij but not on the age group i. Table 2 presents a description

of the compartments Iij; besides, Fig 2 illustrates the interpretation of σ and γj.
Parameters δij. The parameters δij, i = 1, 2, 3, j = 1, 2, 3, 4, control the proportion at which

the infected people recover or die. As with β, the parameters δij, in general, depend on time.

The parameter δi1 is always 0, while, for each stratum, the parameters δi3 and δi4 are calculated

from the proportion of people hospitalized in regular beds or intensive care units that die by

age group. For these computations, we consider the reported deaths that occurred until one

month before the considered date, and the change in time is by week; thus, these parameters

become dependent on time. The calculation is based on open official data from the Mexican

Government [26]. Therefore, the parameters δi3 and δi4 are calculated as

di3 ¼
total deceased hospitalized patients in regular bed from groupi

total hospitalized patients in regular bed in groupi
;

di4 ¼
total deceased hospitalized patients in ICU from groupi

total hospitalized patients in ICU in groupi
:

On the other hand, because deaths at home among those with light symptoms began to be

reported, this possibility is added to the model. This is done, for each stratum, through the

equation

di2 ¼ c �
total non-hospitalized deaths in groupi

total deaths in groupi
;

where c is a weighting constant necessary to approximate the excess mortality national curve

within the corresponding group. As before, we consider the reported deaths that occurred

until one month before the end of the reported data and by week. The constant c is considered

to avoid being below the observed deaths.

In some Mexican states, there were no reported deaths in the first age group during part of

the pandemic. Therefore, δ13 and δ14 are set to a value extremely small. In summary, the fact

that δ13, δ14, δ22 and δ32 are playing a role at this stage of the pandemic (February 10th, 2021)

reflects that the groups in the compartments of those that stay at home or are 0–9 years old

have begun to report deaths.

The parameters δij could also be adjusted to reflect the mortality associated with COVID-

19’s sequelae. In México, there is not enough information and evidence in this regard yet;

therefore, such data are not considered yet.

Parameters αij. For each age group i, αij provides the severity of the disease. Because the

infected population that stayed at home with no symptoms or mild symptoms is not directly

observable, we control all the parameters αij through αi3 and αi4. The parameters αi3 and αi4
correspond to cases in regular hospital beds and those hospitalized who already are at ICU or

ultimately will require it, respectively. The αi3 and αi4 were calibrated with data observed in

public hospitals and information from several epidemiological sources that are specified later,

while keeping in mind the sum
P4

j¼1
aij ¼ 1. See Fig 3.

To select the most adequate parameters αij, the method requires the determination of initial

values. For αi3 and αi4 and the age groups i = 1, 2, 3, these starting values are calculated as

ai3 ¼ K � p3 �Morbi;

ai4 ¼ K � p4 �Morbi;
ð3Þ

where K is a positive constant; p3 and p4 correspond to the proportions of occupied regular
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beds and ICUs, respectively; and Morbi represents the prevalence of comorbidities of the age

group i.
The constant K introduces an increment of hospitalizations by COVID-19 with respect to

the comorbidity of 2019; it intends to reflect the excess of mortality reported by the interna-

tional literature [33, 35]. For an accurate depiction of reality, this constant K is computed for

each municipality, considering the population’s density [31]. The proportions p3 and p4 are

calculated by stratum and age group from data reported by public hospitals, which is provided

through the network IRAG (last update 2021–02-10). This data is not public; it is provided by

México’s Secretariat of Health and the Mexican Council of Science and Technology (a summa-

rized version can be found in [36]). The comorbidities Morbi are included to reflect a greater

risk of death or severe complications with COVID-19. These comorbidity indices are calcu-

lated for each age group i and using data from 2019 [32].

On the other hand, the initial values of αi1 and αi2, for the age groups i = 1, 2, 3, are calcu-

lated as

ai1 ¼ pwi � ð1 � ai3 � ai4Þ;

ai2 ¼ ð1 � pwiÞ � ð1 � ai3 � ai4Þ;
ð4Þ

where pw1 = 0.7 for age group 1, pw2 = 0.6 for group 2 and pw3 = 0.5 for group 3, based on what

has been observed in different countries that have been suffering the impact of the pandemic

for several months. These proportions maybe changed in case there are reinfections in age

groups in which it was not expected that reinfections would occur.

Notice that from the previous discussions, it follows that the parameters αij vary from loca-

tion to location.

With the pandemic evolution and using the hospitalization registers available, αi3 and αi4
calculations allow the inclusion of information dependent on time and for the conversion of

trends into functions. Specifically, the initial values of the parameters αij allow the obtention of

a curve of the initial susceptible population. From such curve and the curve of hospital occupa-

tion given by the IRAG network until 2021–02-10, the values of αi3 and αi4 are updated using

the proportion of susceptible who have required hospitalization (regular bed and ICU); that is,

Eq (3) is substituted by such proportions that depend on time. Besides, Eq (4) continues be

employed to compute αi1 and αi2, making them also dependent on time. The same procedure

is used to project the values of αij until the end of the simulation for a particular scenario. Fig 7

illustrates the curves that serve as the base for these calculations. Note that those curves vary

from stratum to stratum and by age group.

It is worth mentioning that the non-hospitalized population refers to the subpopulation of

ambulatory patients, but it is important to consider that the output of non-hospitalized by the

EC cannot be under that curve.

Confidence bands

Given the initial conditions and the parameters’ values (or functions), the EC provides a curve

that solves the epidemiological model (1). This solution does not provide a measure of the

uncertainty for each one of the measurements derived from the EC. To consider a more realis-

tic situation, the entrance of the susceptible population in the EC is perturbed, and confidence

bands based on functional data analysis [39, 40] are constructed. These perturbations spread

through all the epidemic curves and crossings of information.

The calculator provides approximations of multiple curves representing information for

various aspects of the pandemic, e.g., the total number of infected individuals and deaths, and

calculates confidence bands for whatever percentage is chosen. In Fig 8, it can be seen an
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Fig 7. Proportion of the infected population by age group. The figure to the left presents the proportions of the infected population by the severity of the infection in

the 10–59 age group. The figure on the right presents the same information for the 60 years and more age group. The red line represents the trend in persons that require

intensive care, the yellow those that do not require a bed in intensive care and the light blue represents those with light symptoms that do not require hospitalization.

https://doi.org/10.1371/journal.pone.0261650.g007

Fig 8. Active cases in the state of Nuevo León for three scenarios. The figure shows the curves of daily active infected cases

resulting from the dynamics induced by each exposure scenarios.

https://doi.org/10.1371/journal.pone.0261650.g008
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example of 95% confidence bands. Specifically, to obtain these bands, an order induced by the

notion of depth is defined. The resulting order is a centrality measure, and it can be thought of

as an order statistic for curves. Given the definition of depth, the 95% of the deepest curves are

considered in the construction of 95% confidence bands. The confidence region is defined as

the band delimited by the maximum and the minimum of the deepest curves. In other words,

the confidence region is the smallest band that includes 95% of the deepest curves.

Whatever the EC’s application may be, it must be emphasized that the initial parameters

are calculated from external and complementary sources that inform key aspects of the pan-

demic dynamics in the population under study. Thus, confidence bands for the parameters of

the EC are not needed.

Results and discussion

In this section, the EC is applied to the federal states of México. Only the case of the state of

Nuevo León is analyzed in detail. In addition, a national summary based on all Mexican states

is presented. The state of Nuevo León is selected because it includes zones that vary from high

to low population density and for having a metropolitan area with high international

exchange, outstanding industry, banking, and commerce. Besides, Nuevo León has an impor-

tant public and private hospital infrastructure, and the local authorities have implemented a

reasonable monitoring system during the pandemic.

To show that the proposed EC also works at other strata and demographic disaggregation

levels, in the supplemental material, it is presented the case of the Metropolitan Area of México

City, known as Valle de México (Valley of México). This area was selected because of its

national importance as the country’s capital and for being the most populated urban zone in

México; its inhabitants represent 17% of the national population.

Nuevo León

Under the scenarios illustrated in Fig 6, the following are some of the illustrative results pro-

duced by EC for the state of Nuevo León. It includes relevant information about the pandem-

ic’s evolution that can be determined through the projected Rt curve. It is important to

mention that the EC only considers and employs the information up to February 10th, 2021.

From this date on, many significant changes occurred, like new variants, vaccination pro-

grams, and reinfections. The EC can take this information. However, there was no public

information on these changes for México when this work was subject to the first revision.

When analyzing the susceptible population’s curve’s rate of change, it is possible to deter-

mine an endpoint for the pandemic for each of the scenarios. Specifically, it is said that the

pandemic reaches an endpoint when the curve of the number of susceptible individuals

remains almost constant during a prolonged time. Each exposure scenario leads to an end-

point different from the endpoint induced by the other two scenarios. One needs to be careful

when speaking about the endpoint of the pandemic because many factors determine when a

pandemic ends. For instance, if a new variant appears, the pandemic can regain strength, as we

have seen recently.

The calculator was run up to 2021–10-16 to compare the results obtained for each scenario.

At this date, the dynamics generated for each of the three scenarios have arrived at their end-

point. The projected infected, hospitalized, and deceased cases are determined and plotted for

each scenario to contrast the three scenarios; these are possibly the most important results for

the management of the pandemic. Figs 8–10 depict such information, while Table 8 summa-

rize these and other relevant aspects of the pandemic. It must be mentioned that the first offi-

cially infected person in Nuevo León was identified on 2020–03-01; however, the calculator is
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run from the moment there were at least 20 cases until 2021–10-16. The information used to

construct the tables and figures goes from the pandemic’s beginning in Nuevo León until Feb-

ruary 10th, 2021, except for the variable mobility. After that day, the three scenarios are used

to project the dynamic of the pandemic.

Fig 8 shows the active cases for the three scenarios, including its 95% confidence bands.

The active cases are the number of cases that continue being infectious; that is, it results from

the total number of confirmed cases minus the total number of recovered cases and deaths.

The figure also includes the number of the active cases at the peak of the pandemic at the date

the data is presented; for this case, the scenarios have the same maximums.

Fig 9 shows the daily active hospitalizations resulting from the dynamics induced by the

three exposure scenarios with their corresponding 95% confidence bands. For comparison, the

figure also includes the reported active hospitalizations on the last day of this study. It also

indicates the number of the projected active hospitalizations on the peaks of each scenario. As

before, the three scenarios display the same maximum.

Fig 10 presents the curves of cumulative deaths resulting from the dynamics induced by the

three exposure scenarios and their 95% confidence bands. For comparison, the figure also

shows the confirmed reported deaths in black and the difference, expressed as a percentage,

between the projected and reported deaths on the last day of this study. The figure also

includes the total projected deaths at the end of the pandemic. The subreport of COVID-19

related deaths [41, 42] explains the difference between the number of confirmed reported

deaths and the deaths projected by the model.

Fig 9. Active hospitalized cases in the state of Nuevo León for the three scenarios. The figure shows curves for the active

hospitalized cases for each type of hospitalization (regular bed or ICU) resulting from the dynamics induced by the three exposure

scenarios.

https://doi.org/10.1371/journal.pone.0261650.g009
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The previous figures show that the same peaks for the active infected and hospitalized cases.

Nevertheless, as show in Table 8, there is a significant difference in many important variables

between the scenarios.

Fig 11 illustrates the results obtained using the proposed methodology for the calculation of

the effective reproduction number Rt with the information available. Recall that Rt is computed

using [15] in the infected cases generated by the EC under the three possible scenarios. The

drop in value observed in the Rt curves reflects the fact that the information of emerging con-

ditions has not yet been included. At the time of this study, the required information was not

available. This behavior can be corrected, for instance, by just changing the weighting between

the scenario and the susceptible population in the projection of Rt. However, as the missing

data becomes available and is updated, it is simpler to incorporate into the model the new

dynamics corresponding to reinfections, vaccination, and new variants.

Finally, Table 8 contains the projected infectious, hospitalized, and deceased cases at the

pandemic’s endpoint for the three scenarios. The information is presented at different levels of

disaggregation. The table also contains the total susceptible and recovered population.

National

This section presents the national results generated by the EC for the entire country of México.

These findings are obtained by generating, for each of the 32 Mexican states, exposure scenar-

ios analogous to those presented in Fig 6. Since we consider them the most plausible scenarios

for México’s at this moment, only the controlled and uncontrolled exposure scenarios are pro-

duced. Those scenarios are used to project curves of Rt following the procedure previously

described. Thus, for each state are obtained curves for the evolution of infected, hospitalized,

Fig 10. Deceased cases in the state of Nuevo León for the three scenarios. The figure shows the curves of cumulative deaths

resulting from the dynamics induced by the three exposure scenarios.

https://doi.org/10.1371/journal.pone.0261650.g010
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and deceased cases. A picture of the pandemic’s evolution at the national level is obtained by

aggregating the information of the 32 states.

The significant heterogeneity between the states makes us generate the national informa-

tion in the manner described above. This diversity not only reflects differences in economic,

social, and political aspects; it also influences the public policies implemented to limit the pan-

demic in each state. Thus, it seems inappropriate to generate national scenarios as it was done

in the state of Nuevo León’s case. The national results appear summarized in Table 9. They are

analogous to those determined and commented for Nuevo León.

Conclusion

The present work introduces an EC to describe and project the evolution of a pandemic/epi-

demic. The parametrization it employs is mostly based on the public information available for

México at the time the EC was used. This EC constitutes a tool for the regional management of

the phenomena. Even though the fact that, in México, authorities have only provided informa-

tion of infected cases at the hospital- regular beds and ICU- and ambulatory patients, the EC

allows approximating the total number of infected cases, including the asymptomatic and peo-

ple with mild symptoms at home. The EC also allows disaggregating the information by age

group and severity of the infection in the different regions and permits to get a global

(national) picture from crosses of the EC-generated information.

Table 8. Nuevo León’s approximated quantities at the pandemic’s endpoint.

NUEVO LEÓN—Total Population 5,610,153

2021–10–16 Restricted Exposure Controlled Exposure Uncontrolled Exposure

Cumulative Infectious Cases

Asymptomatic 2,054,290 2,251,812 2,460,756

Mild Symptoms 1,336,426 1,464,909 1,600,818

Hospitalized (Regular Bed) 27,007 29,613 32,396

ICU 7,082 7,511 7,968

0–9 years 558,564 612,240 669,024

10–59 years 2,490,850 2,730,152 2,983,311

60+ years 375,391 411,453 449,603

Cumulative cases 3,424,805 3,753,845 4,101,938

Cumulative Hospitalized Cases

Hospitalized (Regular Bed) 27,007 29,613 32,396

ICU 7,082 7,511 7,968

0–9 years 529 579 633

10–59 years 16,999 18,352 19,796

60+ years 16,561 18,193 19,935

Cumulative Deceased Cases

0–9 years 40 44 48

10–59 years 4,502 4,754 5,022

60+ years 10,385 11,145 11,955

Total deaths 14,927 15,943 17,025

Susceptible and Recovered Population

Susceptibles 2,185,348 1,856,307 1,508,214

Recovered 3,409,878 3,737,902 4,084,913

https://doi.org/10.1371/journal.pone.0261650.t008
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The EC permits to project the evolution of the pandemic/epidemic from exposure scenar-

ios. The procedure is based in the projection into the future of the effective reproduction num-

ber Rt under those exposure scenarios. These scenarios intend to reflect those aspects that

impact the pandemic dynamics, such as the generalized use of face masks, confinement poli-

cies, and social distancing. The scenarios may also include the effects of vaccination or the

presence of new strains of the virus.

The outputs of the EC can assist policymakers in the decision-making process in regions

where the information regarding an outbreak is limited. Since the EC can provide regional

approximations and projections of quantities like the total infected, hospitalized, and deceased

cases, it can assist in identifying high-risk zones and the best ways to allocate public resources

to attend the pandemic. For instance, it can help determine if the public hospitals require

more beds in ICU for infected patients. It also may help evaluate public policies to treat the

outbreaks.

It is worth mentioning that the number of COVID-19 deaths approximated by the national

EC coincides with the most recent estimates of the excess mortality for México, which include

data that was not available when this work was submitted. On the other hand, the total pro-

jected COVID-19 deaths are in line with estimates by independent sources, even though we do

not consider new events like new variants, vaccination, and reinfection. For instance, the aver-

age number of deaths between both scenarios is approximately 640,000, while the University

of Washington [43] predicts between 710,000 and 640,000 deaths. The difference might come

from the way different scenarios are defined.

As any model, the EC can be improved. As future work, it remains to include the effect of

the most recent variants that have appeared- as the delta variant-, the vaccination public poli-

cies, and possible reinfections. These aspects would require a new parametrization of the EC,

including new weights in the projection of Rt.

Fig 11. Rt, scenarios, and susceptible population for the state of Nuevo León. The figure shows the comparison of

the curves of Rt produced by the three scenarios plotted.

https://doi.org/10.1371/journal.pone.0261650.g011
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Supporting information

S1 Appendix. Supplemental material on a multi-source global-local model for epidemic

management. The appendix contains a note on the latency and incubation periods and an

exercise to predict Rt using mobility through a regression model with ARMA errors. It also

presents the application of the EC proposed in this work to the México City Metropolitan

Area, officially known as Valle de México; this last exercise intends to show that the EC also

works at different levels of geographic disaggregation.

(PDF)
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Table 9. México’s approximated quantities at the pandemic’s endpoint.
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Cumulative Deaths
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Vigilancia Epidemiológica de Enfermedades Respiratorias Viral;. https://datos.gob.mx/busca/dataset/

informacion-referente-a-casos-covid-19-en-mexico.
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