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ABSTRACT Transcriptional regulation, a primary mechanism for controlling the development of multicel-
lular organisms, is carried out by transcription factors (TFs) that recognize and bind to their cognate binding
sites. In Caenorhabditis elegans, our knowledge of which genes are regulated by which TFs, through
binding to specific sites, is still very limited. To expand our knowledge about the C. elegans regulatory
network, we performed a comprehensive analysis of the C. elegans, Caenorhabditis briggsae, and Caeno-
rhabditis remanei genomes to identify regulatory elements that are conserved in all genomes. Our analysis
identified 4959 elements that are significantly conserved across the genomes and that each occur multiple
times within each genome, both hallmarks of functional regulatory sites. Our motifs show significant
matches to known core promoter elements, TF binding sites, splice sites, and poly-A signals as well as
many putative regulatory sites. Many of the motifs are significantly correlated with various types of exper-
imental data, including gene expression patterns, tissue-specific expression patterns, and binding site
location analysis as well as enrichment in specific functional classes of genes. Many can also be significantly
associated with specific TFs. Combinations of motif occurrences allow us to predict the location of cis-
regulatory modules and we show that many of them significantly overlap experimentally determined
enhancers. We provide access to the predicted binding sites, their associated motifs, and the predicted
cis-regulatory modules across the whole genome through a web-accessible database and as tracks for
genome browsers.
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The development of an organism is largely controlled by transcrip-
tional regulation that determines where and when every gene is ex-
pressed. A first step toward the understanding of how genomic DNA
controls the development of an organism is to understand the mech-
anisms that control differential gene expression. Transcriptional reg-
ulation is carried out by transcription factors (TFs) via their binding to
specific DNA sequences. Binding sites of TFs can be represented as
consensus sequences, but position weight matrices (PWMs) provide
a more quantitative description of the specificity of a TF (Stormo

2000). Currently our knowledge of the TFs and their binding sites
is very limited. For example, the human genome has greater than 2000
predicted TFs (Lander et al. 2001), but only a few hundred have
quantitative models of their specificity, primarily determined by
computational tools that have been developed to facilitate the identi-
fication of PWMs for TFs (reviewed in GuhaThakurta 2006). Further-
more, although computational methods can successful identify
binding sites that are bound by a particular TF in vitro, most of the
predicted binding sites are not functional in vivo (Li et al. 2011;
Whittle et al. 2009). In previous studies, authors have shown that
TF binding sites tend to cluster together to direct tissue/temporal-
specific gene expression (Arnone and Davidson 1997; Kirchhamer
et al. 1996). These clusters of binding sites that regulate expression
are referred to as cis-regulatory modules (CRMs). Clustering of TF
binding sites, along with phylogenetic conservation and other meas-
ures of “regulatory potential,” have been widely used in the compu-
tational prediction of CRMs and is a more reliable indicator of in vivo
regulatory function of DNA sequences (Blanchette et al. 2006; Ferretti
et al. 2007; King et al. 2005; Kolbe et al. 2004; Sinha et al. 2006; Taylor
et al. 2006; Wasserman and Sandelin 2004).
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Caenorhabditis elegans has been an important model organism for
studying development and was the first metazoan with a completely
sequenced genome (C. elegans Sequencing Consoortium 1998). Al-
though a few promoter regions have been studied in detail (Ao et al.
2004; Gaudet and Mango 2002; Krause et al. 1994; McGhee et al.
2007, 2009), most transcriptional regulatory interactions remain un-
known. Recently projects have been undertaken to gain a more com-
prehensive view of which TFs regulate which promoters using
experimental approaches to identify their interactions directly (Cel-
niker et al. 2009; Deplancke et al. 2006; Gerstein et al. 2011), but those
are still in early phases. A complementary approach is to identify
noncoding segments of the genome that are conserved across species
and are likely to contain regulatory elements (reviewed in Wasserman
and Sandelin 2004).

There are several previous works on regulatory motif prediction in
C. elegans that focused on sets of genes that are expressed under
specific conditions or in specific tissues (Ao et al. 2004; Gaudet
et al. 2004; GuhaThakurta et al. 2002, 2004). A recent report com-
pared eight nematode species and identified regions from more than
3800 genes that are conserved between C. elegans and at least three
other species; those are cataloged in their cisRED database (Sleumer
et al. 2009). In this article we performed a genome-wide cis-regulatory
element identification using PhyloNet (Wang and Stormo 2005),
which systematically identifies phylogenetically conserved motifs that
also occur multiple times throughout the genome and are likely to
define a network of regulatory sites for a given organism. The first step
of this approach is similar to that used for cisRED, i.e., identifying
segments conserved across multiple species, but then it further com-
pares all such conserved regions to each other to identify those asso-
ciated with multiple genes.

Applying PhyloNet on 2-kb intergenic regions from the genomes
of C. elegans, C. briggsae, and C. remanei leads to the identification of
cis-regulatory elements from various functional categories. We iden-
tified core promoter elements, TF binding sites, splicing sites, poly-A
signals, and others. In addition, for each regulatory element, PhyloNet
identified a set of genes that are potentially regulated by the motif.
Gene functional enrichment and expression coherence analysis under
several conditions provide strong support that most of the motifs are
functional elements that are responsible for the regulation of the target
genes. The instances of these predicted cis-regulatory elements within
the promoter region sequences are highly clustered. Based on this
observation we developed a program, CERMOD, to predict new
CRMs. Comparison between the predicted modules with experimen-
tally characterized modules shows high sensitivity with 83.2% (129/
155) of experimentally characterized modules. For genes with exper-
imentally determined CRMs, 23.4% (219/934) of our predicted mod-
ules are located within experimentally defined regions. This is a lower
bound of predictive accuracy because most of our predicted modules
could be real but are located within promoter regions that have not
been tested.

MATERIAL AND METHODS

Genome sequences
The chromosomal sequence and the gene structures of C. elegans (C.
elegans Sequencing Consortium 1998) (WS170) and C. briggsae (Stein
et al. 2003) genome are downloaded from the Wormbase ftp-site
(ftp://ftp.wormbase.org/pub/wormbase/genomes/). Upstream, inter-
genic region sequences of up to 2 kb in length were obtained. (If
the distance to the upsteam gene is less than 2 kb, only the intergenic
region was obtained. We refer to the sequences as “2-kb upstream

regions” throughout the article.) C. remanei sequence and annotation
were produced by the Genome Sequencing Center at Washington
University School of Medicine in St. Louis and were obtained from
http://genome.wustl.edu/pub/organism/Invertebrates/Caenorhabditis_
remanei/.

Identification of orthologs of C. elegans genes
C. briggsae orthologs of C. elegans genes were obtained fromWormBase
(ftp://ftp.wormbase.org/pub/wormbase/datasets-published/stein_2003/
orthologs_and_orphans/orthologs.txt.gz). To identify C. elegans orthol-
ogous genes in the C. remanei genome, we used the NCBI BLAST
program (version 2.0) (Altschul et al. 1990) to compare all annotated
protein coding gene sequences in the C. remanei genome with that in
the C. elegans genome. Two genes are defined to be orthologous if all of
the following three conditions are met: (i) their protein sequences are
reciprocal best BLASTP hits between two genomes; (ii) the BLASTP
E-value is lower than 1E-10; and (iii) the BLAST alignment covers
$60% of the length of at least one sequence. The promoter region
sequences of all genes in the orthologous gene set that contain both C.
briggsae and C. remanei orthologs of C. elegans gene were retrieved.
The promoter region is defined as intergenic sequences upstream of
translational start site ATG from 21 to sequence up to the next
coding gene, but no more than 2 kb. Each sequence group of orthol-
ogous genes forms a data entry. For C. elegans genes that are in
operons (Blumenthal et al. 2002), we only considered the first genes
in the operons.

Motif identification and consolidation
We used PhyloNet, a program that systematically identifies phyloge-
netically conserved motifs and defines a network of regulatory sites for
a given organism to search for conserved regulatory elements (Wang
and Stormo 2005). PhyloNet was run with options s = 1, iq = 20, id =
20, and pf = 10. Up to 10 predicted cis-regulatory elements are
reported for each intergenic region. Cis-regulatory elements are rep-
resented by PWMs (Stormo 2000), and each matrix is associated with
a set of genes that are potentially regulated by this element (gene
cluster).

The initial motifs generated by PhyloNet are redundant because
each gene is used as a query and different gene queries can generate
very similar motif profiles and target gene clusters. To remove
redundancy of the whole genome motif profile set, we used the
average log likelihood ratio (ALLR) statistic (Wang and Stormo 2003)
to determine the similarity between motif profiles. ALLR statistics are
implemented in MatAlign-v4a (Wang and Stormo; http://stormo.
wustl.edu/MatAlign/). Similarity of two motif profiles is determined
by the ALLR scores of each pair of motif profiles and the length of the
aligned part of the two motifs. To determine the best parameters for
clustering PWMs, we analyzed matrices in the TRANSFAC database
(Matys et al. 2003). TRANSFAC version 10.2 contains 811 PWMs,
540 of which have known binding factors that are classified at the
family level. PWM similarity is measured with two parameters: ALLR
score and OLAP score, which is the percentage of the two PWMs that
overlap. At each ALLR and OLAP score cutoff value, we compare each
of the 540 matrices with all of the others to determine the score
distributions. From this information, we calculate sensitivity and spec-
ificity for classifying each PWM into the correct family at each ALLR
and OLAP cutoff value. Our results suggest that ALLR . 6.57, OLAP
. 68.1% gives the best specificity. For all PhyloNet output matrices,
the best one is picked first (the one with the highest total ALLR score
in the PhyloNet output). It is compared with the rest of the matrices
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using ALLR statistics, and any matrix that appears redundant to the
chosen matrix is removed. Then, the second best one is picked, and
the process is repeated until all the matrices have been analyzed.

Calculation of functional enrichment of target genes
sharing the same motif
We tested the functional enrichment of target genes of each motif
profile based on Gene Ontology (GO). GO terms and annotations of
C. elegans, were downloaded from WormBase (GO terms was down-
loaded on October 25, 2006. GO.WS170.txt was downloaded on April
30, 2007). All genes sharing the same GO term are clustered. Based on
GO term hierarchies, we added all genes in the children GO terms to
the current GO term gene cluster. The cumulative hypergeometric
distribution (Tan et al. 2005; Tavazoie et al. 1999) is used to calculate
the P-value of observing the number of genes associated to a motif
profile and enriched in a particular GO term.

Calculation of microarray expression profile coherence
Microarray expression profiles are downloaded from the Gene
Expression Omnibus. Expression coherence score and threshold
distance were calculated as described (Pilpel et al. 2001). We define
the gene clusters to have significant expression coherence when their
P-value , 0.05 after correction for multiple tests.

CRM identification
To identify DNA regions enriched for predicted motifs, we first
identify all predicted sites for all the motifs using Patser (Hertz and
Stormo 1999) using default cutoff scores. Then, we calculate the
average number of binding sites per position in the sequence and
Z score for each position. We identify those peak positions that have
a Z score $ 3.09 (corresponding to P-value = 0.001). For each peak
position, we extend it in both 59 and 39 direction if the next Z score.
0 position is less than 30 bp away (the longest motif length). Peak
positions used in a previous extension step are not extended.

RESULTS AND DISCUSSION
This section is divided into four subsections:

1. Overview of the conserved motifs identified by PhyloNet.
2. Correspondence between the motifs and several different types of

experimental data to assess their likely functions.
3. Using the motifs to predict CRMs across the entire intergenic

regions of C. elegans and an assessment of the accuracy of those
predictions.

4. A description of the database of exemplar sites and motifs and of
the genome browser that facilitate access to the sites, motifs and
module predictions.

Overview of the conserved motifs identified
by PhyloNet
To systematically identify conserved elements in C. elegans, we used the
genome sequences from C. briggsae and C. remanei. We obtained 11,860
C. briggsae orthologs and 12,466 C. remanei orthologs for 16,544 C.
elegans genes. Some C. elegans genes are organized into operons and
genes in operons share a common promoter sequence that allows co-
ordinated expression of the genes. After removing the distal genes in
operons, as annotated in Wormbase (http://www.wormbase.org/),
10,491 and 11,064 of the C. elegans genes have C. briggsae and C.
remanei orthologs, respectively. A total of 9356 genes that have both
C. briggsae and C. remanei orthologs were used for further analysis.

Current evidence indicates that C. elegans regulatory regions are
fairly compact and most known regulatory elements occur within 2 kb
upstream of the coding region of the gene (Dupuy et al. 2004; Sleumer
et al. 2009; Zhao et al. 2007). We retrieved up to 2 kb upstream
promoter region sequences for all of the genes with orthologs in both
species. Each C. elegans gene and its orthologs form a data entry that
contains three promoter regions. For each data entry, PhyloNet
(Wang and Stormo 2005) was applied to query the database and up
to 10 most significant predicted motifs, represented as PWMs (Stormo
2000), were obtained for further analysis. Because of the greedy and
reciprocal nature of the PhyloNet algorithm, where each promoter
region sequence serves as the query for a BLAST-like alignment to
every other promoter region sequence, these initial predicted motifs in
the PhyloNet output files are highly redundant. We took two steps to
consolidate predicted motifs. The first step compares matrices in each
query output file to consolidate matrices that significantly overlap.
This step results in a total of 36,953 PWMs, an average of 3.95 PWMs
for each C. elegans promoter region sequence. This set of sites is called
the exemplar sites, those identified by PhyloNet as being conserved in
the three species and significantly similar across multiple genes. From
the initial set of nearly 20 Mbp in candidate regions from C. elegans,
the exemplar sites cover a total of 3,695,282 bp, which is approxi-
mately 18% of the intergenic regions considered.

The second step is to consolidate PWMs based on motif similarity
to generate the final set. This step is challenging because our goal is to
find cis-acting regulatory motifs that correspond to all of the trans-
acting regulatory factors, but there is not a simple one-to-one relation-
ship between them. One complication is that TFs from the same
structural family often bind to highly similar DNA target sequences
(Luscombe et al. 2000), and it can be difficult to separate sites for
different TFs based on the conserved motifs alone. Several computa-
tional approaches have been developed to quantify similarities be-
tween PWMs (Kielbasa et al. 2005; Schones et al. 2005; Wang and
Stormo 2003), and to use this information to classify the structural
class of mediating TFs for novel motifs (Kielbasa et al. 2005; Narlikar
and Hartemink 2006; Sandelin and Wasserman 2004; Schones et al.
2005). We use the ALLR (Wang and Stormo 2003) to cluster motifs
into distinct sets. Although Mahony et al. (Mahony et al. 2007) did
not find ALLR to be the best statistic for assigning motifs to TF
structural classes, our most challenging goal is to distinguish similar
motifs from the same class, for which ALLR is well suited.

Our stringent criteria (see Materials and Methods) allow only very
similar motifs being clustered together. This gives us confidence that
we have not merged motifs for different TFs but has the disadvantage
that we may have several distinct PWMs remaining for the same TF.
This is certainly the case as the second consolidation step leaves us
with 4959 distinct motifs with lengths between 5 and 30 bases, many
more than the proposed number of approximately 940 C. elegans TF
genes (Reece-Hoyes et al. 2005). These motifs cover 3,442,144 bp and
have an average length of about 15 bp. We find other types of known
motifs besides TF binding sites (see next section), but in addition the
motifs probably contain sites for combinations of TFs that we have
not separated into distinct subsites. These consolidated PWMs are all
very significant (P, 10210), and each is associated with a set of genes
that are potentially regulated by this motif. Each consolidated PWM is
associated with a set of exemplar sites and a gene list. The gene lists
range from 3 to 7724 genes. We expect the exemplar sites for each
PWM to be an incomplete set of binding sites for the associated factor
because less than half of the C. elegans genes are used in our initial
promoter region sequence set and because, even for orthologous
genes, some sites will not be conserved across the different species.
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We can use the PWMs to predict other potential binding sites for the
associated factor. These predicted sites should provide a more com-
prehensive list of binding sites, and regulated genes, for each PWM,
but will likely also include some false predictions.

Correspondence between the motifs and several
different types of experimental data
Intergenic regions contain different kinds of regulatory elements. We
are particularly interested in TF binding sites involved in controlling
gene expression, but other elements are also obtained in our set of
conserved motifs. Figure 1 shows three different classes of conserved
elements that emerge from this analysis. The PWM H01M10.2.1 is
likely to represent the binding motif for the TF nuclear factor I-1
(NFI-1) on the basis of several types of evidence: (1) it is highly similar
to the documented NFI-1 binding site (Whittle et al. 2009) and the
vertebrate NF-1 binding site (TRANSFAC AC number: M00056); (2)
the gene cluster associated with the H01M10.2.1 matrix is significantly
enriched for the known NFI-1 target genes (Whittle et al. 2009) (P ,
10214); (3) the gene cluster associated with the H01M10.2.1 matrix is
significantly enriched for genes that are expressed in pharynx

(P , 3 · 1025) and body wall muscle (P , 7 · 1023), which is
consistent with observed NFI-1 expression in C. elegans (Lazakovitch
et al. 2005, 2008); (4) H01M10.2.1 is significantly correlated to NFI-1
ChIP samples (P , 1026; t-value ~15.6); and (5) the gene cluster
associated with the H01M10.2.1 matrix is significantly enriched for
GO terms that are consistent with NFI-1’s function.

A second type of element we obtain is a core promoter motif such
as the TATA-box (Figure 1). K09B3.1.8 matrix is very similar to the
TRANSFAC TATA box PWM (M00216) and, unlike most transcript
factors binding sites, it is significantly biased in its location and its
orientation. It is significantly overrepresented near the translational
start site ATG, in positions between 21-40 (P , 10210) and 41-60
(P , 10210) nucleotides upstream of the ATG. It is also preferentially
located on the + strand (P , 1023), as expected for a core promoter
element. A third type of element we find are those related to RNA
processing. In C. elegans more than half of pre-mRNAs are subject to
SL1 trans-splicing (Blumenthal and Steward 1997). The trans-splice
site consensus on the pre-mRNAs is the same as the intron 39 splice
site consensus. Y94H6A.1.1 matrix is significantly similar to the C.
elegans trans-splice/39 splice signal. It is significantly overrepresented

Figure 1 Examples of three different classes of conserved elements and supporting evidence. Top: Sequence logo, reference, binding factor, as
well as supporting evidence for NFI-1, TATA box, and C. elegans 39 splice/trans-splicing signal. Bottom: Distribution of K09B3.1.8.matrix and
Y94H6A.1.1.matrix sites on promoters.
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near the translational start site ATG (Figure 1). However, different
from the TATA box, it is preferentially located between 0 and 20
nucleotides upstream of ATG (P , 10220). Trans-splicing occurs
close to the start codon in C. elegans, with 49% of transcripts analyzed
containing a spliced leader sequence within 10 nucleotides of the
initiator AUG (Lall et al. 2004). In addition, Y94H6A.1.1.matrix is
preferentially located on the + strand (P , 1023) as expected for
a splicing signal. The fact that the AG at the end of the motif is not
completely conserved indicates that some of the exemplar sites will
not be true sites and indicates one of the limitations of completely
automated methods. We did not find a motif that represents the 59
splice signal, which is consistent with the presence of 39 but not 59
splice signal in front of ATG in the case of trans-splicing.

Besides identifying PhyloNet PWMs that correspond to motifs for
known factors as described above, we can assess whether the genes
associated with any PWM are significantly correlated with specific
biological assays. In the following sections we consider data from four
different approaches: (1) TF binding data, such as ChIP-chip and
ChIP-seq experiments that identify binding locations for specific TFs;
(2) expression data, such as microarrays that measure gene expression
patterns under specific conditions or specific genetic backgrounds; (3)
tissue-specific expression patterns of genes using GFP-fusions; and (4)
enrichment for specific classes of genes using GO classifications for
genes. Significant correlations between the genes selected by any of
those methods and genes associated with one of our PWMs provide
supporting evidence that the PWM represents a regulatory motif.

Location analysis: Regions in the genome in which TFs bind in vivo
can be determined experimentally by expressing tagged C. elegans TFs
that then are cross-linked to chromatin and their locations determined
by either array hybridizations (ChIP-chip) or sequencing (ChIP-seq).
We compare those experimentally determined binding locations to
the predicted occupancy for each PWM on each promoter region
sequence. The predicted occupancy is calculated by scoring each po-
sition in the promoter sequence with the PWM and summing the
exponentiated scores:

Occ
�
Pj;Mk

�
}

X

Si2Pj

eMk�Si

Where Pj is a specific promoter region sequence, Mk is a specific
PWM, and Si are all of the positions within the promoter region se-
quence. The score for any site with a given PWM isMk�Si and is related
to the logarithm of the probability of the site being bound by the
TF whose specificity is represented by the PWM (Chang et al. 2006;
Granek and Clarke 2005; GuhaThakurta et al. 2004; Stormo 2000). The
proportionality constant that relates this occupancy score to the true
occupancy of the promoter region sequence is unknown but is not
needed because we use a correlation coefficient to compare the occu-
pancy score to the experimental determinations of binding locations.

A total of 57 binding assays, including array hybridizations (ChIP-
chip, 39 samples) and sequencing (ChIP-seq, 18 samples), were
obtained from the GEO database (Barrett et al. 2009). Individual
samples are further processed where appropriate, such as comparing
a specific ChIP-chip array to its control array or to different time
points in a time series experiment. Thus, 51 experiments were used
in the analysis, and a total of 794 motifs have a predicted occupancy
that is significantly correlated (t-value . 6.02, P , 0.01 after correct-
ing for multiple tests) with at least one of the 51 different processed
samples (see supporting information, Table S1 for the complete list).
An example is H01M10.2.1, which is significantly correlated to NFI-1

ChIP samples (t-value ~15.6, P , 1 · 1026 after correction) (Whittle
et al. 2009). Using ChIP-Seq Whittle et al. 2009 identified 55 genes
that passed a strict cutoff for binding. The motif they identified in 49
of the 55 bound regions is nearly identical to our motif H01M10.2.1
and also to a previously reported motif for vertebrate NFIs (Figure 1).
Of those 55 genes, 36 were included in the promoter region sequence
sets analyzed by PhyloNet, and 32 of them had NFI-1 binding sites
identified by Whittle et al. 2009 within the 2-kb upstream regions of
our study. The PhyloNet PWM H01M10.2.1 contains 22 exemplar
sites from that set of 32 reported NFI-1 sites (P , 10214).

We also compared peaks from ChIP-seq experiments for 23 TFs as
part of the modENCODE project (Gerstein et al. 2011). Table S1 lists
the experimental sets (28 in total, including 6 for the TF Pha4 at
different stages or different conditions). The type of DNA-binding
domain is listed for each TF, and the consensus binding site if known.
Most of these TFs do not have known binding sites, but for some the
specificity can be inferred from orthologous TF in Drosophila (Zhu
et al. 2011). The gene listed associated with the ChIP-seq peaks for
each TF were compared to the exemplar gene set for each PhyloNet
motif and significance of the overlap determined by a Fisher exact test.
The top five motifs for each ChIP-seq dataset are listed along with
their consensus sequences (Table S1). For 40% of the TFs with known
and inferred binding motifs, there is a good match to at least one of
the top PhyloNet motifs. Most of the TFs with known motifs but
without a matching PhyloNet motif contain homeobox domains that
have AT-rich, short, and degenerate motifs that may contribute to
their inefficient discovery. For the majority of the TFs, without known
binding motifs, the PhyloNet matrices represent potential motifs.
However, most TFs, and especially those with low specificity, regulate
genes in combination with other TFs. Because the associations shown
in Table S1 are between gene lists, it may be that the motifs found for
a particular TF ChIP-seq dataset actually correspond to different TFs
that interact to coordinately control expression.

Expression analysis: The same predicted occupancy scores for each
PWM and each promoter region sequence can be compared with
expression data to determine whether motif occurrences are signifi-
cantly correlated with expression patterns. A total 1197 expression
samples were obtained from the GEO database and further processed
where appropriate, as in the location analysis. A total of 797 motifs are
significantly correlated (P , 0.01 after correction for multiple tests)
with at least one of 850 different processed samples (see Table S1 for
the complete list).

In the aforementioned location analyses, we uncovered associa-
tions between specific motifs and the specific proteins that were
immunoprecipitated. This lets us infer that the motif represents the
binding specificity of the protein, or perhaps another protein that is
tightly coupled to the one that is precipitated. In the expression
analysis, we identify motifs that are associated with genes whose
expression changes under different conditions, genetic backgrounds or
at different times or different tissues during development. We can
hypothesize that the motifs represents the binding sites for some
proteins responsible for these changes in expression, but the identity
of the proteins is usually unknown. However, in some cases we find
the same motif identified in the location analysis and the expression
analysis, which suggests that the specific protein acts through the
identified motif to control the expression of the regulated genes. We
find 424 such motifs that are significant in both datasets.

Although our collection of expression microarrays do not include
any records in which NFI-1 mutants were probed for genome-wide
expression, previous work suggests that NFI-1 is critical for wild-type
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adult lifespan (Lazakovitch et al. 2005). We observe significant corre-
lations between occupancy scores for H01M10.2.1 on nearby genes
and their expression changes in age-related micorarray records (P ,
0.01). In addition, another discovered motif C18D1.3.5 is similar to the
core portion of previously discovered motif Motif Enriched on X
(MEX), which Jans et al. 2009 show to be a component of the dosage
compensation complex. Interestingly, our location analysis results
show that C18D1.3.5 is correlated with the Chip-Chip results for the
dosage compensation complex subunits (DPY27: P , 10216; SDC-2:
P, 10216; SDC-3: P, 10214; MIX-1: P, 1023; HTZ-1: P, 10216).
In addition, our expression analyses show that C18D1.3.5 matrix is
also correlated with XO vs. XX-WT expression studies (P , 10216).

Coregulated genes often have similar expression profiles under
different conditions. We can thus evaluate the likelihood of a motif
being biologically meaningful by the coherence of the expression
profiles of all the target genes associated with the motif. We used the
expression coherence score (Pilpel et al. 2001) to measure the overall
similarity of the expression profiles of all the target genes of a given
predicted motif in several different conditions. The NCBI GEO data-
base contains nine datasets that studied C. elegans gene expression
under different conditions or at different time points and therefore are
suitable for expression coherence analysis. The nine data sets are PAL-
1 network (GDS1319), Hypoxia response (GDS1379), TOM1/UNC-
43 (GDS1786), Twist overexpression (GDS2463), lin-352null mutant
at various stages of development (GDS2751), Aging time course
(GDS583), Heat stress time course (GDS584) Germline development
(GDS6), and daf-2 mutant expression profiling (GDS770). Using
a stringency cutoff of P , 0.05 after correction for multiple tests,
we determined that 682 (13.75%) exemplar gene sets exhibit similar
expression patterns in at least one experimental condition, suggesting
a regulatory function of that associated PWM (see Table S1 for the
complete list). H01M10.2.1 matrix-associated genes, described previ-
ously as associated with NFI-1 binding, have significant expression
coherence in both hypoxia response experiment and heat stress time
course experiment. Interestingly, NF1 in Drosophila has similar func-
tions of regulating life span as that of C. elegans NFI-1, and flies
overexpressing NF1 had increased life spans, improved reproductive
fitness, increased resistance to oxidative and heat stress in association
with increased mitochondrial respiration, and a 60% reduction in ROS
production (Tong et al. 2007).

C47A10.6.1 is similar to the heat shock element identified in the
promoter sequences of the genes that were consistently up-regulated 1
and 4 hr after heat shock (GuhaThakurta et al. 2002). Genes associ-
ated with C47A10.6.1 have significant expression coherence in heat
stress time course experiment but not in any other experiment.
F01G4.4.5 is similar to the heat shock associated site identified in
the same study as heat shock element (GuhaThakurta et al. 2002).
Similarly, genes associated with F01G4.4.5 have significant expression
coherence in the heat stress time course experiment but not in any
other experiment.

Tissue-specific expression patterns: A total of 1882 C. elegans tran-
scripts (�10% of the genome) have classified expression patterns in 88
different spatial-temporal patterns between the larval and adult stages
(Hunt-Newbury et al. 2007). Ignoring the developmental stage, we
combined expression of the genes into 49 distinct tissue or cell-types.
We asked whether the exemplar genes for any specific motifs were
enriched for specific tissues with a Fisher exact test. After correcting
for number of motifs and tissues, we find 251 motifs with genes that
are significantly enriched in 23 of the 49 tissue and cell types. For
example, the genes associated with the F26A1.1.1 PWM are enriched

for pharyngeal genes (P , 5 · 10220). This PWM is very similar to
the known motif for the TF Pha4, which is known to direct transcrip-
tion of pharyngeal genes (Gaudet and Mango 2002). In accordance
with previous reports that NFI-1 is expressed in muscles (mainly
pharynx and head muscles), neurons and intestinal cells (Lazakovitch
et al. 2005, 2008), our corresponding motif (H01M10.2.1) is also
enriched for genes whose GFP-fused promoters are expressed in the
pharynx (P , 3 · 1025) and body wall muscle (P , 7 · 1023).

GO enrichments: GO enrichment has been widely used to assess
whether gene sets defined by various clustering methods appear to be
significantly related to one another functionally. We compared the
exemplar gene sets for each of the PhyloNet PWMs with the GO
annotation, at a stringent significance threshold (P , 0.05 after cor-
rection for multiple tests), to find that 3676 (74%) are significantly
enriched for at least one biological function.

In C. elegans, NFI-1 is shown to be import in regulating motility
(Lazakovitch et al. 2005). Consistent with this, genes associated with
H01M10.2.1 PWM are enriched for GO term microtubule cytoskele-
ton organization and biogenesis (GO:0000226, P , 1026), microtu-
bule organizing center (GO:0005815, P , 1025), and microtubule-
based process (GO:0007017, P, 1025). Vertebrate NF1 is involved in
chromatin/chromosome remodeling (Hebbar and Archer 2003) and
in vivo target of C. elegans NFI-1 includes many genes involved in this
process (Whittle et al. 2009). Consistent with this, genes associated
with H01M10.2.1 PWM are enriched for GO term centrosome
(GO:0005813, P , 1026) and spindle organization and biogenesis
(GO:0007051, P , 1028). In addition, in vivo NFI-1 targets also
includes phosphatase, vaculolar protein sorting factors, and protein
translocation related proteins, and H01M10.2.1 PWM is enriched for
GO terms phosphoserine phosphatase activity (GO:0004647, P ,
1027), vacuolar membrane (GO:0005774, P , 1027), vesicle mem-
brane (GO:0012506, P , 1025), and protein transport (GO:0015031,
P , 1025). Taken together, the consistent evidence from multiple
independent sources, that is, the similarity of H01M10.2.1 matrix to
the C. elegans NFI-1 binding motif and the vertebrate NF-1 binding
motif, significant enrichment in tissue-GFP analysis, location analysis,
and expression analysis, as well as significant GO enrichment and
NFI-1 targets enrichment, strongly suggests that our PhyloNet-discov-
ered matrix H01M10.2.1 represents the DNA-binding specificity for
NFI-1 TF.

If we combine all of the aforementioned biological assays de-
scribed, we find that a large fraction (4066 of the 4959; 82%) of the
predicted motifs have at least one type of evidence to support its
regulatory function. Currently, most of the C. elegans TFs are unchar-
acterized, which limits our ability to make direct connections with
the PWMs we discover with PhyloNet. However, the fact that all of
the motifs are conserved across species as well as highly similar in the
regulatory regions of multiple genes, and the fact that a large fraction
of them are supported by one or more types of experimental or
comparative evidence, leads us to believe that they represent regula-
tory sites for one, or more, TFs and control the expression of C.
elegans genes.

Using the motifs to predict CRMs
A CRM is a segment of DNA that generally contains multiple TF
binding sites that function together to regulate the particular
expression patterns of the associated gene. Many studies have shown
that in higher organisms, CRMs are a common strategy in regulating
gene expression. If our predicted motifs are functional, we would
expect the exemplar sites composing those motifs to overlap
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significantly with experimentally defined regulatory modules. From
the literature, we collected 41 promoter region sequences from the
9536 genes included in our PhyloNet analysis that have been
experimentally tested for the location of regulatory regions. The
experiments involve inserting segments of promoter region sequences
into vectors to create transgenic worms, and then it is determined
whether that region drives expression of a reporter gene, typically
GFP. Often the promoter sequence segments that are tested are large
and don’t provide finer resolution about the critical region, but in
other cases the tested segments were small or deletions were intro-
duced to identify critical regions.

Using the 2-kb upstream sequence of the 41 genes gives us 82 kb of
potential regulatory sequence for our comparison. There are a total of
61 CRMs that have been experimentally determined in those regions,
covering a total of 26,594 bp, or 32.4% of the total sequence. This
undoubtedly contains regions that are not essential for activity, but
that is the limit of the resolution from the currently available
experiments. The 41 promoter region sequences contain a set of

12,107 exemplar sites and cover 12,473 bp, or 15.2% of the total
sequence. If those two sets of sequences were unrelated, we would
expect them to overlap by approximately 5% of the total promoter
region, but in fact the overlap is much higher. Of the 61 exper-
imentally confirmed CRMs, 53 (86.9%) of them have overlapping
exemplar sites, indicating that using exemplar sites to predict CRMs
would have high sensitivity. A total of 6428 (53.1%) of the exemplar
sites for these genes are within experimental CRM regions, which is
the minimum positive predictive value (PPV) of the exemplar sites. It
could be much higher because not all regions of the promoter
sequences were tested and there could be additional CRMs in the
promoters that are also functional. These results together indicate that
exemplar sites from the PhyloNet analysis can be used to accurately
predict the likely regulatory regions for many C. elegans genes.

We can also predict CRMs based on predicted binding sites using
the PWMs. Although this will increase the false positive rate, it allows
predictions across the whole genome, not just the ~50% of genes used
in the PhyloNet analysis and not limited to the 2-kb upstream region.

Figure 2 Comparison between
predicted CRM with experi-
mentally defined CRM in four
best studied promoters. (A)
Comparison between predicted
CRM with experimentally de-
fined CRM in hlh-1(Krause
et al. 1994). (Turquoise bar: ex-
perimentally tested DNA frag-
ment without regulatory
function; red bar: experimen-
tally tested DNA fragment with
regulatory function; deep blue
bar: promoter sequence; gray
bar: predicted CRM. Arrow:
translational start codon. Posi-
tion coordinates shown are rel-
ative to translational start
codon.) (B) Distribution of Z
score of number of motif sites
across the hlh-1 promoter re-
gion. (C) Comparison between
predicted CRM with experi-
mentally defined CRM in myo-
3, myo-1, and myo-2 (Okkema
et al. 1993). (Labeling the same
as in A.)
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Figure 3 Comparison between
predicted CRM with experi-
mentally defined CRM in intron
regions and in miRNA let-7 pro-
moter region. (A) Comparison
in intron regions. (B) Compari-
son in miRNA let-7 promoter.
Red bar: experimentally tested
DNA fragment with regulatory
function; orange bar: gene
exons; gray bar: predicted
CRM; deep blue bar: promoter
sequence. Arrow: translational
start codon. Position coordi-
nates shown are relative to
translational start codon.
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We find that the predicted binding sites based on the PWMs are
highly clustered along the promoter sequences (Figure 2B), which is
consistent with previous experimental observations and the general
model that DNA sequences with clustered TF binding sites are usually
regulatory sequences that direct specific spatial and temporal gene
expression (Arnone and Davidson 1997; Blanchette et al. 2006; Sinha
et al. 2006; Wasserman and Sandelin 2004). To examine whether
DNA regions with significantly enriched motif binding sites corre-
spond to regulatory sequences, we focused on regions that have bind-
ing sites significantly more than average (Z score $ 3.09, P # 1023).
For example, hlh-1 (B0304.1) upstream sequence is one of the best
studied promoter regions. A total of six regulatory sequences are
identified by detailed deletion and enhancer assays (Krause et al.
1994). The regions with significantly enriched motifs correspond very
well to the experimentally delineated regulatory sequences (Figure 2,
A and B). Based on this observation, we developed an algorithm, C.
elegans Regulatory Module Detector (CERMOD), to predict regula-
tory modules using the 4959 PhyloNet PWMs. For hlh-1, CERMOD
predicted five modules in the full 3053 bp upstream sequence that
overlap all six known regulatory sequences (Figure 2A).

To evaluate the predictive power of CERMOD, we performed
a thorough literature search to identify any C. elegans genes whose
promoter regions have been analyzed to locate any regulatory sequen-
ces. We identified 79 genes that are expressed in a broad range of
tissues at various developmental times (Table S1). We analyzed up-
stream intergenic sequences, which range from 347 bp to 20,000 bp.
There are 155 experimentally determined regulatory regions that are
important for the corresponding gene expression in neurons, hypo-
dermis, excretory cells, muscle precursor cells, adult muscle cells, vulva
cells, sheath cells, and others. These regulatory regions are determined
by deletion and/or enhancer assays. Wherever possible, we use regions
that are determined by enhancer assay because it better defines the
boundary of regulatory regions that are sufficient in regulation. Ap-
plication of CERMOD on this set of data identified 129 of the 155
(83.2%) experimentally defined modules. Figure 2, A and C shows the
comparison between predicted modules with experimentally defined
modules in the upstream sequences of four well-studied genes (Krause
et al. 1994; Okkema et al. 1993). Because some of the predicted
modules are located within DNA sequences that have not been tested,
we cannot calculate the PPV but it is at least 23.5% (219/934). The real
PPV is surely higher because in some studies reporter gene expression
is not reported for additional tissues (Wenick and Hobert 2004). Table
S1 shows the comparison of predicted and experimentally character-
ized modules in the entire set of genes with experimental evidence.

We performed simulations to estimate the statistical significance of
obtaining the same sensitivity and PPV given the promoter sequences
and the known regulatory modules. We simulate the distribution of
predicted modules in the promoter region sequences by randomly
picking a start position for each module. The length and number of

modules in each gene is kept the same as the predicted modules in this
gene. The simulation is repeated 10,000 times, and the sensitivity and
PPV are calculated for each one. The average sensitivity is 62.4% with
standard deviation of 3.3%. The average PPV is 19.6% with standard
deviation of 1.1%. Therefore, the p-values of getting 83.2% sensitivity
and 23.5% PPV are both much less than 0.001.

Because many experimental modules have not been further
analyzed to delineate the boundary, the functional module can be
very long (experimental modules referenced in this manuscript range
from 44 to 5287 bp). This resulted in high sensitivity in simulated
data. To reduce the effect of those long experimental modules, we
used only modules that are within the size range of predicted modules
(27-580 bp) and recalculated the sensitivity and PPV. The sensitivity
changed very little (72 of 92 are correctly predicted, 78.3%) but the
sensitivity on the simulated data are greatly reduced (48.3%), making
our predictions even more significant.

CRM prediction in miRNA promoter region sequence and introns:
Experiments have shown that some introns contain transcriptional
regulatory sequences (Hwang and Lee 2003; Krause et al. 1994;
Okkema et al. 1993). To test whether CERMOD can predict CRMs
in intronic regions, we identified seven genes in which intronic regu-
latory sequence have been mapped in detail. There are 14 experimen-
tally defined modules in the introns from these seven genes, 10 of
which are correctly predicted (71.4%; Figure 3A). We performed sim-
ulations as described previously and the simulated data has an average
sensitivity of 46.0%, making our predictions highly significant (P ,
0.005).

microRNAs (miRNAs) are ~22 nt RNAs that bind to partially
imperfectly matched sites on target mRNAs to regulate transcript
expression. They are now known to influence a broad range of
biological processes. However little is known about how miRNA
transcription is regulated. Currently there is only one miRNA, let-7,
whose promoter region sequences has been dissected to identify reg-
ulatory sequences. The let-7 family of microRNAs, first discovered in
C. elegans, is functionally conserved from worms to humans. A grow-
ing body of evidence suggests that the human let-7 expression is
misregulated in many human cancers, and restoration of let-7 expres-
sion may be a useful therapeutic option in cancers (Boyerinas et al.
2010). Expression of let-7 RNA is temporally regulated with robust
expression in the fourth larval and adult states. Several DNA frag-
ments were tested, and the DNA fragment located at [21169,21285]
upstream of the mature RNA was identified as the minimal DNA
fragment that is necessary and sufficient for this temporal regulation.
We predicted three modules in the ~1.8-kb upstream sequence (Fig-
ure 3B). The predicted module [-1193, 21259] overlaps with the
experimentally defined minimal regulatory module [21169,
21285]. let-7 is also expressed in the anchor cell at L3 and in the
distal tip cells at the adult stage (Esquela-Kerscher et al. 2005). It

Figure 4 Experimental test of predicted CRM inmlc-1/mlc-2 intergenic region. Turquoise bar: DNA fragment tested that did not show regulatory
function; red bar: DNA fragments that showed regulatory function; deep blue bar: mlc-1/mlc-2 intergenic region DNA sequence; gray bar:
predicted CRM. Arrow: translational start codon. Positive position coordinates shown are relative to mlc-1 translational start codon. Negative
position coordinates shown are relative to mlc-2 translational start codon.
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Figure 5 Example use of the UCSC ge-
nome browser. (A) Screen shot of genomic
region containing exemplar sites; clicking
on the red circled exemplar site in front of
the gene F26A3.6 takes you to the addi-
tional information page for this gene,
shown in (B). Clicking on the outside link
(highlighted in red) takes you to a table
with all the motifs in this promoter region,
shown in (C). Clicking on the specific motif
highlighted in red opens a new page
displaying the additional information for
this motif, shown in (D).
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would be interesting to see whether the other two predicted modules
drive let-7 expression in those cells.

Experimental test of CRM prediction: mlc-1 and mlc-2 are the two
muscle regulatory myosin light chain genes in C. elegans. They are
divergently located and share a 2.6-kb intergenic region. It was shown
that they are both expressed in the body-wall muscles, pharyngeal
muscles, and vulval muscles. However, the intergenic region has not
been analyzed in detail to identify all the regulatory sequences that
drive their expression. Previous study has shown that the first 400 bp
of mlc-2 upstream sequence is enough to drive its expression in the
body wall muscle cells (GuhaThakurta et al. 2004). To gain better
information about transcriptional regulation of mlc-1 and mlc-2, we
applied our module prediction method on the intergenic region of
mlc-1/mlc-2 and experimentally tested our prediction. Within this
2662 bp DNA fragment our method predicted 3 CRMs (Figure 4).
Positive position coordinates shown are relative to mlc-1 translational
start codon. Negative position coordinates shown are relative to mlc-2
translational start codon. DNA sequence between 39 and 203 bp ([39,
203]) is just upstream of mlc-1; DNA fragment [1918, 2009] is located
at 2655 to 2746 bp upstream of mlc-2 translational start codon;
DNA fragment [2322, 2489] is close to mlc-2 translational start codon
ATG and corresponds to the first 400 bp upstream that we had pre-
viously shown to drive expression in the body wall muscle (GuhaTha-
kurta et al. 2004). We tested DNA sequence from 1726 to 2126 ([1726,
2126]), which includes one of the predicted CRMs, and DNA se-
quence from 875 to 1747 ([875, 1747]), which does not include any
predicted CRM, for enhancer activity by cloning them into a pes-
10 minimal promoter (Fire et al. 1990). Only the DNA fragment that
covers the predicted module showed enhancer activity and the expres-
sion was limited to the pharyngeal muscle. Therefore, these two ex-
perimental results are consistent with the use of PhyloNet PWMs for
predicting regulatory regions of C. elegans promoters. This result has
another interesting aspect. Themlc-2 gene is known to be expressed in
both body wall and pharyngeal muscle, and we have separated those
two tissue-specific expression patterns into two separate CRMs. The
closest enhancer upstream of the ATG drives expression only in body
wall muscle, and the farther enhancer, located over 500-bp upstream,
drives expression in the pharyngeal muscle.

Facilitating access to the sites, motifs, and
module predictions
All data and results discussed here, including the putative regulatory
motifs, supporting evidence for each motif, list of motifs that are
significant in each analysis, experimental modules and references,
pictures of experimental modules and predicted modules in promoter
regions, as well as in intron regions and microRNA promoter region
sequences are available via the web interface at http://stormo.wustl.
edu/gzhao/CE_PhyloNet/. Each motif can be accessed by name and
the link provides the exemplar sites and the gene list for that motif as
well as other related information. Links are also included for all of the
genes containing exemplar sites where all of the motifs they are asso-
ciated with can be found.

We have created files for both the exemplar sites and CERMOD
predicted modules across the whole genome in BED formats that can
be uploaded as custom tracks and viewed in the UCSC genome
browser. These track records can be downloaded from http://stormo.
wustl.edu/gzhao/CE_PhyloNet/. In the genome browser page, when
a PhyloNet site or CERMOD module is clicked on, it opens up an
external site with information about the motif or module. For a motif,
this information includes a logo of the motif, the matrix and all

exemplar sites genome-wide. Figure 5 highlights the capabilities of
this interface.

Conclusions
We performed a genome-wide search for conserved regulatory
elements in C. elegans, C. remanei, and C. briggsae and identified
a total of 4959 regulatory elements. Our study identified regulatory
elements with diverse biologically functions that include at least core
promoter elements, TF binding sites, and functional RNA sites. Mul-
tiple independent evidence provide strong support for their biologi-
cally significance. The distribution of these regulatory motifs along
promoter region sequences is highly clustered, which allowed us to
accurately detect DNA regulatory sequences that drive spatial/tempo-
ral-specific gene expression. Our work greatly expanded our knowl-
edge of regulatory sites in C. elegans and is a valuable step toward
building a genome-wide regulatory network of C. elegans. CERMOD
predicts modules from the distribution of the predicted motif occur-
rences along the promoter region sequences and identifies statistically
significantly clustered motif sites. It does not require a training set and
it is not necessary to know in which tissue a gene is expressed. It has
high sensitivity and specificity on experimentally verified CRMs, and
we expect it to have similar sensitivity and PPV on any given C.
elegans sequence. The accessibility of all of our results, the exemplar
sites, the predicted motifs, and the predicted CRMs, through the
UCSC genome browser should make them a valuable resource for
the research community.
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