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Abstract

In animals and yeast, position effects have been well documented. In animals, the best example of this process is Position
Effect Variegation (PEV) in Drosophila melanogaster. In PEV, when genes are moved into close proximity to constitutive
heterochromatin, their expression can become unstable, resulting in variegated patches of gene expression. This process is
regulated by a variety of proteins implicated in both chromatin remodeling and RNAi-based silencing. A similar
phenomenon is observed when transgenes are inserted into heterochromatic regions in fission yeast. In contrast, there are
few examples of position effects in plants, and there are no documented examples in either plants or animals for positions
that are associated with the reversal of previously established silenced states. MuDR transposons in maize can be heritably
silenced by a naturally occurring rearranged version of MuDR. This element, Muk, produces a long hairpin RNA molecule that
can trigger DNA methylation and heritable silencing of one or many MuDR elements. In most cases, MuDR elements remain
inactive even after Muk segregates away. Thus, Muk-induced silencing involves a directed and heritable change in gene
activity in the absence of changes in DNA sequence. Using classical genetic analysis, we have identified an exceptional
position at which MuDR element silencing is unstable. Muk effectively silences the MuDR element at this position. However,
after Muk is segregated away, element activity is restored. This restoration is accompanied by a reversal of DNA methylation.
To our knowledge, this is the first documented example of a position effect that is associated with the reversal of epigenetic
silencing. This observation suggests that there are cis-acting sequences that alter the propensity of an epigenetically
silenced gene to remain inactive. This raises the interesting possibility that an important feature of local chromatin
environments may be the capacity to erase previously established epigenetic marks.
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Introduction

Whether or not a gene is expressed can depend as much on its

location within the genome as its primary DNA sequence.

Although proximity to enhancers and suppressors outside the

core promoter can affect gene expression, the most dramatic

position effects often involve epigenetic silencing of genes placed in

proximity to inactive or heterochromatic regions of the genome. In

animals, the best example of this process is Position Effect

Variegation (PEV) in Drosophila melanogaster [1,2]. In PEV, when

genes are moved into close proximity to constitutive heterochro-

matin, their activity can become unstable, resulting in variegated

patches of gene expression. This process is regulated by a variety of

proteins implicated in both chromatin remodeling [3–5] and

RNAi-based silencing [6]. PEV appears to be the result of the

spreading of a compacted chromatin state from heterochromatin

to adjacent genes. Given that heterochromatin is largely composed

of transposable elements, PEV can be seen as a breakdown in the

normal process by which transposable elements and host genes are

effectively sequestered from each other. The spread of hetero-

chromatin can be blocked by insulating sites, such as those bound

by Suppressor of Hairy-wing [7,8] and GAGA factor [9,10].

These proteins are competent to alter the silenced state by actively

remodeling chromatin. Interestingly, some of the same proteins,

such as GAGA factor, are also involved in the epigenetic

regulation of homeobox genes during Drosophila development.

These observations suggest that the process by which transposable

elements are sequestered from the rest of the genome may have

been recruited to regulate host gene expression as well.

Phenomena similar to PEV have also been observed in

Schizosaccharomyces pombe. In this case, transgenes integrated into

centromeric heterochromatin or silent mating type loci become

silenced [1]. Many of the proteins that have been identified that

influence this process are conserved among eukaryotes [11], and

can affect gene silencing in species as diverse as Arabidopsis thaliana

[12] and humans [13]. A number of proteins that influence

centromeric silencing in S. pombe have orthologs in Drosophila that

regulate PEV [11]. Thus, there are clear and consistent

relationships between position effects, chromatin structure and

epigenetic silencing.

Although a great deal is known about position effects in

Drosophila and fission yeast, very little is known about it in plants.

Indeed, there is conflicting evidence as to whether or not they exist

at all in plants [14–16]. Certainly, transgenes equipped with

minimal promoters can respond to local tissue-specific enhancers

[17], but position-specific effects on the epigenetic state of genes,

such as has been observed in Drosophila and yeast, have not been

well documented. In plants, variations in expression of transgenes
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at various locations have been interpreted as ‘‘position effects’’.

However, the stochastic nature of transgene silencing, variations in

copy number and sequence of integrated transgenes and sporadic

tissue-culture induced epigenetic variation make interpretation of

these experiments difficult.

Ideally, to prove a position effect, the effect should be reversible

due to subsequent changes in position. Since transposable

elements are mobile, they represent an ideal model for

understanding the role of position in gene activity. Among

transposable elements, the Mutator (Mu) transposons in maize are

particularly useful because they transpose at a high frequency and

can be epigenetically silenced in a controlled fashion [18]. Mutator

is the most active known plant transposon. In Mu-active lines, Mu

elements can duplicate at a 100% frequency; every element makes

an average of one duplication every generation [19]. Insertions are

into unlinked sites, and the overall mutation frequency in an active

line can exceed 50 times that of background [20]. The system is

regulated by MuDR elements, which carry two genes: mudrA and

mudrB [18]. These genes encode MURA, the putative transposase,

and MURB, a helper protein of unknown function. We have

derived a minimal version of this transposon system, that includes

a single active MuDR element and a single non-autonomous

reporter element inserted into a color gene [21]. In the presence of

an active MuDR element, the non-autonomous element excises

from the color gene during somatic development, resulting in small

sectors of revertant tissue. Unlike higher copy number Mu lines,

the minimal line does not undergo spontaneous silencing.

However, a single derivative of MuDR arose in the minimal line

that can heritably silence one or many MuDR elements [22]. This

derivative, called Mu killer (Muk), contains a portion of MuDR that

has been duplicated and inverted. The Muk transcript forms a

perfect 2.4 kb hairpin RNA, which is processed into 26 nt siRNAs

[23]. These siRNAs trigger rapid degradation of the mudrA

transcript, as well as methylation of the terminal inverted repeats

(TIRs) and transcriptional silencing of one or many MuDR

elements. After exposure to Muk, MuDR elements generally remain

heritably and stably silenced even in the absence of Muk. The

availability of the Muk locus has made it possible to target MuDR

elements for heritable epigenetic silencing in a controlled and

reproducible fashion by making the appropriate genetic crosses.

The minimal Mutator line began with a single active MuDR

element that can move from place to place in the genome. It was

therefore possible to examine the effects of Muk on duplicate copies

of the same MuDR element at various positions. Given that Muk-

mediated silencing of MuDR involves trans-acting siRNAs, it

seemed likely that, regardless of position, all MuDR elements

would be silenced in the presence of Muk. In fact, we have found

that silencing is particularly effective when multiple MuDR

elements are present (Slotkin and Lisch, unpublished data).

However, it was also possible that the degree to which individual

elements would remain heritably silenced in the absence of Muk

might vary depending on the local context. A screen was

developed that made it possible to isolate individual duplications

of a single active MuDR element, expose them to Muk, and observe

the degree of heritable activity in progeny plants that carried the

transposed copies of MuDR but that lacked Muk. This screen lead

to the identification of a MuDR element at a specific chromosomal

location that failed to maintain a heritable silenced state. We

suggest that this phenomenon represents the converse of PEV, in

that cis acting sequences in this case are responsible for reversing,

as opposed to triggering, epigenetic silencing. The existence of

such a locus suggests that an important feature of the epigenome

may be the capacity to reverse epigenetic silencing.

Materials and Methods

MuDR Terminology
All MuDR elements described in this manuscript were derived

from a single MuDR element that had been genetically isolated and

cloned previously [21]. We have found that there are variations in

duplication frequency and somatic activity depending on the

position of transposed copies of this element [24]. Therefore, the

elements at various positions are given distinct position numbers,

indicated by parentheses. Thus, the original element is designated

MuDR(p1) and duplicates are given new position numbers as they

are characterized.

Maize Stocks
The derivation of all families described in this manuscript is

shown in Figure 1. This diagram follows standard conventions.

Females are on the left and males on the right of the ‘‘x’’. Unlinked

loci are separated by a semicolon. MuDR elements at each position

(designated ‘‘p4’’ or ‘‘p5’’) are hemizygous for the insertion. All

MuDR elements described here are derived from a single MuDR

element originally present in the minimal Mutator line. The

derivation of the minimal line, containing a single MuDR element

and a single Mu1 element inserted into the a1-mum2 allele of the A1

gene was described in Chomet et al. [21]. In the presence of active

MuDR elements, Mu1 excises from the a1-mum2 allele, resulting in

characteristically small revertant sectors (spots). These sectors are

most readily visualized in the outer layer of the kernel (the

aleurone). In the absence of MuDR, the reporter element remains

inserted in the A1 gene, and the kernels are uniformly colorless, or

pale. The a1-mum2 allele has the additional advantage of being

suppressible in the adult tissues (but not in the kernel). In the adult

tissues, expression of a functional gene product from a1-mum2 is

prevented by the presence of MuDR transposase (MURA), except

when Mu1 excises from the allele. This results in characteristically

small red (revertant) spots of color on a green (suppressed)

background. When the transposase is lost, the adult tissue is

Author Summary

Epigenetics involves the heritable alteration of gene
activity without changes in DNA sequence. Although
clearly a repository for heritable information, what makes
epigenetic states distinct is that they are far more labile
than those associated with DNA sequence. The epigenetic
landscape of eukaryotic genomes is far from uniform. Vast
stretches of them are effectively epigenetically silenced,
while other regions are largely active. The experiments
described here suggest that the propensity to maintain
heritable epigenetic states can vary depending on position
within the genome. Because transposable elements, or
transposons, move from place to place within the genome,
they make an ideal probe for differences in epigenetic
states at various positions. Our model system uses a single
transposon, MuDR in maize, and a variant of MuDR, Mu
killer (Muk). When MuDR and Muk are combined geneti-
cally, MuDR elements become epigenetically silenced, and
they generally remain so even after Muk is lost in
subsequent generations. However, we have identified a
particular position at which the MuDR element reactivates
after Muk is lost. These data show that there are some
parts of the maize genome that are either competent to
erase epigenetic silencing or are incapable of maintaining
it. These results suggest that erasure of heritable
information may be an important component of epige-
netic regulation.

A Position Effect on Silencing
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uniformly red because the a1-mum2 allele expresses in its absence

[21]. This characteristic makes it possible to assay for transposase

activity in mature plant tissue. In contrast, the aleurone layer of

the kernels, a1-mum2 is not suppressible. Thus, in the absence of

the transposase, the kernels are uniformly pale, as can be seen in

Figure 2A. All individuals described in this work were homozygous

for the a1-mum2 reporter allele. All crosses designated as ‘‘test

crosses’’ represent crosses to the a1-mum2 tester, which lacks both

functional MuDR elements and Mu killer. The genetic isolation,

characterization and cloning of Muk was described in Slotkin et al.

[22,23]. Genetic isolation and characterization of MuDR(p3) was

described in Lisch et al. [24]. MuDR(p3) causes a distinctively low

frequency of somatic excisions of Mu1 from a1-mum2 in the

aleurone of the kernel. When MuDR(p3) transposes to a new

position, somatic excision returns to a more typical frequency.

Thus, germinally transmitted transpositions of MuDR from

position 3 to a more typical position can be detected as heavily

spotted kernels in a family segregating for weakly spotted kernels.

With respect to the crosses of Muk to plants carrying MuDR(p3),

previous work has demonstrated that, when Muk is used as a male

parent there is little or no effect on excision of the reporter Mu1

element in the F1 aleurone, but a strong effect on MuDR elements

in the F1 embryo and adult plant tissue [22]. Thus, transposed

copies of MuDR(p3) can be easily detected as individual kernels

with a high frequency of somatic excision of the reporter element

in the aleurone, even when exposed to Muk derived from the male

parent.

DNA Extraction and Southern Blot Analysis
DNA extraction and Southern blotting was as previously

described [24]. Briefly, 10 micrograms of DNA was digested with

a four-fold excess of restriction enzyme for a minimum of 2 hours,

blotted and probed with a series of Mu-specific DNA fragments.

Probes: The location of restriction enzyme sites and probes used

are illustrated in Figure 3. The probes used to detect MuDR

internal sequences (probes A and B) were as described in Slotkin

et. al. [22]. The probed used for Mu1 (probe C) was as described in

Chomet et al. [21]. The probe for the MuDR TIR was generated

by amplifying genomic DNA with primers TIRAF (GAGA-

TAATTGCCATTATAGACGAAG) and TIRAR (AGGAGA-

GACGGTGACAAGAGGAGTA), which generates a fragment of

219 bp that includes the entire TIR (TIRA) flanking the mudrA

gene of MuDR.

Active MuDR elements, regardless of their position would be

expected to yield a fragment of 445 bp when digested with HinfI.

This size is consistent with a lack of methylation of both the HinfI

site within the TIR adjoining mudrA (TIRA) of MuDR elements

and of a second site within the first intron of mudrA. Methylation of

Figure 1. The crossing schemes used to generate the families described in the text. Tables and figures referring to particular families are as
indicated. ‘‘p5’’ refers to MuDR(p5); ‘‘p4’’ refers to MuDR(p4). Percentages refer to the percent of spotted progeny kernels arising from a given cross.
doi:10.1371/journal.pgen.1000216.g001

A Position Effect on Silencing
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the TIR HinfI site of TIRA of MuDR elements will yield larger

fragments whose size depends on the MuDR insertion sites. Based

on the sequence of DNA flanking MuDR(p4) and MuDR(p5), if the

TIR HinfI site (but not the internal HinfI site) is methylated the

expected fragment sizes are 648 bp and 1003 bp respectively.

Similarly, the expected fragment size if the TIR HinfI site is

methylated in Mu killer is 500 bp. In each case the expected

fragment sizes were observed (Figure 4B).

Hypomethylation of Mu1 HinfI sites has proved to be a highly

reliable indicator of MURA activity in our lines; the loss of mudrA

transcript is invariably associated with methylation of this site

[21,24]. Methylation of Mu1 elements was examined using HinfI

digests probed with an internal fragment of Mu1, as described in

Chomet et al. [21]. An unmethylated Mu1 element at a1-mum2 is

expected to give a fragment size of 1.3 kb; a methylated Mu1

element at this locus gives a fragment size of 2.1 kb. In all cases,

complete digestion of the DNA was confirmed by examination of

the ethidium-stained gel.

To determine if full-length MuDR elements were present, SacI

was used. MuDR elements have two SacI sites in the terminal

inverted repeats (Figure 3). Digestion with this enzyme results in a

diagnostic 4.7 kb fragment regardless of chromosomal position.

The intensity of this fragment reflects the copy number of the

element [24]. To detect transposed copies of MuDR, DNA samples

were digested with EcoRI (Figure 2B) or XhoI (Figure 3B). These

enzymes cut once within MuDR. Therefore, elements at various

positions will give rise to unique fragment sizes.

Cloning MuDR(p4) and MuDR(p5)
Cloning of these elements was achieved using inverse PCR.

Southern blot analysis had revealed that digestion of samples

containing these elements with XhoI yielded MuDR terminal

inverted repeat (TIR)-hybridizing fragments of 2.6 and 2.4 kb for

MuDR(p4) and MuDR(p5) respectively (Figure 2). 10 micrograms of

DNA containing one or the other element was digested with a

four-fold excess of XhoI for 4 hours in a total volume of 20

microliters. The reaction was placed at 65 degrees C for

15 minutes, to heat inactivate the restriction enzyme. Two

microliters of the reaction was then added to 1 microliter of

DNA ligase, two microliters of ligase buffer and 15 microliters of

water, and the resulting mixture was incubated for 2 hours at

25 degrees C. The reaction was then heat inactivated for

15 minutes at 65 degrees C. Two microliters of this reaction was

then subjected to PCR amplification using primers specific to the

MuDR TIR (TIRout: GCTGTCACCTTTCTGTTTTGGC-

GAT) and a MuDR internal sequence flanking the XhoI site

(exon3R: CTAGCTCTTGTTCAGTGACTTCC). These ampli-

fications yielded products of 700 bp and 520 bp for samples

containing MuDR(p4) and MuDR(p5) respectively, the expected

sizes for these elements based on the XhoI restriction mapping

data. Both strands of the PCR products were then sequenced using

an ABI sequencer (Applied Biosystems). The sequences of MuDR

obtained were identical to known MuDR sequences. The flanking

sequences were used to design primers facing inwards towards the

MuDR elements. These primers in combination with MuDR TIR

primers were used to confirm that we had indeed cloned the

elements. Flanking primers were used in combination with TIR-

specific primers on DNA samples of plants segregating for each

element. For MuDR(p5), primer p5flnkB (CGATTAAGCGC-

GACGAACACG) was used in combination with RLTIR2

(ATGTCGACCCCTAGAGCA). In a family segregating for

MuDR(p5) and MuDR(p4), these primers gave a product of

408 bp in three of three plants carrying only MuDR(p5) and zero

of three plants carrying only MuDR(p4). To obtain sequences on

Figure 2. An ear derived from a plant carrying MuDR(p3) and
Southern blot of DNA from plants grown from the test cross
and the cross to a Muk homozygote. A) An ear derived from a plant
carrying MuDR(p3) that was crossed as a female to a plant that was
homozygous for Muk. Because Muk does not alter somatic excision
frequency in F1 aleurone, changes in excision frequency from low to
high could be used to screen for new insertions of MuDR(p3), as is
indicated. Kernels from this ear and the control test cross ear
(MuDR(p3)6a1-mum2 tester, not shown) were separated by excision
frequency and planted. B) Southern blot of DNA from plants grown
from the test cross (lanes 1–9) and the cross to a Muk homozygote
(lanes 11–14). In the top panel, the DNA was digested with EcoRI, used
to distinguish MuDR elements at different positions based on size
polymorphisms, and probed with an internal fragment of MuDR (probe
B, Figure 3). The red arrows indicate new MuDR insertions. In the
bottom panel, the DNA was digested with the methyl-sensitive enzyme
HinfI and probed with an internal portion of Mu1 (probe C, Figure 3).
The resulting fragments resulting from methylated and unmethylated
HinfI sites in the end of the Mu1 element at the a1-mum2 reporter are as
indicated. Following analysis of the DNA, each plant was then crossed
to an a1-mum2 tester. The numbers below the blots indicate the
percent frequency of spotted kernels arising from test crosses of plants
in the lanes above them.
doi:10.1371/journal.pgen.1000216.g002
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the other side of the insertion, the available flanking sequences

were used to search DNA databases for maize sequence matches.

Perfect matches were used to extend the sequence, which were

then used to design primers that would be expected to amplify

when used in combination with a MuDR TIR primer. Primer

p5flnkA (GGAGCGTGACAGGGGCGGCAGAT) was used with

primer TIRAR (AGGAGAGACGGTGACAAGAGGAGTA).

The same samples that yielded a product with the p5flnkB/

RLTIR2 combination also yielded the expected 405 bp product.

When the sequences of the DNA flanking the insertion were

compared, they revealed the presence of a 9 bp target site

duplication (GGCGTGCGC) diagnostic for Mu insertions. The

strategy to confirm the MuDR(p4) was similar. The available

sequence was used to design a flanking primer, p4flnkB

(CGTGAAAGGTGGAGACTACTGGAA), which was used in

combination with the MuDR TIRAR primer. A product of the

expected size of 320 bp cosegregated with the presence of

MuDR(p4), confirming that we had also cloned sequences flanking

MuDR(p4).

Results

Transposed MuDR Elements Are Silenced by Muk
In order to screen for new insertions of single MuDR elements,

we made use of a MuDR element that exhibits a position effect that

results in reduced somatic excision of non-autonomous reporter

element from a color gene in the aleurone (Figure 2A)(for alleles

and stock construction see Materials and Methods). This effect on

somatic excisions of the reporter is fully reversible; when

MuDR(p3) transposes to a new position, the high frequency of

excision and transposition more typical for MuDR are restored

[24]. The advantage of using MuDR(p3) is that, in a family of

kernels segregating for this element, new insertions of MuDR(p3)

can be readily visualized as individual kernels exhibiting a high

Figure 3. Southern blot analysis of a family segregating for MuDR(p5), MuDR(p4) and Muk. Kernels were separated by somatic excision
frequency and DNA was extracted from plants grown from those kernels. A) A SacI digest probed with a fragment of MuDR (probe B). The diagnostic
4.9 kb MuDR fragment is as indicated. The smaller Muk-specific fragment is as indicated, as is as the larger fragment that results from methylation of
the SacI site in the Muk TIR (red arrow). B) An XhoI digest of the same samples probed with a second fragment of MuDR (probe A). Polymorphisms
specific to MuDR at each of two positions are as indicated. C) A HinfI digest of the same samples probed with an internal fragment of Mu1 (probe C).
Fragments corresponding to unmethylated and methylated Mu1 elements in this background are as indicated. D) A restriction map of MuDR with
probe regions as indicated. The red arrows indicate TIRs. E) A restriction map of Mu1 at a1-mum2.
doi:10.1371/journal.pgen.1000216.g003
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frequency of excisions. It should be emphasized that when Muk is

introduced through the male lineage, it has no immediate effect on

the F1aleurone, but it has a strong effect on the F1 embryo and the

resulting plant [22]. Thus, individual kernels that inherit a

transposed copy of MuDR(p3) would be expected to exhibit a

high frequency of excision, even in the presence of Muk, but plants

grown from those kernels would be expected to show reduced or

absent MuDR activity.

To perform the screen, one ear of a plant carrying MuDR(p3)

was crossed to the a1-mum2 tester (the control cross), and a second

ear from the same plant was crossed to a plant that was

homozygous for Muk. These and subsequent crosses are portrayed

in Figure 1. DNA from plants grown from weakly spotted and pale

(non-spotted) sibling kernels derived from the control cross were

examined by Southern blot for the presence of MuDR(p3). As

expected, all progeny plants grown from weakly spotted kernels

carried the diagnostic 6.8 kb MuDR(p3) EcoRI fragment

(Figure 2B, lanes 1–4). The other fragments hybridizing to this

probe are inactive MuDR homologs (hMuDRs) that do not

positively or negatively affect Mu activity in this line [24,25].

Methylation of Mu1 at a1-mum2 was also assayed because Mu1

methylation has proved to be a highly reliable indicator of MuDR

activity. The Mu1 elements in the individuals carrying MuDR(p3)

were unmethylated due to the presence of the MuDR(p3)-derived

transposase (Figure 2C, lanes 1–4). Sibling plants grown from non-

spotted kernels that did not inherit MuDR(p3) (lanes 5–9) carried

methylated Mu1 elements, a consequence of the absence of a

functional MuDR element.

In the experimental cross (MuDR(p3)/- x Muk/Muk), only plants

grown from heavily spotted kernels (which were expected to

contain duplicate copies of MuDR(p3)), were examined (Figure 2A,

lanes 10–14). In each case, an EcoRI digest revealed that plants

grown from these kernels contained at least one new MuDR

insertion (red arrows in Figure 2B). Mu elements transpose

duplicatively in the germinal lineage [24]. Therefore, the absence

of MuDR(p3) in plants grown from some of the heavily spotted

kernels was not due to germinally transmitted excisions of

MuDR(p3). Mu elements do, however, often transpose just prior

to meiosis. Thus some of these plants carried MuDR(p3), while

others carried only transposed copies of that element due to

independent assortment of the donor and transposed elements.

Previous work in our laboratory has demonstrated that although

Muk has no effect on MuDR activity in the aleurone if Muk is

introduced via the male parent, it has a strong effect on MuDR

activity in the F1 embryo and plant [22]. This was observed in the

plants grown from the heavily spotted kernels that carried

transposed copies of MuDR(p3). Each plant contained Mu1

elements that were methylated, consistent with the loss of

transposase in these plants due to the activity of Muk [22]

(Figure 2C, lanes 10–14). As described in Materials and Methods,

the a1-mum2 allele is suppressible in the adult plant tissue, resulting

in red plants in the absence of MuDR activity and green plants with

small revertant sectors in its presence [21]. This made it possible to

monitor activity by observing plant color. All of the plants carrying

Muk in this experiment were red, consistent with the loss of MuDR

activity. We conclude from this experiment that each of these

plants contained at least one newly transposed copy of MuDR(p3),

and that Muk was efficiently silencing all of these elements.

A Transposed Element Becomes Reactivated after the
Loss of Muk

To test for heritability of silencing, each plant carrying a

transposed copy of MuDR(p3) was crossed as a female to the a1-

mum2 tester. Typically, the ears resulting from a cross of a plant

carrying both Muk and one or many MuDR will exhibit a low

frequency of spotted progeny kernels, most of which are only

weakly spotted [22]. This was true for three of the five individuals

examined, and these results are consistent with heritable silencing

of transposed MuDR elements in these plants. A fourth plant gave

rise to a higher overall percent of spotted progeny (37%), but these

kernels were uniformly weakly spotted, and this family was not

examined further. In contrast, one plant gave rise to an ear with an

Figure 4. Genetic and Southern blot analysis of a family
segregating for MuDR(p5), MuDR(p4) and Muk. A) Graphic
depiction of summarized frequency of spotted progeny kernels derived
from different classes of individuals depicted in Figure 3. For each class,
the relevant genotypes are as indicated. ‘‘meth’’ refers to the
methylation status of Mu1 elements of each class, as determined in
Figure 3. B) Southern blot analysis of representative individuals from
each class depicted in panel A. Samples were digested with HinfI and
probed with a fragment including all of the MuDR TIR. The relevant
fragments are as indicated by the red arrows. The additional fragments
visible on this blot represent hMuDR elements that do not cosegregate
in this family with activity or a lack thereof. C) Restriction map of the
region around one of the terminal inverted repeat flanking the MuDR
elements. The indicated sizes are those expected if the HinfI site in the
TIR is methylated or unmethylated at the two positions based on
available sequence. Because Muk has an identical TIR to MuDR and is
methylated at the HinfI, it can also be seen as a unique fragment of the
indicated size. D) An example of a plant in which reactivation of
MuDR(p5) was delayed. Because the reporter a1-mum2 allele is
suppressible, the green sectors represent tissue in which MuDR(p5)
has been reactivated during somatic development.
doi:10.1371/journal.pgen.1000216.g004
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unusually high proportion of heavily spotted kernels (Figure 2B,

lane 13). Overall, the family derived from the test cross of this

plant had 57% (83/147) spotted progeny kernels, roughly half of

which (46/83) were more heavily spotted. This plant lacked

MuDR(p3) and contained two new MuDR-hybridizing fragments,

which we designated MuDR(p4) and MuDR(p5). Progeny kernels

were separated into classes based on excision frequency, with the

expectation that excision frequency would reflect the degree of

heritable activity. The more heavily spotted kernels are designated

‘‘heavy’’ and ‘‘medium’’ in Figure 3. Plants grown from

representatives of each excision frequency class were then

subjected to Southern blot analysis (Figure 3).

In order to detect the presence of full-length transposed MuDR

elements, a SacI digest of DNA from this family probed with a

fragment of MuDR was compared to an XhoI digest, also probed

with MuDR. SacI cuts in the ends of MuDR and gives rise to a

diagnostic 4.7 kb fragment regardless of the element’s position; in

this genetic background only full-length functional MuDR elements

yield a fragment of this size [24]. Because Muk has sequence

identity to MuDR in the probe region [23], this derivative of MuDR

can also be observed as a 2.5 kb fragment (i.e. lanes 15,16 and 17

in Figure 3A). SacI sites in Muk are subject to partial methylation

(Slotkin and Lisch, unpublished data), resulting in the larger,

4.2 kb fragment in plants with Muk as well (red arrow, Figure 3A).

XhoI cuts only once in MuDR. Therefore, elements at various

chromosomal positions give rise to unique fragment sizes

(Figures 3B and 3D). Our analysis revealed that each of two XhoI

segregating fragments contributed to the intensity of the SacI

internal fragment. When both XhoI fragments were missing, so was

the diagnostic SacI fragment. All spotted kernels gave rise to plants

with one or the other XhoI fragment; kernels that lacked both XhoI

fragments (Figure 3, lanes 30, 31, 33, 35 and 36) were uniformly

pale and did not transmit spotted progeny kernels when plants

grown from those kernels were test crossed. We conclude from this

analysis that each XhoI fragment represents a full length MuDR

element that can condition somatic activity of the reporter. The

element that gave the smaller XhoI polymorphism was arbitrarily

designated MuDR(p5) and that which gave the larger polymor-

phism was designated MuDR(p4).

The DNA samples from this family were also digested with HinfI,

the methyl-sensitive enzyme that cuts in the ends of the reporter

Mu1 element, and probed with Mu1. Strikingly, most (8/10) of the

individuals grown from the most heavily spotted kernels contained

unmethylated Mu1 elements (Figure 3C). This reversal of Mu

element methylation has not been observed before, and suggests

that some feature of the MuDR elements in these plants had been

altered. All plants that carried unmethylated Mu1 elements carried

MuDR(p5) and none of them carried MuDR(p4) by itself. None of

these plants carried Muk, but 11/18 (61%) of plants grown from the

more weakly spotted kernels did. None of the plants that were

grown from weakly spotted kernels had hypomethylated Mu1.

Overall, 26/28 (93%) of plants grown from kernels exhibiting any

spotting at all carried MuDR(p5). In contrast, only 17/28 (61%) of

these plants carried MuDR(p4), as did 3/8 (38%) of the plants grown

from pale kernels. These results are consistent with segregation of a

single active MuDR element (MuDR(p5)) and a second, much more

weakly active element (MuDR(p4)). The presence of Muk in roughly

half of plants grown from the weakly spotted kernels demonstrated

that this locus had been in the parent and was still competent to

silence MuDR elements.

Each plant from the above family was test crossed to determine the

heritability of activity. The genetic ratios of spotted to pale kernels in

the next generation were used to determine the copy number and

degree of heritable activity of MuDR elements in each plant. The

resulting families demonstrated an unambiguous relationship be-

tween MuDR(p5) and heritable activity as assayed by the number of

spotted progeny kernels from these test crosses. Plants carrying only

MuDR(p5) and unmethylated Mu1 elements gave rise to an average of

50% spotted kernels, consistent with segregation of a single, fully

active MuDR element (Figure 4A and Table 1). Many of the plants

examined that lacked Muk and that carried MuDR(p5) carried

methylated Mu1 elements in the first generation following the loss of

Muk. This suggested that in the leaf tissue of these plants, MuDR

remained inactive. However, these plants exhibited a sectored

phenotype with respect to expression of the suppressible a1-mum2

allele in the first generation following the loss of Muk (Figure 4D). This

phenotype suggests that a reversal of MuDR(p5) was occurring in

these plants, but that it was incomplete. Supporting this hypothesis,

after a second round of test crossing, these plants gave rise to an

average of 49% heavily spotted progeny kernels (Figure 4A and

Table 1). Together, these data suggest that MuDR(p5) eventually

reactivated in all cases, but in some plants reactivation was delayed.

In contrast, plants carrying only MuDR(p4) gave rise to a uniformly

low frequency (5%) of very weakly spotted kernels, consistent with a

more typically heritable silenced state. Thus, although both

MuDR(p4) and MuDR(p5) had been exposed to Muk in a previous

generation, MuDR(p4) remained silenced, whereas MuDR(p5)

eventually reverted to an active state in all cases once Muk was lost.

Plants carrying both MuDR(p5) and Muk also gave rise to a high

frequency (37%) of spotted kernels, an average of 17% of which

were heavily spotted (Figure 4A and Table 1). This ratio is consistent

with a second generation of escape from Muk, where the progeny of

these plants that carried MuDR(p5) but that lacked Muk had restored

somatic activity. Thus, even after two successive generations of

exposure to Muk, plants carrying MuDR(p5) retained the propensity

to reactivate after Muk was lost. In contrast, lineages carrying only

MuDR(p4) clearly lacked the propensity to reactivate even after only

having been exposed to Muk for a single generation.

We also examined methylation at MuDR TIRs to see if the

reversal of Mu1 TIR methylation was associated with a reversal of

methylation at MuDR(p5). To do this, DNA that had been assayed

for Mu1 methylation (Figure 3C) was again digested with HinfI,

blotted and probed with a MuDR TIR fragment (Figure 4B). This

analysis revealed that methylation at MuDR(p5) and Mu1

correlated well.

It was important to show that reactivation of MuDR(p5) is a

reproducible phenomenon. To do this, a single plant carrying

reactivated MuDR(p5) was crossed to the a1-mum2 tester and to a

Muk homozygote. Kernels from the resulting families were grown,

assayed for Mu element methylation, and test crossed. As expected,

all of the plants from the a1-mum2 test cross that inherited MuDR(p5)

were unmethylated at Mu1 (Figure 5A) and at MuDR(p5) (Figure 5B).

All of these plants gave rise to approximately 50% spotted progeny

kernels (Table 2). These data confirmed that MuDR(p5) remained

active in a subsequent generation. In the family derived from the

cross between the same MuDR(p5)-containing plant and a Muk

homozygote, progeny plants contained methylated Mu1 and

MuDR(p5) (Figure 5A and B). Nevertheless, when these plants were

test crossed, an average of 42% of the progeny kernels were spotted,

indicating that MuDR(p5) had again escaped heritable silencing

(Table 2). Plants that did not inherit MuDR(p5) did not give rise to

any spotted progeny kernels, confirming that activity in this family

was specific to MuDR(p5).

MuDR(p4) Reactivation Requires the Presence of an
Active MuDR(P5) Element

After the loss of Muk, MuDR(p4) never reactivated when it was

by itself (Table 1). However, MuDR(p4) did become heritably
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reactivated in the presence of a reactivated MuDR(p5) element, but

only when MuDR(p5) was fully active in the generation

immediately following the loss of Muk. Plants that carried an

active MuDR(p5) element (as judged by hypomethylation of HinfI

sites in both MuDR(p5) and Mu1), also carried unmethylated

MuDR(p4) elements (Figure 4B, lanes 7 and 8). When these plants

were test crossed, they gave rise to an average of 77% spotted

progeny, consistent with the independent segregation of two active

MuDR elements (Table 1). To test this hypothesis, kernels from one

of these families were planted and the resulting plants were

subjected to Southern blot analysis (Figure 6A) and were test

crossed (Table 3). In this family, both MuDR(p5) and MuDR(p4)

cosegregated with Mu activity. All spotted kernels in this family

carried either MuDR(p5), MuDR(p4) or both, while none of the

pale kernels had either. Plants carrying either MuDR(p5) or

MuDR(p4) gave rise to an average of 50% and 48% spotted kernels

Table 1. Activity of MuDR(p5) and MuDR(p4) in a family segregating for these elements and Muk.

Genotype a Sample b meth c hm weak pale T spot total % spot % hm

P5 no Muk unmethylated d 1 no 97 0 93 97 190 51% 51%

3 no 60 0 67 60 127 47% 47%

total 157 0 160 157 317 50% 50%

P5 no Muk methylated e 10 yes 123 0 127 123 250 49% 49%

18 yes 76 0 81 76 157 48% 48%

total 199 0 208 199 407 49% 49%

P5 Muk 19 yes 17 14 25 31 56 55% 30%

21 yes 36 38 92 74 166 45% 22%

25 yes 36 50 181 86 267 32% 13%

28 yes 12 14 66 26 92 28% 13%

total 101 116 364 217 581 37% 17%

Both, no Muk unmethylated d 4 no 97 0 25 97 122 80% 80%

5 no 131 0 33 131 164 80% 80%

6 no 228 0 73 228 301 76% 76%

7 no 144 0 43 144 187 77% 77%

8 no 79 4 27 83 110 75% 72%

9 no 107 0 34 107 141 76% 76%

total 786 4 235 790 1025 77% 77%

Both, no Muk methylated e 2 yes 124 0 116 124 240 52% 52%

22 yes 63 9 64 72 136 53% 46%

26 yes 35 61 114 96 210 46% 17%

total 222 70 294 292 586 50% 38%

Both Muk 14 yes 47 42 106 89 195 46% 24%

15 yes 40 45 88 85 173 49% 23%

total 87 87 194 174 368 47% 24%

P4 no Muk 29 yes 5 9 224 14 238 6% 2%

34 yes 0 7 150 7 157 4% 0%

total 5 16 374 21 395 5% 1%

P4 Muk 32 yes 0 0 192 0 192 0% 0%

23 yes 3 6 252 9 261 3% 1%

24 yes 3 2 38 5 43 12% 7%

total 6 8 482 14 496 3% 1%

Neither 30 0 0 252 0 252 0% 0%

31 0 0 182 0 182 0% 0%

35 0 0 238 0 238 0% 0%

36 0 0 273 0 273 0% 0%

agenotype of parents with respect to MuDR(p5) (P5), MuDR(p4) (P4) and Mu killer (Muk). Each parent plant was genotyped and then crossed to an a1-mum2 tester and
the resulting frequencies of heavy/medium (hm), weakly spotted (weak) and pale kernels were tabulated.

bparent plant numbers correspond to lane numbers in Figure 3.
cmethylation status of Mu1 in the parents of the families tabulated here, as determined by the blot in Figure 3C.
dparent plants had unmethylated Mu1 and MuDR elements.
eparent plants had methylated Mu1 and MuDR elements.
doi:10.1371/journal.pgen.1000216.t001
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respectively. Plants that carried both elements gave rise to an

average of 78% spotted kernels, consistent with the independent

assortment of two unlinked active MuDR elements (Table 3).

Those that carried neither element did not give rise to any spotted

kernels (data not shown). The elements also showed a positive

dosage effect; the most heavily spotted kernels carried both

elements (7/7) while the more moderate or weakly spotted kernels

(19/19) carried a single MuDR element. These data demonstrate

that both elements were active in this family, and that they were

the only active elements present. Since MuDR(p4) alone never

exhibited reactivation in this family (Table 1) or any other we have

examined (see below), we suggest that MuDR(p4) required the

presence of active MuDR(p5) to become reactivated.

For comparison, we examined the heritable activity of

MuDR(p4) in plants in which there had been a delay in MuDR(p5)

reactivation. As described above, these plants carried methylated

MuDR and Mu1 TIRs in the generation immediately after the loss

of Muk (Figures 3 and 4). However, when these plants were test

crossed, they gave rise to an average of 50% heavily spotted

progeny kernels (Table 1). One plant and its progeny were

examined in detail. In this plant, both MuDR(p5) and MuDR(p4)

had remained at least partially inactive in the first generation after

the loss of Muk (Figure 4B, lanes 9 and 10, and 4D). Despite having

two potentially active elements, this and all similar families

segregated only 50% spotted progeny kernels, as if only one of

these two MuDR elements had become reactivated in this

generation (Table 1). Southern blot analysis of progeny of this

plant revealed that MuDR(p5), but not MuDR(p4), co-segregated

with activity (Figure 7A). All the plants grown from spotted kernels

in this family carried MuDR(p5), but the presence or absence of

MuDR(p4) had no effect on activity; three of ten plants grown from

spotted kernels carried MuDR(p4), as did seven of nine plants

grown from pale kernels. This experiment demonstrated that

MuDR(p4) was not active in this family. It also showed that in this

generation, an active MuDR(p5) element had no influence on the

Figure 5. Genetic and Southern blot analysis of families
segregating for MuDR(p5) and Muk. A) A HinfI digest of two
families probed with an internal portion of Mu1. The first was derived
from a cross between a plant carrying an active MuDR(p5) element and
an a1-mum2 tester (lanes 1–12); the second was derived from a cross
between the same plant carrying MuDR(p5) and a Muk homozygote.
Methylated and unmethylated Mu1 elements at a1-mum2 are as
indicated. Arrows indicate new insertions of Mu1 elements. B) DNA
from representative individuals digested with HinfI and probed with the
mudrA TIR. Fragments resulting from methylated and unmethylated
HinfI sites within the TIR are as indicated, as is the fragment from Muk.
Sample designations are the same as in panel A. C) Summarized
frequencies of spotted kernels in progeny of test crosses of plants
depicted in panel A.
doi:10.1371/journal.pgen.1000216.g005

Table 2. Recapitulation of Silencing and Reactivation of
MuDR(p5) by Muk.

Genotype a plant b hm weak pale T spot total %spot %hm

P5 no Muk 1 64 0 62 64 126 51% 51%

2 55 0 71 55 126 44% 44%

3 69 0 57 69 126 55% 55%

4 18 0 35 18 53 34% 34%

5 72 52 83 124 207 60% 35%

6 39 0 49 39 88 44% 44%

total 460 53 357 513 870 59% 53%

no P5 7 216 0% 0%

8 111 0% 0%

9 11 0% 0%

10 99 0% 0%

11 119 0% 0%

total 556 0% 0%

P5 with Muk 13 59 49 88 108 196 55% 30%

14 34 22 80 56 136 41% 25%

15 34 41 102 75 177 42% 19%

16 38 35 110 73 183 40% 21%

17 26 31 94 57 151 38% 17%

18 23 32 83 55 138 40% 17%

19 36 31 59 67 126 53% 29%

20 7 17 153 24 177 14% 4%

21 49 50 88 99 187 53% 26%

total 306 308 857 614 1471 42% 21%

no P5 22 108 0% 0%

23 54 0% 0%

24 29 0% 0%

25 64 0% 0%

26 216 0% 0%

27 196 0% 0%

total 667 0% 0%

agenotype of parent plants with respect to MuDR(p5) (P5) and Mu killer (Muk).
Each plant was crossed to an a1-mum2 tester and the resulting frequencies of
heavy/medium (hm), weakly spotted (weak) and pale kernels were tabulated.

bplant numbers 1–15 correspond to lane numbers in Figure 5.
doi:10.1371/journal.pgen.1000216.t002
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heritable activity of MuDR(p4). Plants that carried both MuDR(p5)

and MuDR(p4), when test crossed, gave rise to only 50% spotted

progeny (Table 4 and Figure 7B). Together, these results suggest

that MuDR(p4) could be responsive to a reactivated MuDR(p5), but

only in the generation immediately following the loss of Muk.

It is unclear as to precisely when MuDR(p5) must be active in

order to alter the trajectory of MuDR(p4) silencing. Only those

plants that showed hypomethylation at MuDR and Mu1 TIRs that

were grown from more heavily spotted kernels gave rise to progeny

with active MuDR(p4) elements. This suggests an active MuDR(p5)

element was required quite early in development in order to

reactivate MuDR(p4). The aleurone and the mature plant are the

result of a double fertilization event. One sperm fuses with the egg

cell of the female gametophyte to form the embryo. The second

fuses to the diploid central cell to give rise to the triploid

endosperm. The egg cell and the central cell are derived from a

post-meiotic mitotic division in the female gametophyte. With that

in mind, it is interesting to note that eight of ten heavily and

medium spotted kernels gave rise to plants with hypomethylated

Mu elements. In contrast, none of the plants grown from more

weakly spotted kernels gave rise to plants with hypomethylated Mu

elements. The fact that the methylation status of MuDR(p5) in the

mature plant correlated so well with the phenotype of the kernels

suggests that MuDR(p5) reactivation that was not delayed most

often occurred prior to the post-meiotic mitotic cell division.

Together, these data suggest that the window of opportunity for

activation of MuDR(p4) by MuDR(p5) may be a very narrow one.

Indeed, it may be restricted to the gametophyte, or even meiosis II.

All Aspects of MuDR Activity Are Restored Following
Reactivation

Although somatic excision of a reporter element is a reliable

indicator of Mu activity, it only represents one aspect of that

activity, which only requires MURA transposase function [26,27].

Figure 6. Genetic and Southern blot analysis of a family segregating for active MuDR(p5) and MuDR(p4) elements. A) XhoI digests of a
family segregating for MuDR(p5) and MuDR(p4), in which the female parent carried unmethylated MuDR(p5) and MuDR(p4) following the loss of Muk.
Kernels were separated into classes based on somatic excision frequency, planted, and the resulting progeny plants were subjected to Southern blot
analysis. B) Summarized frequency of spotted kernels in progeny of test crosses of the plants analyzed in panel A.
doi:10.1371/journal.pgen.1000216.g006
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Insertional activity, either of the reporter element or of MuDR itself

requires both mudrA and mudrB expression. The analysis portrayed

in Figure 5 demonstrated that a reactivated MuDR(p5) element

could cause new insertions of Mu1. When Mu1 is methylated, the

size of the fragments following digestion varies depending on the

position of the element. The element at a1-mum2 is 2.1 kb. Other

sizes present in single individuals represent independent new

insertions of Mu1. The presence of new Mu1 fragments in progeny

of plants that carried reactivated MuDR(p5) (Figure 5A, lanes 8

and 13) indicates that this element can cause new insertions of

Mu1, consistent with reactivation of both mudrA and mudrB

functions.

We also examined the propensity of reactivated MuDR(p5) and

MuDR(4) to duplicate themselves by test crossing a series of

individuals that carried active versions of either MuDR(p5) or

MuDR(p4). In each case, the plants were derived from a family that

had segregated genetically for a single active MuDR element. In

the absence of new duplications of these MuDR elements, the

expectation would be that each resulting family would also

segregate 50% spotted progeny kernels. Ratios significantly higher

than 50% are the result of MuDR duplication events [21]. The

frequency of ears showing ratios of spotted kernels significantly

greater than 50% provides an estimate of the duplication

frequency, which we have shown can vary from position to

position [24]. Of 100 ears derived from plants carrying silenced

MuDR(p5) in the presence of Muk, none had ratios significantly

greater than 50% spotted kernels (data not shown), indicating that

MuDR(p5) does not transpose in the presence of Muk. In contrast,

following reactivation we found that both MuDR(p4) and

MuDR(p5) were competent to transpose at a frequency of 10%

for MuDR(p5) and 18% for MuDR(p4) (data not shown). These

data demonstrate that although both somatic and transpositional

activity of MuDR(p5) is repressed in the presence of Muk, both

manifestations of activity are restored once Muk is lost via genetic

segregation.

We also wanted to confirm that the ‘‘rescue’’ of MuDR(p4) in the

previous experiment was due to the presence of a reactivated

MuDR(p5) element. To test the effects of Muk on MuDR(p4) in the

absence of MuDR(p5), plants carrying active MuDR(p4) were

crossed to Muk heterozygotes, and the resulting plants were then

test crossed (Figure 1). As before, unlike MuDR(p5), which showed

clear evidence of reactivation following the loss of Muk, MuDR(p4)

remained heritably silenced (Table 5). Thus, MuDR(p4) in the

absence of an active MuDR(p5) element showed a typical pattern

of heritable silencing after being exposed to Muk.

In order to replicate the ‘‘rescue experiment’’, a plant carrying

active MuDR(p5) and MuDR(p4) elements was crossed to a Muk

homozygote. Progeny plants were genotyped and test crossed

(Figure 8). Plants that carried only MuDR(p4) and Muk gave an

average ratio of spotted kernels of 6%, consistent with our previous

result that MuDR(p4) without MuDR(p5) is heritably silenced by

Muk. Plants that carried Muk with MuDR(p5) alone or with

MuDR(p4) gave an average frequency of spotted progeny of 48%,

consistent with reactivation of MuDR(p5) following the loss of Muk.

Progeny of this cross that carried both MuDR(p5) and MuDR(p4)

but that lacked Muk were test crossed again. One individual gave

rise to a ratio of spotted kernels of 68%, consistent with the

independent segregation of two active elements. In the next

generation, somatic activity segregated with both elements; plants

carrying both MuDR(p4) and MuDR(p5) gave rise to a 75% ratio,

and those with either MuDR(p4) or MuDR(p5) by itself gave rise to

roughly 50% ratios (Table 6). These data strongly support the

Table 3. Activation of MuDR(p4) by MuDR(p5).

genotype plant a spotted pale total %spot

P4+P5 2 137 40 177 77%

4 145 37 182 80%

6 56 13 69 81%

7 97 30 127 76%

total 435 120 555 78%

P5 only 9 82 88 170 48%

10 45 61 106 42%

12 48 47 95 51%

16 84 72 156 54%

20 89 81 170 52%

total 348 349 697 50%

P4 only 21 31 31 62 50%

22 13 26 39 33%

23 70 59 129 54%

24 108 113 221 49%

25 79 95 174 45%

total 301 324 625 48%

aplant numbers correspond to lane numbers in Figure 6. Note that only a subset
of the plants were test crossed.

doi:10.1371/journal.pgen.1000216.t003 Figure 7. Genetic and Southern blot analysis of a family
derived from a plant that carried MuDR(p5) and MuDR(p4) in
which reactivation was delayed and both elements were still
methylated in the first generation following the loss of Muk. A)
XhoI digests of a family segregating for MuDR(p5) and MuDR(p4), in
which the female parent carried methylated MuDR(p5) and MuDR(p4).
Kernels were separated into classes based on somatic excision
frequency, planted, and the resulting progeny plants were subjected
to Southern blot analysis. B) Summarized frequency of spotted kernels
in progeny of test crosses of plants depicted in panel A.
doi:10.1371/journal.pgen.1000216.g007
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hypothesis that, although MuDR(p4) is invariably silenced in the

absence of MuDR(p5), a reactivated MuDR(p5) element can cause

MuDR(p4) to reactivate as well.
A Duplicate Copy of MuDR(p5) Remains Inactive
Following Exposure to Muk

If the reactivation effect we observe for MuDR(p5) were a

function of position, then we would expect that, if this element

transposed to a new position, it would exhibit a more typical

heritable response to Muk. To test this hypothesis, plants carrying

MuDR(p5), a transposed copy of this element at a second unlinked

position and Muk were test crossed (Figure 9). Resulting progeny

plants grown from spotted kernels were genotyped for MuDR(p5)

and Muk and test crossed a second time (Table 7). Plants carrying

MuDR(p5) that lacked Muk gave rise to ears that segregated for one

or more active MuDR elements and averaged 55% spotted

progeny kernels. In contrast, siblings that inherited only the

second MuDR element and not MuDR(p5) gave rise to a much

lower frequency of spotted kernels (5%), consistent with the kind of

heritable silencing that is typical for MuDR elements after having

been exposed to Muk. These results suggest that, while MuDR(p5)

reactivates once Muk is segregated away, the duplicate copy of this

element remained heritably silenced. These data strongly suggest

that the reduction of heritable silencing at MuDR(p5) is a function

of chromosomal position and not sequence, since this effect can be

reversed following transposition.

MuDR(p5) Is Inserted into the 59 UTR of a Conserved
Gene Near a GA-Rich Sequence

In order to determine the local chromosomal environment

around MuDR(p5) and MuDR(p4), inverse PCR was used to clone

sequences flanking the insertions. DNA from plants carrying either

Table 4. Lack of heritable reactivation of MuDR(4).

genotype plant a spotted pale total %spot

P5 only 2 89 90 179 50%

5 65 67 132 49%

6 82 83 165 50%

8 62 57 119 52%

9 101 101 202 50%

10 47 47 94 50%

total 446 445 891 50%

P5+P4 1 91 101 192 47%

3 57 59 116 49%

4 49 39 88 56%

total 197 199 396 50%

P4 only 11 0 145 145 0%

14 0 120 120 0%

15 5 104 109 5%

16 0 57 57 0%

17 0 145 145 0%

18 6 82 88 7%

19 0 103 103 0%

total 11 756 767 1%

neither 12 0 95 95 0%

13 0 98 98 0%

total 0 193 193 0%

aplant numbers correspond to lane numbers in Figure 7.
doi:10.1371/journal.pgen.1000216.t004

Table 5. Heritable silencing of MuDR(p4) by Muk.

Genotype plant spotted pale total %spot

P4 no Muk 1 87 116 203 42.9%

2 186 174 360 51.7%

3 89 87 176 50.6%

4 69 51 120 57.5%

5 65 33 98 66.3%

6 44 44 88 50.0%

7 112 151 263 42.6%

8 79 76 155 51.0%

total 731 732 1463 50.0%

P4 with Muk 1 5 338 343 1.5%

2 1 308 309 0.3%

3 20 252 272 7.4%

4 15 252 267 5.6%

5 5 112 117 4.3%

total 46 1262 1308 3.5%

doi:10.1371/journal.pgen.1000216.t005

Figure 8. A graphic representation of a lineage in which a plant
carrying active MuDR(p5) and MuDR(p4) was crossed to a Muk
homozygote, and resulting progeny plants were subsequently
test crossed. Percent figures refer to the summarized frequency of
spotted progeny kernels derived from each cross.
doi:10.1371/journal.pgen.1000216.g008
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element was digested with XhoI, which gives rise to fragments of

2.6 and 2.4 kb corresponding to MuDR(p4) and MuDR(p5)

respectively (Figure 3B). The DNA was then ligated and primers

specific to MuDR were used on the circularized fragments to

amplify fragments of the expected sizes (see Materials and

Methods for details). The products were sequenced on both

strands, and the resulting sequences were used to design flanking

primers. These primers were then used with MuDR-specific

primers on DNA from families segregating for MuDR(p4) or

MuDR(p5). In each case, these primer pairs specifically amplified a

product only in samples containing the MuDR elements (data not

shown). Sequences were extended using publicly available maize

genomic sequences, and these sequences were used to design

primers matching DNA sequences present to the other side of each

element. Nine base pair target site duplications, a characteristic

feature of Mu insertions, were identified in each case. Further, XhoI

and HinfI sites in the flanking sequences obtained from the public

databases also correlated well with data obtained from Southern

blot restriction data.

Given its propensity to reactivate, we were particularly

interested in sequences flanking MuDR(p5). This element was

inserted into the 59 UTR just 4 base pairs proximal to the start

codon of a putative ORF of unknown function (Figure 10), which

we designate here Hemera, after the Greek goddess of the day, who

was believed to disperse the night’s mist each morning. Genes

homologous to Hemera can be detected other grasses such as rice

and Brachypodium distachyon. This conservation, along with the

presence cDNA sequences in the database from several species,

including maize, suggests that this gene is functional. The insertion

of MuDR(p5) was 69 bp downstream of a 37 bp GA-rich sequence

composed largely of GA repeats. Interestingly, although the rice

and B. distachyon 59 UTRs are not homologous to the maize

sequence by sequence similarity, each of them has a GA-rich

sequence roughly the same distance from the putative start of

translation. These data suggest that sequence composition, rather

than sequence order, may be conserved at this gene in these three

species. Homologues of Hemera are also present in dicots, including

papaya, grape, Arabidopsis and poplar. Although some of these

sequences carry GA or TC rich regions near the putative start of

translation, their positions are not conserved between species

(Figure S1).

MuDR(p4) was also inserted into a conserved gene of unknown

function (Figure S2). Based on a comparison with cDNAs from

several species, it appears that the insertion is into an intron,

401 bp upstream of the putative start of translation. Interestingly,

the 59 portion of this intron contains a region rich in TCs, as does

the 59 portion of the paralogous rice gene, which contains a long

GA-rich sequence. Since MuDR(p4) does not reactivate following

exposure to Muk, these data suggest GA/TC-rich sequences by

themselves are not sufficient to permit reactivation. However, it is

possible the presence of these sequences near MuDR(p4) make it

particularly responsive to active MuDR(p5). Analysis of additional

positions, and combinations of positions will be informative, but an

unambiguous demonstration of the propensity for cis-acting

sequences will require mutation of those sequences in a transgenic

context.

Table 6. Recapitulation of MuDR(p4) reactivation with
MuDR(p5).

Genotype plant spotted pale total % spot

P5 1 102 111 213 47.9%

2 105 107 212 49.5%

3 137 188 325 41.1%

4 80 70 160 56.3%

5 59 60 119 49.6%

6 46 49 95 48.4%

7 79 100 179 44.1%

8 65 76 141 46.1%

total 673 761 1444 47.3%

P4 9 91 107 210 49.0%

10 69 63 132 52.3%

11 74 106 189 43.9%

total 234 276 531 48.0%

P5+P4 12 57 22 81 72.8%

13 150 44 201 78.1%

14 152 53 206 74.3%

15 79 34 115 70.4%

total 438 153 603 74.6%

doi:10.1371/journal.pgen.1000216.t006

Figure 9. A graphic representation of a lineage in which
MuDR(p5) and a duplicate copy of that element were crossed to
a Muk heterozygote. Percent figures refer to the summarized
frequency of spotted progeny kernels derived from each cross.
doi:10.1371/journal.pgen.1000216.g009
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Discussion

The experiments described here detail a position effect that

alters the heritability of the silenced state of a maize transposon.

The experiments were possible because of the absence of

spontaneous Mu transposon silencing in our lines and the

availability of a single silencing locus (Muk) that can reliably and

heritably silence MuDR elements. Because heritability is the rule

for MuDR silencing by Muk, it was possible to screen for exceptions

to this rule in order to uncover variation in the ability of

chromosomal positions to maintain silencing over multiple

generations. One such exception is MuDR(p5), which fails to

maintain silencing. The fact that a transposed copy of MuDR(p5)

showed a more typically heritable pattern of Muk-induced

silencing demonstrates that MuDR(p5) is exceptional because of

its position rather than its sequence.

To our knowledge, this is the only known example of a specific

locus competent to reverse epigenetic silencing of flanking

sequences. In plants, a related (albeit reversed) phenomenon can

be found at the FLC locus in Arabidopsis thaliana. In that case, the

FLC gene is apparently competent to alter the activity of

neighboring genes via an epigenetically mediated pathway [28].

When a T-DNA encoded resistance gene is integrated near the

FLC gene, its expression is down regulated in response to cold

temperatures, and this down-regulation is dependent at least in

part on components of the small RNA mediated silencing

pathway. The difference is that FLC attracts factors that down-

regulate gene expression, and Hemera apparently attracts factors

that reverse silencing. Nevertheless, in each case it appears that

there are cis-acting sequences that can alter the epigenetic state of

inserted genes.

Interestingly, the kind of epigenetic resetting we see with

MuDR(p5) is typical in animals, although the role of position

remains poorly understood. In certain cell types at certain times,

massive changes in patterns of histone and DNA methylation are

observed. This process, which is thought to be required for the

elimination of some epigenetic marks and their replacement with

others, is particularly pronounced in the pre-implantation embryo

of mammals [29]. The same is true of primordial germ cells, where

this process of epigenetic reprogramming is thought to be involved

in the restoration of totipotency [30]. In mammals, exceptional

instances in which DNA methylation is not lost, are associated with

imprinted genes and deeply silenced transposons [31]. In some

cases it has been shown that a close association between

transposon and host gene can lead to heritable changes in

phenotype. For instance, the Agouti viable yellow (A(vy)) locus in mice

is under the control of an IAP retrotransposon. Hypomethylation

of this element results in expression of the gene and yellow coat

color. Epigenetic variants of this allele can be transmitted from

generation to generation, and it is hypothesized that the heritable

epigenetic effects of on A(vy) are due to a failure to remove

epigenetic marks due to the close association of the IAP element

with the coding sequence [32].

In Drosophila, changes in the efficiency of epigenetic resetting can

have important consequences. A hyperactive version of a JAK

kinase, hopTum-1, causes tumor formation. It does so because

counteracts heterochromatic gene silencing, which is an important

regulatory pathway for tumor suppression [33,34]. Enhancers of

the hopTum-1 allele included several components of the heterochro-

matin formation pathway, including HP1 and several Suppressors

of variegation mutations, which were first identified due to their

effects on position effect variegation. Remarkably, not only can

hopTum-1 cause tumors in one generation, but it can increase the

propensity for the wild-type offspring of mutant flies to have

tumors as well [35]. It is hypothesized that the hopTum-1 mutation

antagonizes the normal process by which epigenetic states are reset

each generation by allowing genes that should be heritably

silenced to take on a heritably active state.

Plants are distinct from animals in the sense that they lack a

dedicated germ line. Instead, somatic meristem tissue differentiates

into germinal cells each generation. A wealth of information

suggests that the result of this difference is that epigenetic changes

in plants are more readily transmitted from generation to

generation [36]. Nevertheless, it is likely that in plants, as in

animals, at least a subset of genes in are reset each generation

order to ensure that the epigenetic state of each embryo is roughly

equivalent. DNA methylation, for instance, increases in the

meristem as it ages, and these changes must presumably be

reversed each generation [37,38]. We suggest that Hemera may

represent a gene whose epigenetic state must be reset each

generation. If Hemera were epigenetically silenced in the floral

meristem and upregulated in the embryo, for instance, then

perhaps that epigenetic regulation must be relieved during or

following meiosis. It will be interesting to see if differences in

Table 7. A transposed copy of MuDR(p5) is heritably silenced
by Muk.

Genotype a plant spotted Pale Total % Spot

P5 1 31 30 61 50.8%

2 110 107 217 50.7%

3 60 63 123 48.8%

5 167 76 243 68.7%

6 54 61 115 47.0%

7 115 47 162 71.0%

8 99 133 232 42.7%

9 90 26 116 77.6%

10 89 53 142 62.7%

11 60 59 119 50.4%

12 62 233 295 21.0%

13 98 30 128 76.6%

14 115 79 194 59.3%

15 94 100 194 48.5%

16 151 52 203 74.4%

17 119 127 246 48.4%

18 78 34 112 69.6%

total 1751 1453 3204 54.7%

P(new) 19 0 210 210 0.0%

20 53 112 165 32.1%

21 6 65 71 8.5%

22 7 195 202 3.5%

23 4 72 76 5.3%

24 7 203 210 3.3%

25 0 216 216 0.0%

26 0 42 42 0.0%

27 0 30 30 0.0%

28 0 273 273 0.0%

total 77 1418 1495 5.2%

aall plants lacked Muk. Plants either carried MuDR(p5) or they lacked that
element but carried a second element (P(new)).

doi:10.1371/journal.pgen.1000216.t007
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expression levels of Hemera correlate with changes in chromatin

configuration or DNA methylation, and whether or not these

changes correlate with changes at MuDR(p5).

It should be emphasized that the variation we observe is not in

the propensity to become silenced; MuDR(p5) is effectively silenced

by Muk. Given that MuDR(p5) TIR sites are methylated at the

HinfI site, it is also unlikely that this element is exclusively

inactivated at the post-transcriptional level. Rather, the effect we

observed appears to be specifically associated with the efficiency

with which transcriptional silencing of this element is heritably

propagated in the absence of the trigger. The loss of methylation at

MuDR(p5) may not be a passive process; our assay for methylation,

a HinfI digest, depends on methylation of a CG site. Since CG

methylation can be maintained passively through the activity of

maintenance methyl-transferases such as MET1, the loss of

methylation at this site may reflect an active de-methylation

process. Active demethylation has been observed as a consequence

of DNA glycosylase activity in plants, and is often associated with

repetitive elements such as transposons [39,40]. It will be

interesting to see whether or not the reversal of methylation we

see at MuDR(p5) is due to similar activity in maize. It will be

particularly interesting if mutations of maize DNA glycosylase

genes affect MuDR(p5) reactivation.

We do not know the cause of the position effect on MuDR(p5).

The fact that this element is inserted into an expressed portion of a

gene may have been sufficient to reverse silencing, but Mu

elements often insert into or near genes and nearly all MuDR

elements are silenced when high copy number Mu lines are crossed

Figure 10. A representation of the region into which MuDR(p5) is inserted. Sequences in yellow represent the target site duplication that
was produced upon insertion. Sequences in green are the GA-rich sequences identified near the insertion. Sequences in red are presumed coding
sequences. The rice homolog is the gene that best matches the Hemera gene in maize.
doi:10.1371/journal.pgen.1000216.g010
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to Muk [22]. The presence of GA repeats near the insertion is

intriguing, as GA repeats have been associated with programmatic

changes in chromatin structure and in particular with the active

replacement of histones [9]. Although we have not established that

this is the case at MuDR(p5), we do note that the rice and B.

distachyon homologs of Hemera also have GA-rich sequences just

upstream of the start of the ORFs. Although the sequence of the

GA-rich regions in the maize, rice and B. distachyon genes are not

similar in sequence, they do have similar sequence composition

(100%, 89% and 96% GA respectively). These blocks of sequences

are roughly the same distance from the first ATG of each gene,

82 bp, 83 bp and 89 bp for maize, rice and B. distachyon

respectively. Given the phylogenetic distance between these

species (roughly 50 million years [41]), the conserved positioning

of these blocks at the same distance from the start of translation in

each gene suggests that they may have a conserved function.

In addition to the position effects we observed, our data also

suggests that epigenetically determined states of competency can

change over time. Specifically, we provided evidence that a

silenced MuDR(p4) element could respond to a reactivated

MuDR(p5) element, but only for a brief period of time. This was

revealed because of variations in the rate at which MuDR(p5)

became reactivated. In some cases, it was immediately after the

loss of Muk, as evidenced by the high level of somatic activity in the

aleurone and the complete loss of methylation in the growing F2

plants (Figures 3 and 4). In these cases, when MuDR(p4) was also

present, it too was reactivated. However, in those cases in which

MuDR(p5) reactivation was delayed (weakly spotted kernels,

variegated a1-mum2 suppression and TIR methylation), MuDR(p4)

was not reactivated. In the subsequent generation, even though

MuDR(p5) had become fully reactivated, it had no effect on a

previously silenced MuDR(p4). We hypothesize that silencing of

MuDR elements is a progressive process that involves successively

deeper silenced states, from responsive to a second, active element,

to refractive to that element. Thus, immediately after Muk was lost

due to genetic segregation, MuDR(p4) silencing was not completely

established, and so this element was responsive to active

MuDR(p5). After a round of meiosis, MuDR(p4) had become fully

refractive to MuDR(p5). Perhaps passage through meiosis of a

previously silenced transposon acts as a check-point, during which

provisionally established silenced states are made more perma-

nent. If our interpretation of the data is correct, then the

epigenetic state of MuDR(p4) can change over time, even once the

silencing trigger (Muk) has been lost. This is consistent with what

we know about silencing mechanisms in plants, in which

chromatin remodeling factors, DNA methylation and siRNAs

form a self-reinforcing loop [42]. MuDR(p4) silencing may

represent an illustration of how this process can deepen a silent

state over time, resulting in a shift from competency to respond to

a second, active element to a refractive state in the course of a

generation. Similarly but conversely, MuDR(p5) may represent a

process by which silenced states can be reversed over time through

the activity of cis-acting factors. The delay in MuDR(p5)

reactivation in many of the plants examined suggests that

reactivation, like silencing, can be a progressive process. Our data

suggest that even after a trigger is lost, a series of additional and

progressive changes can continue to occur. This is perhaps the

most fascinating aspect of epigenetic modifications: time matters.

Changes triggered in one generation can manifest themselves over

multiple subsequent generations.

Historically, an emphasis has been on mechanisms by which

epigenetic information is propagated from generation to genera-

tion, a classic example being paramutation [43]. Our data suggest

that an equally important process may be the erasure of epigenetic

modifications that have occurred in plants in the meristem prior to

meiosis. The cis-acting factors that appear to be responsible for

reversing MuDR(p5) silencing may provide an important clue

concerning the mechanism of this erasure.

Supporting Information

Figure S1 A representation of the region immediately upstream

of the putative start of translation of homologs of Hemera in poplar

(two paralogs), papaya, Arabidopsis, and grape. Sequences in green

are the GA-rich sequences identified near the insertion. Sequences

in blue are TC-rich sequences. Sequences in red are presumed

coding sequences.

Found at: doi:10.1371/journal.pgen.1000216.s001 (0.53 MB EPS)

Figure S2 A representation of the region immediately upstream

of the putative start of translation of the gene into which MuDR(p4)

is inserted, and the homolog of that gene in rice. Sequences in

green are the GA-rich sequences identified near the insertion.

Sequences in blue are TC-rich sequences. Sequences in red are

presumed coding sequences.

Found at: doi:10.1371/journal.pgen.1000216.s002 (0.56 MB EPS)
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