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Abstract: Consultation prioritization is fundamental in optimal healthcare management and its
performance can be helped by artificial intelligence (AI)-dedicated software and by digital medicine
in general. The need for remote consultation has been demonstrated not only in the pandemic-
induced lock-down but also in rurality conditions for which access to health centers is constantly
limited. The term “AI” indicates the use of a computer to simulate human intellectual behavior with
minimal human intervention. AI is based on a “machine learning” process or on an artificial neural
network. AI provides accurate diagnostic algorithms and personalized treatments in many fields,
including oncology, ophthalmology, traumatology, and dermatology. AI can help vascular specialists
in diagnostics of peripheral artery disease, cerebrovascular disease, and deep vein thrombosis by
analyzing contrast-enhanced magnetic resonance imaging or ultrasound data and in diagnostics
of pulmonary embolism on multi-slice computed angiograms. Automatic methods based on AI
may be applied to detect the presence and determine the clinical class of chronic venous disease.
Nevertheless, data on using AI in this field are still scarce. In this narrative review, the authors
discuss available data on AI implementation in arterial and venous disease diagnostics and care.

Keywords: artificial intelligence; deep machine learning; peripheral artery disease; chronic venous
disease; venous thromboembolism

1. Introduction

The need for optimizing healthcare management by guaranteeing both top quality
consultation and the rationalization of the available infrastructure resources is of paramount
importance, particularly in a post COVID-19 pandemic world [1]. Not only might remote
consultation be helpful in such situations as a pandemic-induced lock-down, but it may
also be of use in rural areas with a limited access to well-equipped healthcare centers [2].
Diagnostic tools based on artificial intelligence (AI)-dedicated software and digital medicine
in general are considered an effective solution for remote consultations [1,3].

The term “AI” is used to indicate a simulation of human intellectual behavior by a
computer with minimal human intervention [4]. AI is based on a machine learning process
or on an artificial neural network (ANN). Machine learning indicates a set of technologies
that automatically detect patterns in data and then use them to predict future data or
enable decision making under uncertain conditions. Deep learning is part of the machine
learning process and is a special type of artificial neural network that resembles a system
of synapses between human neurons. The ANN consists of many basic computing units,
i.e., artificial neurons that use a simple classifier model. After weighing the evidence, every
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neuron of an ANN produces a decision signal. To train an ANN, learning algorithms,
such as back propagation, are involved. Paired input signals and desired output decisions
resemble brain functioning when it analyzes external sensory stimuli to perform different
activities depending on the situation. However, no one knows how exactly AI-based tools
make conclusions, as they operate like a “black box” [5–8].

Deep learning is particularly compelling due to its usage in processing and analyzing
big data in healthcare, since deep learning can be used to find solutions for effective patient
management. Using AI in everyday practice may provide accurate diagnostic algorithms
and personalize patient management [9,10].

AI may reduce medical mistake rates and prevent discrepancies in diagnostic data in-
terpretation [7]. Moreover, AI can be used to support cost-effective clinical decision-making,
developing healthcare recommender systems, emotion recognition using physiological
signals, and patient monitoring [3,11,12]. This can also significantly reduce the burden on
healthcare workers, maximizing their time and expertise for optimal patient care [13].

AI has already been used in diagnostics for “object detection” (lesion localization),
“object segmentation” (determination of the contours and boundaries of the lesion), and
“classification of objects” (malignant or benign) [14,15]. This makes AI useful in radiology,
where large datasets are processed [16]. AI interprets images with breast cancer, including
lymph nodes metastases [17–19]. Analyzing chest radiographs with AI helps to detect
lung cancer, metastases, tuberculosis or pneumonia, or diffuse lung diseases [20,21]. The
automatic detection and segmentation of brain metastases, as well as prostate cancer de-
tection on magnetic resonance (MRI) images, is another field for AI utilization [22,23]. In
ophthalmology, AI helps to diagnose diabetic retinopathy, age-related macular degenera-
tion, glaucoma, and other ophthalmic disorders [24–27]. In traumatology, neural networks
in X-ray diagnostics of intertrochanteric fractures of the proximal femur surpassed con-
clusions of orthopedic surgeons. Ultra-precise neural networks have significant potential
for fracture screening on plain radiographs when orthopedic surgeons are not available
in emergency situations [28]. AI allows detection of early-stage melanoma on skin im-
ages [29]. Neural networks are as effective as certified dermatologists in differentiating
benign neoplasms from malignant neoplasms on photographic and dermatoscopic im-
ages [30]. AI can be used to evaluate electrocardiograms [31] and ultrasound images [32],
and in pathomorphology [33] and genomics [34]. AI is a promising tool that can be used to
trace contacts during the pandemic, to improve pneumonia diagnostics [35], or to monitor
COVID-19 patients [36].

Two of the possible areas where AI based diagnostics seems promising are in arterial
atherosclerotic images and lower limb venous diseases. We performed a literature search
using the following keywords: “artificial intelligence”, “deep machine learning”, “artificial
neural network”, “convolutional neural network”, “telehealth”, “peripheral artery disease”,
“abdominal aortic aneurism”, “deep venous thrombosis”, “pulmonary embolism” “venous
thromboembolism”, “chronic venous disease”, “varicose veins”, “venous ulcer”, “vascular
surgery”, “vascular medicine”, “angiology”, and “phlebology”. We then assessed all the
articles for their eligibility. The reference list of all the articles related to AI in vascular
management was searched for additional sources that contributed to the field.

The present narrative review reports the current state of the art of AI in the man-
agement of arterial disease, venous thromboembolism (VTE), and chronic venous dis-
ease (CVD).

2. Artificial Intelligence in Arterial Disease

AI is still not widely used in vascular medicine, so not that many publications can be
found while searching the literature [37]. However, various AI algorithms are currently
being developed in this field. Vascular segmentation is challenging because the vessels are
highly variable in morphology, size, and curvature. Nevertheless, AI can help in segmenta-
tion and pattern recognition, therefore improving diagnostic efficiency and reducing time
spent on analyzing data.
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AI opens up many opportunities in vascular surgery, including the management
and analysis of medical data, and the development of expert systems for prediction and
decision making. It can also be used for patient care, in education and training of vascular
surgeons, and as a health information and surveillance system for research [38].

Kurugol S. et al. presented a tool to assess aorta morphology and aortic calcium
plaques on CT scans. The authors computed the agreement between the proposed algo-
rithm and expert segmentations on 45 CT scans and obtained a closest point mean error of
0.62 ± 0.09 mm and a Dice coefficient of 0.92 ± 0.01 [39].

Graffy P.M. et al. used instance segmentation with convolutional neural networks
(Mask R-CNN). It was applied to a dataset of 9914 non-contrast CT scans from 9032 con-
secutive asymptomatic adults who had undergone colonography screening. A developed
fully automated abdominal aortic calcification scoring tool allows for the assessment of
any non-contrast abdominal CT for cardiovascular risk [40].

AI can also help with segmentation analysis of ultrasound, CT, and magnetic reso-
nance imaging (MRI) images in patients with carotid artery stenosis [41,42]. Caetano Dos
Santos F.L. et al. developed a tool for the segmentation and analysis of atherosclerosis in
the extracranial carotid arteries. A dataset of 59 randomly chosen head-and-neck CTA
scans was used. An algorithm mainly based on the detection of carotid arteries, delineation
of the vascular wall, and extraction of the atherosclerotic plaque was successful in 83%
of stenoses over 50%. Specificity and sensitivity were 25% and 83%, respectively, with an
overall accuracy of 71% [43].

Raffort J. et al., while searching the literature on AI tools for abdominal aortic aneurism
management, found several prognostic programs. The potential of AI was confirmed
in predicting aneurism growth and rupture, in-hospital and 30 day mortality, endograft
complications, aneurism evolution, stent graft deployment, and the need for re-intervention
after endovascular aneurysm repair. Nevertheless, small datasets were mainly used, while
machine learning approaches require large databases for learning and training. A lack of
external validation is also a pitfall as it outlines the need for multicenter registries [44].

Dehmeshki J. et al. presented a computer-aided detection tool that detected arteries
based on a 3D region growing method and a fast 3D morphology operation. They devel-
oped a computer-aided measurement system to measure the artery diameters from the
detected vessel centerline. The system has been tested on phantom data and on fifteen
CTA datasets of peripheral arterial diseases (PAD) patients. An 88% detection accuracy of
stenosis was achieved with an 8% error of measurement accuracy [45].

Ross E.G. et al. used machine learning algorithms to analyze electronic health records.
Data of 7686 PAD patients from two tertiary hospitals were used to learn predictive models.
Models confirmed the ability of machine learning algorithms to identify patients with
peripheral arterial atherosclerosis, favoring an early detection of the subjects at risk of
serious cardiac and cerebrovascular events [46].

AI was confirmed as an extremely useful tool for teaching goals by simulating different
clinical cases. Virtual reality simulators are already available to train young professionals
in basic endovascular skills [47,48].

AI is used in apps designed for use by patients themselves. Those applications
analyze photographic images of the legs and help to identify early signs of diabetic foot
syndrome [49]. Ohura N. et al. prepared four architectures to build wound segmentation
convolutional neural networks (CNNs). The best results were shown by U-Net, which
demonstrated an area under the curve of 0.997, specificity of 0.943, and sensitivity of
0.993. Such tools may be applied to diagnostics of arterial and venous leg ulcers as well as
pressure ulcers [50].

3. Artificial Intelligence in Venous Thromboembolism

Clinical decisions in patients with pulmonary embolism (PE) can be based on AI-
supported analysis of multi-slice computed tomography (MSCT-angiography) of pul-
monary arteries images [51,52]. For those patients, timely diagnostics are crucial to save
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lives, but in routine practice, PE is still one of the most commonly missed diagnoses [53].
Deep machine learning to detect PE on MSCT angiograms was demonstrated to be a
valuable solution [54].

The first attempts to detect PE using neural networks were made in the early 1990s.
Patil S. et al. supposed that computerized pattern recognition could accurately estimate
the probability of PE based on readily available clinical characteristics. Medical history
data, physical examination, ECG, chest X-ray scans, and arterial blood gases of patients
with suspected acute PE were downloaded to a back propagation neural network. Study
data were obtained from 1213 patients in a prospective study on PE diagnostics. They were
divided into training group A (n = 606) and test group B (n = 607). These groups were then
transformed into training set B (n = 607) and test set A (n = 606). The performance curve
was constructed from clinical assessments made by specialists and the neural network in
groups A and B. The areas under the corresponding ROC curves were 0.7450, 0.7477, and
0.7324. All differences were not significant. Thus, neural networks were able to predict the
clinical probability of PE with an accuracy comparable to that of experienced clinicians [54].

Huang S.C. et al. used a deep learning model capable of detecting PE signs on com-
puted tomography pulmonary angiography (CTPA) images of the pulmonary arteries with
simultaneous data interpretation (77-layer 3D convolutional neural network). Researchers
conducted a retrospective data collection of 1797 images from 1773 patients. Training
(1461 images from 1414 patients), validation (167 images from 162 patients), and hold-out
test sets (169 images from 163 patients) were developed. Stratified random sampling was
used to create validation and test kits to ensure an equal number of positive and negative
cases. There was no patient overlap between sets. When tested, the deep learning model
achieved an AUROC score of 0.84 with automatic detection of PE signs on the test set.
Thus, the possibility of using deep learning to evaluate complex radiographic data of CTPA
angiograms to detect PE was confirmed [55].

Nima Tajbakhsh et al. presented a computer-aided detection of PE on CTPA images.
They assumed that despite acceptable sensitivity, existing computer detection systems
generate a large number of false-positive results. This may lead to additional burden on
radiologists to analyze them. The possibility of convolutional neural networks (the type of
neuronets specified for image classification) to eliminate false conclusions was investigated.
Developing the “correct” representation of the image is important for the accuracy of
AI when analyzing an object in 3D images. For this purpose, a multi-plane image of
emboli with alignment along the vessels was developed. This imaging provides three
advantages: (1) compactness, i.e., concise summarization of 3D contextual information
around the embolus in two image channels; (2) consistency—automatic alignment of the
embolus on two-channel images according to the orientation of the affected vessel; and
(3) extensibility—natural support for data augmentation for training neural networks. This
method was tested using a set of 121 CTPA angiograms with a total of 326 emboli. The
sensitivity reached 83% with two false-positive results [56].

The important role of AI-based tools in the recognition of PE signs on CTPA images
was also confirmed by other researchers [57–60].

Deep learning is used in cancer patients who are at high risk of VTE [61]. Randomized
studies have shown that prophylactic doses of anticoagulants reduce VTE rates in cancer
patients by about half [62]. However, there is also a potentially high risk of bleeding
associated with anticoagulant therapy [63]. The decision to use anticoagulants for the
prevention of cancer-related VTE should ideally be based on an effective risk stratification
strategy [64].

Pabinger I. et al., from the University of Vienna, have developed and tested a computer-
based predictive model of VTE based on AI in outpatients with cancer. They used data
from 1737 patients from a CATS study (a prospective single-center observational cohort
with a baseline biobank) who had recently been diagnosed with active cancer or disease
progression after complete or partial remission. Patients who had a malignancy, except
primary brain tumors, or lymphoma were selected. Only tumor localization, which is
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the most important part of the Khorana score, and D-dimer were left for training the
model [65].

To test the model’s performance, demographic, laboratory data, and data from a multi-
national cohort study were used to identify cancer patients at high risk of VTE [66]. With
the threshold of predictable cumulative 6 month’s risk of PE set at 10%, model sensitivity
was 33% (95% confidence interval (CI) 23–47) and specificity was 84% (95% CI 83–87). The
positive predictive value was 12% (95% CI 8–16), and the negative predictive value was 95%
(95% CI 94–96). With the threshold set at 15%, model sensitivity was 15% (95% CI 8–24) and
specificity was 96% (95% CI 95–97). The positive predictive value was 18% (95% CI 9–29),
and the negative predictive value was 95% (95% CI 94–96). This shows that the model may
help to find patients eligible for pharmacological thromboprophylaxis [65,67].

Huang C. et al. conducted a study using a fully automatic method of determining
DVT extension. AI was used to detect the proximal level of deep vein thrombosis (DVT)
on contrast-enhanced MRI images. Images taken from 58 patients with recently diagnosed
lower limb DVT were analyzed. A total of 5388 snapshots were made, and on 2683 of
them, thrombotic masses were seen. The boundaries of the blood clots on the CT scan were
manually delineated by radiologists, and then a deep learning-based neural network was
trained. The basic principle of operation is based on the segmentation of the boundaries
of thrombosis. A DL network with an encoder–decoder architecture was designed for
DVT segmentation. It took about 1.5 s for this model to fulfill the task and to identify
the thrombus extension. This model identifies vein segments with thrombosis on the
MRI image. The average value of the Dice similarity coefficient (DSC) for 58 patients
was 0.74 ± 0.17, and the average value of the DSC was 0.79 (range 0 ~ 0.91). The results
showed that the proposed method is relatively effective and quick. If further improved,
this method will help clinicians to evaluate DVT quickly and objectively [68].

Willan J et al. confirmed that AI may be applied for risk stratification in patients with
suspected DVT [69]. A neural network was trained to stratify the probability of DVT in
patients with suspected DVT using the data of the 11,490 consecutive cases, including
7080 cases for which all data, i.e., Wells score, D-dimer, and duplex ultrasound, were
available. The network was able to exclude DVT without the necessity for ultrasound
scanning in more patients as compared with the existing algorithm with low false-negative
rates. After preliminary fast and reliable AI evaluation, patients with symptoms suggestive
of DVT can then be sent to the hospital for vascular specialist examination in order to
confirm or exclude thrombosis [70]. To do this, the Wells scale has been used to assess
symptoms, therefore identifying patients with high DVT probability [71]. AI can become a
powerful synergistic tool, together with D-dimer assessment, for better prioritization of the
ultrasound scanning and consequent disease management [72–75].

Deso S. et al. developed CNN to detect 23 different types of inferior vena cava (IVC)
filters and diagnostics of related complications. For each type of cava filter, a database of
radiographs and CT scans was collected. A wireframe and storyboard were created, and
software was developed using HTML5/CSS compliant code [76].

Ni J.C. et al. used deep learning for automated classification of IVC filter types on
radiographs. They took 1375 cropped radiographic images of 14 types of IVC filters, with
139 images for a test set. The CNN classification model achieved an F1 score of 0.97
(0.92–0.99) for the test set overall and of 1.00 for 10 of 14 individual filter types. Of the
139 test set images, 4 (2.9%) were misidentified, all mistaken for other filter types that
appeared highly similar [77].

4. Artificial Intelligence in Chronic Venous Disease

CVD is a highly prevalent disease [78], severely impacting quality of life and the
national health care budget [79]. Being a chronic condition, CVD needs a permanent
follow-up, which is not easy for many patients, especially in the rural regions where access
to vascular care is limited in many geographical areas. For rural residents, AI-supported
diagnostics seems to be a good option [80,81]. Automatic methods based on AI may be
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applied to detect the presence and determine the clinical class of CVD. Nevertheless, data
on using AI in this field are scarce.

Fukaya E. et al. used machine learning to find genetic risk factors for varicose veins in
493,519 people at the British Biobank. In addition, a genome-wide study of the association of
varicose veins was carried out among 337,536 people, followed by a quantitative analysis of
loci and expression pathways. They used a gradient boosting machine model. Its principle
of operation is based on the introduction of variable data, analysis, and construction of a
new tree for predicting possible options. The relationship of the genotype with the presence
of varicose veins was tested using a logistic model. Researchers have found that high
growth persons are at a higher risk of varicose vein development [82].

Another promising area for AI is varicose vein recurrence risk estimation after invasive
procedures. Bouharati I. et al. analyzed risk factors for recurrence, such as age, sex, obesity,
genetic predisposition, inadequate diagnosis, double trunk of the great saphenous vein,
double trunk of the small saphenous vein, neovascularization, technical failures, and
time from procedure. A CNN system was constructed with probable causes of varicose
recurrence as input variables and recurrence rate as the output variable. To train neural
networks, data on 62 patients who had undergone invasive treatment were used, but no
results of how the system performed were published [83].

Artificial neural networks may predict the healing time for venous ulcers [84], there-
fore helping health professionals in customizing treatment and, at best, improving the
patient’s quality of life [85–87]. Taylor R. J. et al. retrospectively assessed data on 325 pa-
tients with 345 venous ulcers. An ANN based on a computer program (a simple neural
network) was used for training. It was loaded with input data on 45 risk factors and ulcer
healing time as output. After training, the ANN accurately predicted the healing time in
68% of cases. AI also identified the most important risk factors for ulcer healing. Among
them are previous history of venous ulcers, profuse ulcerative exudate, high body mass
index, large initial surface skin defect, age, and male sex. The neural network confirmed its
ability to predict which ulcer may be resistant to standardized treatment [84].

Bhavani R. et al. used AI to determine venous ulcer stages on photo images. They
obtained data from 150 patients. From each patient, 5–15 photographs were taken, with
a total of 1770 images for training and 810 for testing. The scheme of the neural network
operation consisted of four parts. Images were previously edited to remove flash light
reflection. Then, contour segmentation of the ulcer surface was carried out, and the
analysis was performed using a multidimensional ultra-precise neural network. During
the extraction stage, features such as homogeneity, color, texture, and depth, were analyzed.
This tool had an average accuracy of 99.55%, with specificity of 98.06% and sensitivity of
95.66% [88,89].

The most burdensome venous pathology is primary varicose veins, which affect
27–31% of the general population in rural settlements [90]. To diagnose and manage
varicose veins in residents of distant areas, AI-based applications seem to be good tools.
To date, few studies have been published on the assessment of AI automatic methods for
varicose vein detection.

Qiang Shi and co-authors used 221 photographic images of the lower limbs in order
to train the neural network to identify CVD classes according to CEAP classification. They
mapped low-level image features onto middle-level semantic features using a concept
classifier. Then, a multi-scale semantic model was created. The latter model was used
to represent images with rich semantics. Finally, a scene classifier was trained using an
optimized feature subset and was then used to determine CVD clinical class. The reported
accuracy was 90.92% [91].

Hoobi M.M. et al. conducted a similar study based on the analysis of only 100 pho-
tographic images (60 with varicose veins, 40 with no CVD). The system used more than
one type of distances with a probabilistic neural network to produce a diagnostic system
of CVD with high accuracy. New pictures were used when testing 60 of the images. In
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this CNN model, shape, size, and texture of the skin with varicose veins were used with a
reported accuracy of 94% [92].

Most vascular AI tools are based on neural networks trained with a limited number
of images (Table 1). It is generally considered that 1000 cases are needed just to build
a system, while if aiming for practical use, the number of images for training has to be
closer to 100,000 [14]. This is especially true for CVD, which is classified for seven clinical
classes, among which varicose veins represent only one of them. Moreover, even in large
training samples, the recognition result strongly depends on the conditions of photo taking,
including the image resolution, the relative size of the lesion to the total area of the image,
the position of the leg, and the degree of the hair line.
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Table 1. AI tools based on learning with images.

Authors, Year Disease AI Used for Data Used for
AI Learning

Principle of
Operation Number of Images Performance

Metrics
App Available

Online

Kurugol S. et al.,
2015 [39] PAD

Aorta size calculation,
morphology, mural

calcification distributions
CT images

Convolutional
neural networks
(Mask R-CNN)

2500 Dice coefficient of
0.92 ± 0.01 No

Caetano Dos Santos
F.L. et al., 2015 [43]

Carotid arteries
stenosis

Segmentation and analysis
of atherosclerotic lesions

in extracranial
carotid arteries

CTA images Convolutional
neural networks 59 71% accuracy Yes

Raffort J. et al.,
2015 [44]

Abdominal aortic
aneurism (AAA)

Quantitative analysis and
characterization of AAA
morphology, geometry,

and fluid dynamics

CT images Convolutional
neural networks 40 93% accuracy No

Dehmeshki J. et al.,
(2014) [45] PAD

Arterial network, artery
centerline detection, and

distortion correction
CTA images Computer-aided

detection system 15 88% accuracy No

Huang SC. et al.,
(2020) [55] VTE PE detection CTPA images Convolutional

neural network 1797 AUROC score
of 0.84 No

Huang C. et al.,
2019 [68] DVT Proximal level of

DVT detection
Contrast-enhanced

MRI images
Convolutional
neural network 5388 Dice coefficient

of 0.79 No

Ni J.C. et al., 2020 [77] DVT Different inferior vena
cava filters identification Radiographic images

Deep-learning
convolutional

neural network
1375 F1 score of 0.97 Yes

Rajathi V., Bhavani
R.R., Wiselin Jiji G.

(2019) [88]
CVD Venous ulcer detection Venous ulcers photos Region growing,

K-means, kNN 1770 94.85% accuracy No

Shi Q., et al., 2018, [91] CVD Varicose vein detection Lower limbs photos

Multi-scale
semantic model

constructed to form
the image

representation with
rich semantics

221 90.92% accuracy No

Hoobi M.M., Qaswaa
A., 2017, [92] CVD Varicose vein detection Lower limbs photos Probabilistic neural

network 100 94% accuracy No
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5. Conclusions

AI has demonstrated to be an extremely helpful tool in healthcare, particularly in a
time in which healthcare resources must be optimized, such as during a pandemic and in
the rural conditions. Application of AI in healthcare has the potential to bring financial
benefits and savings. However, according to this literature search, these services need
further validation before they are used routinely in clinical practice, making this topic of
great interest for the healthcare community. This is particularly true for CVD as a condition
highly impacting society and because of its healthcare costs.
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