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We review behavioural change models (BCMs) for infectious disease trans-

mission in humans. Following the Cochrane collaboration guidelines and the

PRISMA statement, our systematic search and selection yielded 178 papers cov-

ering the period 2010–2015. We observe an increasing trend in published

BCMs, frequently coupled to (re)emergence events, and propose a categoriz-

ation by distinguishing how information translates into preventive actions.

Behaviour is usually captured by introducing information as a dynamic

parameter (76/178) or by introducing an economic objective function, either

with (26/178) or without (37/178) imitation. Approaches using information

thresholds (29/178) and exogenous behaviour formation (16/178) are also pop-

ular. We further classify according to disease, prevention measure, transmission

model (with 81/178 population, 6/178 metapopulation and 91/178 individual-

level models) and the way prevention impacts transmission. We highlight the

minority (15%) of studies that use any real-life data for parametrization or vali-

dation and note that BCMs increasingly use social media data and generally

incorporate multiple sources of information (16/178), multiple types of infor-

mation (17/178) or both (9/178). We conclude that individual-level models

are increasingly used and useful to model behaviour changes. Despite recent

advancements, we remain concerned that most models are purely theoretical

and lack representative data and a validation process.
1. Introduction
Infectious diseases can have a large impact on society as they can negatively

affect, among others, morbidity, mortality, unemployment and inequality. As a

result, prevention and control of infectious diseases are important for public

health and welfare.

The main objective of infectious disease transmission models is to inform

and guide policy-makers to prepare for and respond to (re)emerging infectious

diseases, particularly when sufficient information from controlled experiments

is lacking. However, the impact of infectious disease transmission and policy

interventions are subject to hosts’ behaviour. Therefore, there is an interest to

incorporate behaviour change in response to disease-related information into

models for infectious disease transmission.

Numerous historical infectious disease experiences confirm the existence of

a so-called behavioural immune system [1] in humans. For example, during

the 2003, severe acute respiratory syndrome (SARS) outbreak people took pre-

cautionary actions such as wearing face masks, hand-washing, avoiding public

transport, restaurants, shops and other crowded places in Hong Kong [2,3] and

Beijing [4]. In addition, the 2009 A/H1N1 influenza pandemic has triggered a
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significant proportion of the population to adapt their

behaviour and take preventive measures such as social

distancing [5,6].

We refer to models incorporating behavioural immunity

as ‘behavioural change models’ (BCMs), which typically

complement models for disease transmission in an attempt

to mimic real life dynamics. In essence, a BCM is a model

in which individuals are responsive to external information

about the disease and as a result take one or more preventive

measures to reduce the chance of contracting the disease. The

external information individuals respond to can be global

(equally available and relevant to all individuals) or local

(individual availability and relevance determined by physical

or social proximity to the information source). Furthermore,

this information can be specified in terms of actual risks

(‘prevalence-based’) or of perceptions of these risks (‘belief-

based’), as well as a mixture of all the above [7]. Vaccination

is a common prevention measure with varying uptake, given

historical fluctuations in the trade-off between the perceived

risks of vaccine-related side effects (VRSEs) and of vaccine-

preventable disease. Other common prevention measures

include social distancing and condom use.

Awidely used theoretical foundation for the formation and

dynamic nature of individuals’ behaviour comes from game

theory. Game theory has a rich history in social sciences with

the Prisoner’s Dilemma being a frequently used illustration

(see [8] for a comprehensive introduction). Game theory

assumes individuals take rational decisions based on a trade-

off that embodies the anticipated rational decisions of all

other individuals in society. Even though these assumptions

are often not observed in real life [9], a multitude of BCMs in

the setting of infectious disease transmission still use a

game-theoretical foundation that caused the development of,

for instance, ‘vaccination games’ [10] and ‘epidemic games

with social distancing’ [11].

Another foundation for behaviour change is found in the

fields of network science and individual-based modelling

(IBM), where there are opportunities to develop more realistic

models by introducing (more) heterogeneity. The challenge

here is to find a balance between model complexity and com-

putational boundaries. Some examples of behavioural change

research for which network science has been used include

models using adaptive contact networks [12], vaccinating be-

haviour in social contact networks [13] and social distancing

in sexual contact networks [14].

Although there is increased recognition for the need to

incorporate behavioural changes in infectious disease trans-

mission models, a consensus on the proper methodology to

do so is lacking. It appears much research is not supported

by empirical information but departs from a theoretical foun-

dation with arbitrarily chosen parameter values and no

validation process. As a result, there is large heterogeneity

in the triggers for behavioural change and the impact on dis-

ease transmission, as well as the conclusions of such studies.

There is a need for empirical data from, for instance, surveys

or discrete choice experiments to support the validity of these

models and to guide further research [7,15].

The main goal of this paper is to systematically review and

document how and to which extent behavioural immunity has

been explored in infectious disease transmission models over

the past 5 years. In brief, we aim to investigate to which

extent: (i) technological advancements and increased data

availability have enriched BCMs, (ii) the literature has coped
with the fact that behavioural immunity is often contingent

on the disease and not coupled to disease dynamics, (iii) mod-

elling efforts are validated with quantifiable observations and

parametrized, (iv) the current models have assessed the

importance of social networks in individual decisions,

(v) the process of transferring information to behaviour is

managed and (vi) irrational behaviour is demonstrated.

In the following sections, we systematically identify and

analyse BCMs applied to infectious disease transmission,

starting from where a previous review in 2010 left off [7].

These models are categorized in order to distinguish their

assumptions, methods, disease and transmission-specific

applications and implications. Furthermore, a critical point

of view is taken when evaluating these models in terms of

their real-life applicability. Current pitfalls and opportunities

are identified to support the development of more advanced

BCMs in the near future.
2. Methods
The strategy and reporting in this review are based on Cochrane

guidelines for systematic reviews of intervention [16] and the

PRISMA statement [17]. The eligibility criteria and the search

query were determined by consensus between all authors,

covering expertise in infectious disease modelling and economics.

2.1. Search
We searched PubMed and Web of Science (WoS) for records

published between January 2010 and December 2015. After

discussing and defining the inclusion and exclusion criteria, we

obtained our final search query which we used in PubMed on

12 January 2016 and in WoS on 13 January 2016: ‘(behavio*

OR decision*) AND (change* OR influence* OR dynamic* OR

adapta* OR adapt OR adaptive OR strategic*) AND (infect* OR

epidemic OR epidemics OR epidemiology OR epidemiological

OR epidemiologic OR pandem* OR outbreak*) AND (disease*

OR vaccin*) AND (model OR models OR modelling OR modeling

OR simulat* OR transmission*)’.

2.2. Selection
In a first step, F.V. screened the results of the search query based

on title and abstract in accordance with the following pre-specified

eligibility criteria:

Infectious diseases. Only records that concern infectious diseases are

included in the selection. Infectious diseases are defined using

the WHO definition: infectious diseases are caused by patho-

genic microorganisms, such as bacteria, viruses, parasites or

fungi; the diseases can be spread, directly or indirectly, from

one person to another [18].

Model. Records should consist of a mathematical model for be-

havioural change, for infectious disease transmission or a

coupled model combining these two.

Individual behaviour. Behaviour is considered the consequence of

personal and voluntary choices made by an individual, i.e. we

exclude studies tackling forced interventions such as school

closure or mandatory vaccination, but include government

interventions creating awareness, education in prevention, etc.

External trigger(s). At least one trigger for modelled individuals

to change their behaviour is external and has to be related to

infectious disease. We exclude models with exclusively intrin-

sic triggers from the selection (e.g. an individual’s own human

immunodeficiency virus (HIV) status).

Preventive measure. A preventive measure is central to the analysis

(e.g. vaccination or social distancing). The behaviour of the
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individual is defined by the decision (not) to take preventive

measures.

Humans. We are interested in diseases in humans and behaviour

of humans regarding these diseases, and therefore exclude

research on plants, animals, the behaviour of the model

itself or the behaviour of governments or institutions.

Original research. We exclude review articles, letters, editorials

and comments.

English language. Excluding articles written in other languages.

In a second step, the remaining articles’ full texts were scree-

ned to confirm eligibility, independently by F.V. and L.W.

Whenever there was doubt about eligibility, agreement was

sought through discussion.

2.3. Data extraction
Using a common data extraction protocol for each eligible

article, F.V. and L.W. independently retrieved from the full

text: (i) infectious disease; (ii) disease category (sexually trans-

mitted infection (STI), influenza-like illness (ILI), childhood

disease, vector-borne disease (VBD) or other); (iii) prevention

measure (vaccination, social distancing etc.); (iv) source of infor-

mation (global, local or multiple); (v) type of information

(prevalence-based, belief-based or multiple); (vi) effect on the

model (disease state, model parameters, contact structure or mul-

tiple); (vii) disease transmission model description; (viii) BCM

description; (ix) whether there was interaction between the

behaviour and disease transmission model; (x) whether the

analysis incorporated real-life data; and (xi) movement of indi-

viduals in the model. When applicable, other interesting

information was extracted using free form fields. Again,

discrepancies in interpretation were resolved through discussion.
3. Results
3.1. Search results
Our search query resulted in 7193 records from Web of

Science and PubMed (figure 1). We identified and removed
1434 duplicates, resulting in 5759 unique records that were

screened based on title, abstract, keywords and full-text if

necessary. Exclusions were mostly related to (i) topic, includ-

ing the study of non-infectious diseases or infections in

animals, plants and crops; (ii) discipline, including micro-

biological and clinical trial studies, and to a lesser extent to

(iii) language and article type. Eventually, 178 articles were

included for full-text analysis.

The number of articles matching our eligibility criteria

increased from 18 in 2010 to 38 in 2015, but there was a

single year downward deviation from the trend in 2014

(with 22 eligible studies; figure 2). Compared with Funk

et al. [7], we observe a marked increase in BCM publications.

Over the 9 year period between 2002 and 2010, Funk et al.’s
search yielded 27 eligible articles (i.e. about 15% of our

yield over 6 years), but their search and selection procedure

lacks transparency to compare these results in depth.
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Models applied to influenza or ILI stand out, together

with ‘general’ models. In the latter category, a hypothetical

infectious disease is modelled, without specification of

which disease (but often including optimistic statements

about the generalizability of the application).

3.2. Model structure categories
In table 1, we categorized the studies according to disease,

prevention measure (topic) and whether the model is

implemented at the population level or at the individual-

level (i.e. using an IBM or contact network) to simulate

infectious disease transmission. Metapopulation models for

disease transmission were also identified and are labelled in

bold. Furthermore, the columns indicate at which level the

impact of prevention measures is modelled, distinguishing

whether behavioural change is implemented through a

switch in infectious disease state (e.g. vaccination immunizes

previously susceptible persons, and this can be modelled by

moving them from the susceptible to the immune state), a

change in model parameters (e.g. hygiene measures may be

assumed to reduce the effectiveness of transmission) or in

social contact structure (e.g. social distancing may be

mimicked by a link-breaking or rewiring process between

susceptible and infectious individuals in contact networks).

Studies can appear in multiple categories, as some have mul-

tiple prevention strategies or multiple effects on the disease

transmission model. For the transmission model category,

we interpreted to which extent heterogeneity is introduced

in the model. All references are categorized and represented

in a spreadsheet that can be found as electronic supplemen-

tary material. The model type is often disease-dependent.

For instance, all retrieved models for measles and/or pertus-

sis are population models with vaccination as a preventive

measure that affects the disease state in the transmission

model. Moreover, the models are often prevention-

dependent. We observe that most of the models that use

vaccination as a prevention strategy will impact the model

through a switch in disease state. For instance, in many com-

partmental susceptible–infectious–recovered (SIR) disease

models, vaccinated individuals move to the R compartment.

General models with social distancing as a prevention strat-

egy usually impact the model in terms of a modified

contact structure, contingent on the disease transmission

model. Whereas for influenza applications, this only applies

for one out of seven references.

3.3. Prevention measures
Most of the eligible articles use models with vaccination or

social distancing as a prevention measure, though other

strategies have been considered. The choice of prevention

measure naturally depends on the disease under study. For

instance, the discovery and implementation of antivirals as

a prophylactic for influenza and HIV has resulted in the

publication of models with pre-exposure antiviral use as indi-

vidual behaviour. A minority of models does not specify the

preventive action taken by individuals. When an effect on the

contact rate was mentioned, we assumed that the preventive

action was social distancing. It appears some authors use the

term ‘social distancing’ as a synonym for all non-pharma-

ceutical interventions (NPIs) [11]. In this review, social

distancing is interpreted as reducing physical (or sexual)

contacts between individuals and their environment.
3.4. Diseases
In table 1, we classified the records based on four specific

disease categories, one category for general models (not spe-

cifying a disease) and one category for other diseases. Most

models retrieved were on influenza or influenza-like illness

(ILI) and HIV. Other frequent diseases studied with BCMs

are ‘measles & pertussis’ and ‘syphilis & gonorrhoea’.

Historically, perceptions of high risks, associated with

measles and pertussis vaccination, have adversely affected

the uptake of these vaccines. As a result, these are topical

applications for transmission models incorporating behav-

ioural changes, as discussed in [19]. The literature on

measles is becoming more diverse as VRSE perceptions

evolve; Bhattacharyya & Bauch [89] describe a model in

which parents delay vaccinating their children as a result of

an exogenous vaccine scare, whereas the same authors use

social networks of imitation behaviour for VRSE perception

spread in response to a vaccine scare [91], and d’Onofrio

et al. [92] introduce public interventions in their model to

increase vaccine uptake. Diseases in the ‘other’ category are:

SARS, smallpox-like disease, malaria, hepatitis B, Ebola,

pneumococcus, pneumonic plague, toxoplasmosis and

cholera. General models do not explicitly specify a disease,

often assuming general applicability. As noted earlier,

models tend to be disease-specific. In the case of influenza

or influenza-like illness, some models look at seasonal

changes in behaviour with backward looking individuals

evaluating the success of their (vaccination or social distan-

cing) strategy during previous season(s) [20,27–31,69]. HIV

BCMs are often coupled with a public health information/

education campaign aimed at evaluating public health

measures to control epidemic spread or to study the cost-

effectiveness of these control measures [71,72,77,81,83].

An example of a more advanced, game-theoretic model is

the model by Tully et al. [75]. They use an agent-based

model (ABM) for the spread of risk perception, sexual behav-

iour and HIV transmission in the context of individual sexual

encounters evaluating the behaviour of (potential) partners.
3.5. Emergence-driven research
Between 2010 and 2015, much research has been emergence-

driven. That is, the research field responds by focusing on

diseases that are of major interest because of a change in

the threat they present to public health. The influenza

A/H1N1 pandemic of 2009 has largely influenced the devel-

opment of BCMs for influenza. For example, Poletti et al. [54]

use the influenza A/H1N1 pandemic of 2009/2010 to para-

metrize an influenza transmission model with behavioural

changes focusing on the spread of risk perceptions in the

population. In addition, a model on Ebola virus disease

(EVD) was published in 2015 in response to the epidemic out-

break in Liberia [100]. The authors use WHO and CDC data

to parametrize the model suggested in an attempt to mimic

disease transmission and to identify behavioural changes as

drivers of the disease dynamics. Note that, in the current

review, we relate ‘emergence’ not only to disease emergence,

but also the emergence of a vaccine scare (such as observed

with measles–mumps–rubella (MMR) vaccination and

pertussis whole-cell vaccination [91]) or the emergence of

new therapies for endemic diseases (such as the development

of a multi-season influenza vaccine [26]).
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3.6. Disease transmission models
We identify three major categories of models: population-

level models, metapopulation and individual-level models.

Population-level models traditionally formulate compart-

ments according to health state (e.g. susceptible, infectious

and recovered) and simulate transitions between the com-

partments over time using population averages. These

models are often based on the mass-action principle to desig-

nate the transmission probability. Each individual has an

equal probability of contracting disease given the disease

state levels in the population. Metapopulation models split

the population into different subpopulations with their

own (spatial) general characteristics and disease-related

parameters. The individual-level category consists of network

models and IBMs. Network models represent disease trans-

mission on a network where nodes (individuals) are

connected to each other using links. This allows to model indi-

viduals with different degrees, representing how many links a

node has (i.e. number of neighbours/direct contacts). IBMs or

ABMs typically incorporate more heterogeneity and stochasti-

city on individuals’ characteristics such as spatial location,

age, gender, sexual orientation, etc. The model selection

depends on disease characteristics, data availability, modelling

purpose (i.e. what outcome figures are you interested in?),

computational resources, etc.

Individual-level models are gaining interest in the BCM

literature since they can introduce heterogeneity in behaviours,

tackle clustering of vaccine sentiments and look at stochastic

and local outbreaks of infectious diseases with a high vacci-

nation coverage (e.g. measles). Moreover, given an underlying

contact structure, individual-level models are well suited to

model social distancing behaviour in terms of reduced con-

tacts as a prevention strategy. Remarkably, for measles and

pertussis we found deterministic models only, despite the

widely acknowledged stochastic nature of outbreaks in

highly vaccinated populations. Note that, in table 1, we also

made a distinction between individual-level and population-

level models in the category ‘disease transmission model’.

Metapopulation models are displayed in bold.

3.7. Information gathering
In order for individuals to change their behaviour in rela-

tion to prevention measures, they require disease-related

information. As defined in the eligibility criteria, we only

included papers in which this information is external to

the individual. Examples of disease-related, external

information include: news broadcasts on a disease outbreak

or rumours among friends and family about VRSEs or

vaccine-preventable disease. Funk et al. [7] proposed a

classification based on type and source of information, dis-

tinguishing global and local information as source and

prevalence-based and belief-based information as type of

information. Global information is defined as information

available to all individuals in the population, for example,

TV stations and public health campaigns. Local information

is information individuals gather from their direct contacts

or neighbourhood. Examples are rumours from neighbours

or infective individuals in their close contacts. Prevalence-

based information is defined as ‘directly relating to disease

prevalence’, whereas belief-based information is ‘not directly

relating to disease prevalence’. Belief-based information can

therefore have its own dynamics, to some extent independent
of the disease dynamics. For example, rumours can inflate the

perception of disease prevalence, even if the true prevalence

is low. In table 2, we classify the studies we identified in a

matrix, using the same definitions.

We observe that most BCMs are using information that

is globally available and prevalence-based. These models

are frequently game-theoretic (or pay-off maximizing)

behavioural change frameworks coupled with disease trans-

mission models at the population level. Studies that met

our eligibility criteria, but are unclear about the information

individuals use [14,56,85,103,111,187] were excluded from

figure 2. Given the increasing individual heterogeneity in

disease transmission models, it is becoming more interest-

ing to incorporate local information in BCMs. In network

models and IBMs, one could for instance model the local

spread of information through direct contacts with crucial

implications in terms of clustering of both disease prevalence

and opinions [186].

In addition, we observe that more articles are using mul-

tiple information types and/or sources, making individual

behaviour more realistic. For instance, Barrett et al. [58] con-

structed a model where ‘individual behaviour is triggered

by the prevalence level of the virus in the overall society

(global prevalence) as well as within one’s own demographic

class (local prevalence)’. Highly relevant are articles introdu-

cing both multiple sources and multiple types of information

such as the bij model, Liang & Juang [168], which introduces

different forms of information in the individual’s risk percep-

tion of an epidemic, embodying all four information

categories.
3.8. How is the transfer from information to behaviour
managed?

Based on full-text analysis, we extracted how individuals

were modelled to translate the information they receive into

behavioural change. Traditionally, behaviour formation

models were composed of a game-theoretic framework in

which individuals have perfect information on disease-

related data and prevention effectiveness. Individuals are

then assumed to use this information in a utility-maximizing

game by comparing the expected costs of infection with the

expected costs of the prevention measure. However, more

advanced and different BCMs have been developed since.

We identified five distinct categories for characterizing the

decision-making process of individuals, listed in §§3.8.1–

3.8.5. (see also electronic supplementary material, appendix).

Some referenced papers contain multiple BCMs.
3.8.1. Exogenous behaviour formation (16/178)
We retrieved 16 papers [14,45,51,56,64,72,73,83–85,97,98,103,

111,170,187] describing BCMs in which there is no two-way

interaction with a disease transmission model. Morin et al.
[84] provide an example of such a model by assessing the

impact of policies encouraging condom use, on gonorrhoea

transmission dynamics; i.e. behaviour (condom use) is

parametrized based on different empirical studies and

model projections are made to estimate consequential disease

transmission and model equilibria. Similarly, Brauer [111]

assessed disease model implications of a constant fractional

reduction in the number of contacts. A third example is the

model by Joshi et al. [170] where a time-dependent education
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function moves susceptible individuals into lower suscepti-

bility classes with lower transmission rates, independent of

disease dynamics. These models are relatively rare and

most often focus on policy implementations and short-term

effects of behaviour on disease transmission.

3.8.2. Information threshold (29/178)
We retrieved 29 BCMs in which behaviour change is mod-

elled conditional on exceeding a predefined information

threshold [12,42,57,58,61–63,70,78,81,88,114,127,132,133,135,

136,138–144,162,163,180–182]. The information the individ-

ual assesses can be obtained in a direct way (e.g. through

prevalence in neighbours) or in an indirect way (e.g. through

rumours or opinions). These models do not elaborate on

how behaviour is rationally determined or influenced by

relevant factors. Instead, behaviour formation is a result of a

predefined threshold function. Examples include switching

to social distancing when the number of infectives exceeds a

threshold [114], social distancing by rewiring once a non-

infected node connects to an infected node [132], and—as in

Wu et al. [163]—to have an individual’s vaccination decision

exercised through a risk function exceeding a threshold,

which in turn depends on the number of infected neighbours.

Mao & Yang [63] used an individual risk function incorporat-

ing the proportion of ‘adopters’ among contacts, the perceived

pressure of ‘adoption’ and the proportion of infective neigh-

bours. Again, once the risk function exceeds a threshold,

individuals adopt preventive behaviour, which in this case

consisted of taking prophylactic antivirals.

3.8.3. Information as dynamic parameter (76/178)
The largest category embodies 76 references managing infor-

mation as a dynamic parameter [3,25,34,40,43,47–50,53,55,60,

61,65–68,70,71,74,77,80,82,86,92,94–96,99,100,102,104–109,

113,115–117,119–126,128–131,133,134,137,148,149,153,157,

161,165,166,168,171–178,184–186,188,189]. In this category,

instead of a threshold, the information is a continuous

input in the decision-making process of individuals. At the

population level, we can characterize these BCMs as infor-

mation driving the flow in and out the prevention taking

compartment. Two subcategories can be distinguished:

models with a direct relation between infectious disease par-

ameters and behaviour formation (i.e. behaviour changes vis-

à-vis disease dynamics), and models with an indirect relation,

through an information spread medium. For the former

subcategory, the behaviour or decision-making process is

predefined as a functional relation depending on disease

transmission parameters. The functional form does not

need to be linear. Some examples are vaccination coverage

as a positive decreasing function of perceived risk of VRSE

[148], the percentage of the susceptible population engaging

in avoidance actions increases as the disease becomes more

prevalent [48] and a model where the effective contact rate

reduces with the number of infectives [119].

The latter subcategory requires a third-party spreading

the information for individuals to receive. For instance

through mass media, neighbours, formation of opinions in

the population, etc. A multitude of these models introduce

an ‘aware’ compartment in the model where aware and una-

ware individuals are assigned distinct disease transmission

parameters such that aware individuals have lower suscepti-

bility of acquiring infection. See for example Funk et al. [104],
in which a rate introduces people in an ‘aware’ class after

which the awareness spreads through the population, coup-

ling disease transmission with a BCM. Interestingly, some

models introduce information spread models with character-

istics from disease transmission models where individuals

are, for example, susceptible to or infected with disease-

related information. Misra et al. [105] use a model with

media coverage creating awareness in the population, also

introducing an ‘aware’ compartment in a population model.

Social impact is introduced in a model by Ni et al. [186],

where they use a variety of complex networks for the

spread of opinions driving the individual probability of pre-

vention behaviour. The use of a network is convenient to

model these dynamics as they allow clustering of, for

instance, vaccine-related sentiments in the population.

Most often these models assign additional characteristics to

nodes (which represent individuals), apart from disease

state. An example could be that a node is assigned a disease

state and an opinion which is either provaccination or contra-

vaccination. When simulating the disease and behaviour

dynamics in this network, when nodes interact, transmission

of both disease and opinions can occur. Such that if a provac-

cine node is surrounded by many vaccine sceptics, it might

change its opinion towards the opinions of its links (i.e.

neighbours) and as a result this will influence the individual’s

probability of taking vaccination as a prevention measure.
3.8.4. An economic objective function (37/178)
This ‘economic’ class of BCMs is also quite common with 37

articles being retrieved [10,11,13,19,21–24,26,32,35,41,52,59,

75,76,79,87,90,101,110,112,118,128,145–147,151,155,157,158,160,

167,169,179,183,190]. This approach assumes individuals take

their prevention decision based on an objective function,

which they attempt to optimize (i.e. by maximizing benefits

and/or minimizing costs). Game theory grounded models

form an integral part of this category. By way of example,

one can assume that individuals have knowledge about both

the disease and their options for prevention and make rational

decisions based on this knowledge. People accordingly possess

a (perceived) cost of infection (ci) and a (perceived) cost of the

prevention measure (cp), which can, for instance, be assumed to

be 100% effective. Another important input in people’s

decision-making, their probability of infection (l) can be

assumed to be dependent on disease prevalence, which evol-

ves over time. For instance, one can define this using an SIR

model under the mass action principle as the force of infection,

i.e. l ¼ bI, where b is the per-contact transmission rate, and I is

the fraction of infectives in the population. This way the behav-

ioural change framework can be coupled to the disease

dynamics. The individual makes the following trade-off, with

P, the choice of taking the prevention measure

P ¼ 1 if cil . cp

0 if cil , cp:

�
ð3:1Þ

In a study by Bhattacharyya & Bauch [19], individuals take

their vaccination decision based on the perceived vaccination

cost in the context of the 2009 A/H1N1 influenza pandemic.

Their BCM model exhibits a ‘wait and see’ Nash equilibrium

where individuals incorporate the concept of herd immunity

in their prevention behaviour, resulting in free-riding rep-

resented by a ‘delayer’ strategy. The model developed by

Morin et al. [52] embodies individuals’ behaviour by the
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maximization of expected utility determined by adapting the

contact level (i.e. social distancing). Aadland et al. [87] intro-

duce a BCM maximizing an individual’s expected lifetime

utility by choosing the number of sexual partners, hereby

explaining the re-emergence of syphilis.
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3.8.5. An economic objective function with social learning/
imitation (26/178)

We retrieved 26 papers [13,20,27–31,33,37–39,44,46,54,69,89,

91,93,137,143,150,152,154,156,159,164] describing a BCM

with an objective function with imitation. It is recognized

that some social or peer influence should be incorporated in

the decision-making process of the individuals (see also

models with information as a dynamic parameter). As a

response to this concern, the (rational) ‘game-theoretic’

model has been adapted to include social influence or imita-

tion behaviour. In these models, it is assumed that people

compare their own prevention-related behaviour with that

of other individuals in society. Through comparison, individ-

uals learn whether their own behaviour is optimal and, to

which extent they should adapt it. Typically, a sampling

rate is assumed for individuals sampling other individuals

from the population. After sampling an individual from the

population, the trade-off is compared and people switch

strategies with a probability as a function of the pay-off

difference. Often, a Fermi-like function is used, guiding the

adoption to the better strategy depending on the magnitude

of the pay-off difference. Other switching functions/

strategies are used, but naturally, the larger the beneficial

pay-off difference, the higher the probability of switching

your behaviour. An example of a Fermi function, taken

from [31] is given in this section. If we represent the pay-

off of the strategies of individual i (with strategy si) and

individual j (with strategy sj) as 1i and 1j respectively, and

the pay-off difference is defined by D1ij ¼ 1i 2 1j. Then, the

probability of individual i switching to the strategy of

individual j is

Prðsi  sjÞ ¼
1

1þ exp[D1ij=k�
, ð3:2Þ

where k denotes the selection pressure representing the sen-

sitivity of individuals to switch strategies in response to a

pay-off difference [31]. Parameter k can be interpreted as

expressing ‘stickiness’ in behaviour. Figure 3 indicates that

individuals are very responsive even to small differences in

the pay-off when k is low, and that for large values of k

(e.g. 0,9) their behaviour becomes ‘sticky’. Sticky, in

the sense that they need to observe a very large pay-off

difference before they opt to change. For intermediate

values of k, people have sticky behaviour but when the

potential benefit in the pay-off is large enough, people

switch to the strategy of individual j. If the behaviour is

not assumed to be very sticky, then it could be that indivi-

dual i still adopts the strategy of individual j even if the

pay-off of strategy j is worse. The underlying assumption is

here that for some individuals peer influence and social

conforming behaviour is—to a certain extent—more impor-

tant than pay-off maximization. Note that in the majority

of these models, assumptions rather than real-life obser-

vations guide the choice and distribution of the ‘stickiness’

parameter k.
3.9. Model parametrization and validation
One may question how well BCMs approach reality, as there

is a paucity of empirical data on behavioural responses to

disease-related information informing these models. We exam-

ined whether and how data were used to parametrize BCMs,

and to which extent these data support the underlying

theoretical model. Moreover, we critically assessed model

parametrization, distinguishing data-driven from assumption-

driven parametrization, for the disease model, the BCM and

the complete integrated model. A first, striking observation is

that most models are solely theoretical because they are con-

structed independently from empirical observations. Often a

stability analysis is performed, and equilibria are obtained in

order to grasp the dynamics of the model in the absence of par-

ameter values. Others perform numerical simulations with

either assumptions on parameters or referring to other studies

supporting their choice of parameters. Less than 20% of the

studies has (partially) fitted or validated their model to behav-

ioural and/or disease transmission data. Retrospective studies

on disease emergence are particularly useful when real-time

data on behavioural change and disease transmission during

an outbreak are available over a sufficiently long time. Social

media data and other electronic sources of information are

also increasingly used, thus creating opportunities for ‘big

data’ collection on disease transmission, behaviour formation

and spatial location [25,60,66]. Next, we briefly describe studies

constructing their models using observational data, i.e. studies

not exclusively making assumptions or taking parameters from

literature.

To underpin BCMs, participatory experiments have been

performed to capture social distancing. Maharaj et al. [146]

and Chen et al. [183] collected data through a game in which

participants trade-off social contacts versus their risk of infec-

tion. Such data can be used to parametrize game-theoretic

models of social distancing and adaptive networks with link

deletion. In addition, survey data have been used to assess

behavioural change. Zhong et al. [48] used survey (Public

Risk Communication Survey, 2009) data to parametrize their

BCM. Robinson et al. [14] surveyed sexual attitudes and

lifestyle to build a sexual contact network. The IBM in Gray

et al. [85] for syphilis transmission was also informed with

survey data on sexual behaviour. Additionally, disease trans-

mission parameters were calibrated from syphilis diagnosis

among gay men in Victoria, Australia. A survey on altruism
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and self-interest was conducted by Shim et al. [23] to calibrate

the behavioural change parameters regarding influenza vacci-

nation. In Schumm et al. [127], the BCM is represented by a

dynamic social contact network with social distancing,

constructed from a survey and census data. Cohen et al. [24]

surveyed a convenience sample of students about their risk

perceptions for influenza A/H1N1 to estimate the utility

values of different behaviours. The study by Fierro & Liccardo

[70], used data on awareness and concern about the risk of

contagion to populate their model on A/H1N1 influenza

transmission with behavioural parameters. Moreover, they

also validated their output through comparisons with Italian

influenza surveillance data from 2009. The health belief

model (HBM) [191] is frequently used to retrieve prevention

behaviour and parametrize BCMs. The parameters in the

HBM in Durham & Casman [3] were calibrated, using

survey data on perceived severity and susceptibility during

the 2003 SARS outbreak in Hong Kong. Karimi et al. also

use the HBM for their ABM on influenza in 2015 [45]. For vali-

dation, the authors compare their model output with similar

influenza ABMs in the literature. Another model tackling the

influenza A/H1N1 pandemic in 2009 is the model by

Bayham et al. [60], who used data from the American time-

use survey and the National Health and Activity Patterns

Survey (NHAPS). Moreover, Google Trends data are rep-

resented as a proxy for subjective risk perception and

weather data are used to control for the effects of extreme

weather phenomena. Xia et al. [25] constructed a social

network using data of an online Facebook-like community to

construct a BCM for disease and vaccine awareness on the

2009 influenza A/H1N1 pandemic in Hong Kong. The same

pandemic has inspired Springborn et al. to use home television

viewing as a proxy for social distancing [56]. Pawelek et al. [66]

used Twitter data of self-reporting for awareness spread and

ILI surveillance data (UK Health Protection Agency) of the

2009 A/H1N1 influenza pandemic for disease transmission.

In addition, Collinson et al. [68] constructed a model on influ-

enza A/H1N1, incorporating mass media report data from the

Global Public Health Intelligence Network.

Incidence and outbreak data have been useful to inform

the disease dynamics parallel with BCMs. For the 2009

influenza pandemic, Zhong et al. [48] parametrized their

transmission model with outbreak data from Arizona and

Xiao et al. [65] estimated parameters using outbreak data

(laboratory-confirmed cases) from Shaanxi province in

China. Schumm et al. [127] focused on observational census

and survey data from rural areas. Andrews & Bauch [41] cali-

brated both disease and behaviour parameters to vaccine

coverage and disease incidence data. Althouse & Hébert-

Dufresne [88] used surveillance-based incidence rates for

syphilis and gonorrhoea from 1941 to 2002. Gray et al. [85]

calibrated disease transmission parameters from data on

syphilis diagnosis among men who have sex with men in

Victoria, Australia. An HIV transmission model including

adaptive condom use and sexual partnerships in South

Africa is fitted to HIV prevalence data in Nyabadza et al.
[71]. The publication makes projections for disease dynamics

when scaling up condom use and reducing the number of

sexual partners stepwise with 10%. Behavioural change

parameters are not calibrated in this publication. The HIV

model of Viljoen et al. [80] is fitted to prevalence data in

South Africa and Botswana to look at the effect of awareness

on disease spread.
BCMs on vaccination dynamics have also been supported

by real-life observations. Bauch & Bhattacharyya [91]

informed model parameters with historical vaccine coverage

and disease incidence data from two vaccine scares (MMR

and whole-cell pertussis). The behavioural change frame-

work introduced in the model has a game-theoretic

foundation with inclusion of imitation. Likewise, a model

for the dynamics of vaccine uptake with a public intervention

was proposed by d’Onofrio et al. [92]. Pertussis vaccination

uptake and disease dynamics data for the UK are used to

fit the model by Oraby et al. [93], which focuses on the

inclusion of injunctive social norms in the context of vacci-

nations for paediatric infectious diseases. The model is

validated comparing the model prediction with observed

vaccination uptake data during both the UK vaccine-scare

period and high coverage period.

Model fitting has been performed through maximum-

likelihood and least-squares methods [3,55]. Poletti et al. [54]

use ILI incidence data in Italy to calibrate the disease dynamics

in their game-theoretic model using least-squares. In addition,

data on antiviral drug purchase were used to calibrate the

model. In [100], a model of social mobilization is fitted to

weekly case counts from CDC and WHO for EVD in Lofa

County, Liberia. He et al. [55] investigated three possible

explanations for multiple waves of the 1918 influenza pan-

demic, with one consisting of human behaviour responses.

Three proposed models are fitted to historical mortality data

using maximum-likelihood in order to determine the extent

they can justify the observed disease dynamics. Johnson

et al. [72] used prevalence data, antenatal clinic surveys and

household surveys for parametrization in order to determine

the effects of increased condom use and antivirals on disease

dynamics. They calibrated both disease and behaviour

parameters to age-specific data using a Bayesian approach

for two distinct models.
4. Discussion
4.1. What are current behavioural change models

capturing?
It is intuitively logical to include human behaviour in math-

ematical models for the spread of infectious diseases. After

all, disease dynamics are, in essence, dependent on human

behaviour dynamics: people interact and take preventive

measures on a regularly basis. Because there is much hetero-

geneity in the ways in which behaviour is included and

parametrized in BCMs, it seems the real question is: ‘How

should behaviour be taken into account?’ We found that

model output may depend on the model specification, to

the extent that the selection and development of a model

leads in a predictive way towards a predefined conclusion.

That is, it seems many of these models serve to justify a

theory. For instance, in many pure game-theoretic models,

free-rider behaviour emerges resulting in suboptimal vacci-

nation coverage levels, whereas in models including

imitation behaviour, the results are often ambiguous. Vali-

dation of models with real-life observations is desperately

needed to specify an appropriate model, conditional on

disease characteristics. Note that model selection implicitly

determines the characterization of individuals in the popu-

lation; models with an economic objective function often
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assume rational decision-makers, whereas models with imita-

tion or information spread introduce some ‘irrational’

behaviour such as peer influence and social responsibility.

Primary sources such as surveys are needed to empiri-

cally underpin the foundations of the models used. The

study of Skea et al. [192] on MMR vaccination decisions

uses an online chat forum to assess vaccination sentiments

and the importance of social responsibility in the parental

decision process. The authors find that: ‘participants

expressed a desire to both (i) protect their own child and

(ii) help protect others by contributing to herd immunity’

[192]. This finding suggests that people are not purely self-

interested and herd immunity is not taken as a means to

opt for free-riding, on the contrary, establishing herd immu-

nity is seen as an additional incentive, protecting others.

A similar conclusion can be drawn from Vietri et al. [9],

who tested whether college students consider either free-

riding or altruistic motives to decide on (not) receiving

vaccinations. They find that individuals both incorporate

their own risk of infection and altruistic motives in their

decision of whether or not to vaccinate. Determann et al.
[193] suggest that these behaviours—and as a result the

decision-making process—are country-dependent. They find

that focus group participants tend to ‘base their vaccina-

tion decision on the trade-off between perceived benefits

and barriers of the vaccine. . .’. Although, in their vaccination

strategy, Swedish participants also incorporate: following the

rules, doing the right thing, solidarity with other citizens and

social influences. The latter drivers are less important in

Dutch and Polish participants. This implies that studies

may have to be diversified by country-specific characteristics

to tackle the inhabitant’s behaviour. Dorell et al. [194] con-

clude that one of the most important factors for vaccination

is the healthcare provider’s recommendation, which is a

determinant that is not included in any of the approaches

in the models we found in this extensive review.

In general, there is a need for empirical research to under-

pin the development of valid models approximating real-life

behaviour and disease transmission. Some attempts for recent

BCMs illustrate the difficulty of finding suitable observa-

tional data. For instance, Springborn et al. [56] used

television viewing habits (average viewing time) as a proxy

for social distancing, although this proxy is far removed

from a direct estimation of social distancing in an outbreak

situation. More promising sources of information include:

survey data using, for instance, the HBM framework (also

see [191,195,196]) or time-use surveys [3,14,23,24,45,48,60,

72,85,127,183] or digital sources such as social media

[25,60,66,146,197]. Real-life data collection during the influ-

enza A/H1N1 pandemic in 2009 has been a milestone for

the parametrization of BCMs with increased collection of

both behaviour and disease-related information. For instance,

Van Kerckhove et al. [198] studied social contact patterns of

symptomatic ILI cases during the pandemic. We encourage

the collection of such real-time data in future outbreaks to

guide policy-makers in the establishment of an optimal

response strategy. For some models, data are just not avail-

able, and one needs to resort to assumptions to model

behavioural change. Note also that excluding behavioural

change from infectious disease models equates to assuming

behaviour is unaffected by risk perceptions and disease inci-

dence, and vice versa. Ignoring behavioural responses in the

face of substantial changes in risk perceptions is probably
worse than making assumptions within a theoretical model

in the first place. This review has also met with important

limitations in clarity of assumptions and methods in many

publications, notwithstanding transparency is an essential

part of publishing credible and replicable research.

4.2. Disease-dependent model specification
We observed that the specification of BCMs largely depends

on the disease being investigated and the prevention measures

considered. Clearly, the transmission characteristics (e.g. air

and saliva borne versus STIs), the potential prevention

measures (e.g. social distancing versus condom use) and the

epidemic stage (e.g. emergence versus endemic equilibrium

versus elimination) are interdependent, and determine both

the utility and specification of a BCM. For instance, many

influenza models use vaccination as a prevention measure

with individuals evaluating their previous influenza vacci-

nation decisions to determine the current season’s strategy. It

would seem unrealistic to require more data to parameterize

both behavioural change and disease transmission models

with the aim to develop more general models that suit any

infectious disease, albeit that behavioural change in response

to one disease’s risk perceptions could change the risk percep-

tions of another. At the current stage of BCM development

and parametrization, generalized BCMs accommodating

multiple pathogens and different transmission routes seem

unrealistic. However, it would be easier to combine multiple

diseases with the same transmission and prevention proper-

ties. For instance, BCMs assessing the combined effects of

vaccination scares on MMR and diphtheria, tetanus, pertussis

(DTP) disease seem intuitively possible and relevant, though

technically challenging and high on data demands.

Developing BCMs with multiple prevention measures is

also challenging. Again, we take influenza as an example

where we discovered a multitude of prevention measures in

our selection (also see table 1): vaccination, social distancing,

pre-exposure prophylaxis by antivirals, hygiene measures

and others. Interdependencies between these prevention strat-

egies may occur. For instance, a person vaccinated for seasonal

influenza may put less effort into hygienic measures such as

hand-washing. However, individuals taking hygiene measures

may also be more inclined to engage in social distancing if

these individuals are more risk-averse. Researchers need to

take into account that focusing health policy on one prevention

measure may induce ‘crowding out’ of other prevention

measures because of such interdependencies. Hence, it is

useful to assess the total effect of combined prevention efforts

when evaluating policies to reduce the incidence of a disease.

Models introducing behavioural change with interdependen-

cies between different prevention measures are influenced by

both intrinsic and extrinsic factors.

The popularity of emergence-driven research has many

drivers: often new research funding and data collection oppor-

tunities arise as an emergence unfolds for the development

and parametrization of new models to inform health policy.

4.3. Social networks and individual-based modelling
We observed a rise in the number of studies using (complex)

social networks and IBMs to represent disease spread

and individual behavioural changes. Social network models

impose a structure in the population enabling the identi-

fication of model subjects at the individual-level. The
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implementation of these networks creates a coherent environ-

ment to model: social distancing as a prevention measure, the

spread and clustering of disease- and prevention-related infor-

mation and disease dynamics itself. In addition, neighbours

can be identified to implement game-theoretic models with

imitation dynamics, potentially resulting in clustering of pre-

vention measures. It is clear that the development of these

networks has increased the feasibility of modelling local or

combined local–global information sources in a BCM. Never-

theless, the selection of an individual-level model is often a

trade-off between the desirability for heterogeneity and IBM-

specific hurdles such as the computational burden, greater

risk of coding errors and potential loss of transparency and

reproducibility. Here too, data availability is key to develop

relevant models. For example, one could use the POLYMOD

study on mixing patterns to construct a synthetic population

or a network [199]. Still, more research is needed to enrich

the validity of synthetic populations as a representation of

real-life dynamics. We refer to a review by Wang et al. [200]

focusing on coupling disease dynamics with behaviour in

complex networks. A more general work covering BCMs is

the book by Manfredi & D’Onofrio [201].

Some models use a single social network for both the dis-

ease transmission process and the formation of behaviour.

Nonetheless, depending on the background, separate net-

works may be needed to model the spread of risks and the

spread of information influencing behaviour. Take for

instance anti-vaccine sentiments. These are often spread

through blogs, Facebook groups and other social media

[197]. Unlike these sentiments, infections are not spread

through the Internet, and as a result require an additional

network of physical contacts (see also Grim et al. [202],

who make the case for modelling multiple networks).

Additionally, the timescale of disease transmission can

differ substantially from that of information spread leading

to behaviour change. The models by Fukuda et al. [31],

Helbing et al. [167] and Maharaj & Kleczkowski [134] are

useful examples to guide further development of BCMs

with separate parallel and sometimes interacting networks.
4.4. Internet and social media
Information gathering by individuals has evolved over the

past decades with the introduction of the Internet, mobile

phones and associated social media applications. It is well

documented that web-based information can provide a dis-

torted picture about disease risks and adverse events from

vaccinations [203–205]. For instance, the search term ‘MMR

vaccine’ in Google is automatically complemented by the

suggestions ‘autism’ or ‘side effects’. We know individuals

retrieve information using these sources for disease-related

or prevention-related information and as a result, individuals

are exposed to a wide variety of biased information. We rec-

ommend policy-makers to implement measures to help

individuals to distinguish between evidence-based and

unsubstantiated information. A quality label for health-

related websites and public health information campaigns

are two examples of such measures. Surveys can help under-

standing how individuals form their perceptions and where

they obtain their information.

Another challenge we are faced with, given the popularity

of social media, is whether we can still make a distinction

between global and local information and how to use these
sources of information to construct BCMs. We motivate by

example: are Tweets local or global information? In essence,

this information can be accessed by anyone, so that they are

global. However, at the same time, Tweets are primarily

shared among contacts that ‘follow’ each other, which defines

local information. In addition, Facebook contacts are not

necessarily close in a geographical sense, such that ‘local’

relates more to the possibility of clustering, moving beyond

geography. This evolution reinforces the need for having

distinct networks in the same model. While social media

require reconsidering how information spread is modelled,

they also present an opportunity to gather data on behaviour

and behavioural changes. A number of studies we identified

already integrated social media data [25,60,66,197]. We expect

future modelling studies to increasingly use social media as a

data source to parametrize BCMs.

4.5. Irrational behaviour and altruism
BCMs have evolved from the perspective of a fully rational

‘Homo economicus’ to a more reasonable, empathic ‘Homo

sapiens’. This evolution is conform the findings of surveys

examining individuals’ drivers to take vaccination [9,192,193]

and common sense in general. The study of Shim et al. [23]

even considers altruism explicitly as a driver of individuals

to take vaccination. In the most recent literature, only few

papers are still using a pure, self-centred game-theoretic

model. Instead, in the majority of the papers, some form of

irrational behaviour has been introduced by the inclusion of

social influences or imitation. It is striking, however, that

most of the imitation BCMs did not empirically justify their

choice of stickiness parameter.

4.6. Level of detail of behaviour
Many BCMs today capture, to some extent, heterogeneity in

behaviour; individual-level networks can, for instance, intro-

duce heterogeneity in the number of neighbours that can

influence a person to adopt preventive measures. Some

population models split the population into compartments

representing different levels of risk attitude [89]. Some IBMs

introduce personal experiences with disease or prevention

measures in behaviour change models [33].

Moreover, heterogeneity in behaviour can be split into

two categories: heterogeneity in information an individual

receives (e.g. the social contact network of the individual)

and heterogeneity in the response to this information (e.g.

assigning individual values of stickiness of response in

models with imitation). The majority of the publications

include individual heterogeneity as the information they are

exposed to, whereas only few include the latter category.

The desirability of heterogeneity in behaviour depends

on the circumstances and characteristics observed. We

illustrate by example: for measles in a highly vaccinated popu-

lation, it has been observed that unvaccinated individuals and

anti-vaccine sentiments are clustered and, as a result, hetero-

geneity in behaviour should be introduced in behaviour

models. For example, one can introduce a distinction between

vaccine sceptics and vaccine believers [90].

Again, the availability of real-life observations determines

to a large extent the feasibility of introducing heterogeneity

in BCMs. Why develop a complex model with large hetero-

geneity if the parameters cannot be informed by real-life

observations? A trade-off needs to be made in terms of
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computational efficiency, data availability and desirability of

heterogeneity given the context of the disease [15].

4.7. Limitations and strengths
Our search was limited to the past 6 years. However, a pre-

vious review ended where we start, and since this field is

transitioning fast with rapidly increasing computational and

research capacity, we believe the most recent years are the

most informative. This is also testified by the evolution of

our search yield over the 6 year period we covered. Our

strength lies in the transparent and systematic way we have

searched and analysed the literature according to the stan-

dards of systematic review. Nevertheless, as with any

systematic review, our search string strikes a balance between

completeness and feasibility. Given the current lack of a con-

sistently used common term for the models we review, it is

inevitable that we missed some admissible research. Indeed,

it came to our attention that, for instance, [206–208] terms

were not retrieved by our search, although they would satisfy

our eligibility criteria. This emphasizes the need for a specific

terminology. We therefore propose the use of the term

‘behavioural change model’ in title, abstract or keywords to

facilitate more accurate identification of relevant studies by

researchers in different fields.
5. Conclusion
We have systematically reviewed the literature on BCMs pub-

lished from 2010 until 2015. We analysed and classified 178

references after full-text processing. We proposed a classi-

fication of the BCMs based on the decision-making process

of the individual. We can summarize our findings in line

with the six aims we listed in the introduction. Regarding

the technological advancements and increased data avail-

ability (i), we find that social media and big data are useful

to parametrize BCMs and present an as yet insufficiently

explored source of information. Social media can, however,
introduce a bias in individuals’ prevention- or disease-related

perceptions. In addition to the health recommendations they

make, policy-makers can optimize their influence by enabling

the collection and accessibility of government-owned data

(such as surveillance) and by establishing a quality label for

disease-related websites. Further, we can confirm that behav-

ioural immunity is often contingent on the disease (ii): BCMs

are disease and situation-dependent, which we strongly sup-

port. Regarding model validation and parametrization with

quantifiable observations (iii), we can state that additional

data sources are needed to specify relevant BCMs. Although

the 2009 influenza pandemic presented an opportunity for

parametrization and validation of both disease transmission

and BCMs for flu-like illnesses, there is still much room for

improvement in other disease areas. Current models have,

without a doubt, assessed the importance of social networks

in individual decisions (iv). Individual-level models such as

IBMs are extremely useful to tackle behaviour changes and

to mimic disease transmission better. More specifically,

(v) the diversity observed in BCMs has increased the feasibility

of introducing social influences and irrational behaviour (vi). In

terms of policy recommendations, it is highly important to

think about the total effect of an intervention, with possible

implications on all prevention strategies.

The expansion of BCMs has been remarkably valuable.

We encourage researchers to incorporate behaviour changes

in future disease transmission models and to be trans-

parent about the assumptions they make if data sources for

parametrization or validation are sparse.
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