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This research aimed to investigate the allergic reaction of C3H/HeJ mice after sensitization
with ovalbumin (OVA) without any adjuvant and to analyze the association between
intestinal microbiota and allergy-related immune cells in mesenteric lymph nodes (MLN).
The allergic responses of C3H/HeJ mice orally sensitized with OVA were evaluated, and
immune cell subsets in spleen and MLN and cytokines were also detected. The intestinal
bacterial community structure was analyzed, followed by Spearman correlation analysis
between changed gut microbiota species and allergic parameters. Sensitization induced a
noticeable allergic response to the gavage of OVA without adjuvant. Increased levels of
Th2, IL-4, CD103+CD86+ DC, and MHCII+CD86+ DC and decreased levels of Th1, Treg,
IFN-g, TGF-b1, and CD11C+CD103+ DC were observed in allergic mice. Furthermore,
fami l ies of Lachnospiraceae , Clostr id iaceae_1 , Ruminococcaceae , and
peprostreptococcaceae, all of which belonging to the order Clostridiales, were
positively related to Treg and CD11C+CD103+ DC, while they were negatively related to
an allergic reaction, levels of Th2, CD103+CD86+ DC, and MHCII+CD86+ DC in MLN. The
family of norank_o_Mollicutes_RF39 belonging to the orderMollicutes_RF39 was similarly
correlated with allergic reaction and immune cells in MLN of mice. To sum up, allergic
reactions and intestinal flora disturbances could be induced by OVA oral administration
alone. The orders of Clostridiales and Mollicutes_RF39 in intestinal flora are positively
correlated with levels of Treg and CD11C+CD103+ DC in MLN of mice.
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INTRODUCTION

It is undisputed that food allergy (FA) has become one of the
most important public health problems due to its remarkably
increased prevalence worldwide in recent years (1). In the USA,
the reported prevalence of food allergies was 7.6% in children (2)
and 10.8% in adults (3). Although the prevalence of FA is not
accurately known in China, the latest epidemiological survey in
Wenzhou, China, reported a prevalence rate of 12.86% in
preschool children (4).

As antigen-presenting cells (APCs), dendritic cells (DCs) in
local immune tissue [peyer’s patch, mesenteric lymph node
(MLN) and so on] (5) and peripheral immune organs (e.g.,
spleen) (6) play pivotal roles in the induction of tolerance and
food allergy (7). It has been demonstrated that CD103+ DCs in
MLN can promote the development of T regulatory cells (Tregs)
(5), which can suppress Th2 response, thus, preventing FA and
maintaining tolerance (8, 9). Therefore, the association among
DCs, Tregs, and Th2 will influence the dynamic balance between
T-helper type 1 (Th1) and Th2 cells in food allergic conditions.

Genetic variation, thought to be a vital factor inducing food
allergy for many years (10, 11), could not, however, explain the
dramatic increase in its prevalence (12–15). Therefore,
researchers have proposed the hypothesis that interaction
between the environment and the immune system may have
contributed to allergic diseases because of changes in sanitary
conditions, dietary habits, and surroundings (16), which are
often accompanied by alteration in the symbiotic microbiota
(11). The focus of research about food allergy has thus shifted
toward commensal microbiota in recent years (16, 17).

The intestinal microbiota is found to be a key environmental
factor in promoting oral tolerance (18, 19). Germ-free (GF) mice
are more likely to produce T-helper type 2 (Th2) cells and IgE
responses to dietary allergen than specific pathogen-free (SPF)
mice (20), while the colonization of microbial population
suppresses Th2 response and prevents mice from FA (21). The
abundance of several bacterial families, including the
Lachnospiraceae, Lactobacillaceae, Rikenellaceae, and
Porphyromonadaceae, changed after ovalbumin (OVA) oral
sensitization in food-allergy-susceptible mice (Il4raF709 mice),
while this change was not observed in sensitized WT mice (22).
Different from the results of previous studies, a comparison of
the microbiota composition of OVA allergic mice and non-
responders found significantly higher abundances of sequence
belonging to Synthrophaceae and Ruminococcaceae in non-
responders (23).

The relationship between intestinal microbiota and food
allergy strongly supported the critical role microbiota plays in
the process of food allergy; however, the role of intestinal
microbiota dysbiosis in food allergy and the mechanism of
their interaction (24) need to be demonstrated. In the present
study, we employed the C3H/HeJ mice and used OVA oral
sensitization based on our previous protocol (25) to build a food
allergy model. The high throughput sequencing of 16S rRNA was
used to analyze differences in intestinal microbiota between
allergic and negative control mice. And then the correlation of
the changed intestinal bacterial flora and allergy-related immune
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cells in mesenteric lymph nodes (MLN) was also assessed. We
found OVA sensitization without using an adjuvant induced
allergic reactions and alteration of intestinal microbiota. The
abundance of orders Clostridiales and Mollicutes_RF39 were
positively correlated to Tregs and dendritic cells (DCs)
subgroup CD11C+CD103+ DCs in MLN of mice.
MATERIALS AND METHODS

Animals and Experimental Protocols
All of the animal experiments in this research were performed
according to the guidelines of the Institutional Animal Care and
Use Committee. The animal experimental protocols were
approved by the Experimental Animal Ethics Committee of the
Capital Medical University with a license (AEEI-2018-128). In
total, 24 specific pathogen-free (SPF) C3H/HeJ mice (female, 6
weeks old) with a body weight of 14.7–15.8 g were purchased
from Vital River Laboratories (VRLs, Beijing, China) and bred
and maintained in pathogen-free facilities in Capital Medical
University. The mice were housed under conditions of 23°C/40–
70% relative humidity and a 12h light/dark cycle with free access
to a commercially available rodent diet and distilled water. Then
the mice were randomly and evenly divided into two groups
(OVA treated and Control group) with 12 mice per group and
received different treatment after 1 week of acclimation. Four
mice of the same group were set in one regular mouse cage.

The experiment protocol is displayed in Figure 1. On days 0,
7, 14, 21, and 28 of the experiment, 200 uL pure saline or 200 uL
saline containing 1mg OVA were gavaged to two groups of mice
respectively for sensitization. On day 42, the challenge was
achieved by intragastric administration of 1mL pure saline or 1
mL saline containing 5 mg OVA to mice in the two groups
respectively. Blood samples were collected from the angular vein
of each mouse 30 min after a challenge on day 42. Then the
serum was collected, divided into four parts and stored in -80°C
for batch-estimation of IgE, IgG1, IgG2a, and cytokines
including Interferon-g (IFN-g), Interleukin-10 (IL-10),
Interleukin-4 (IL-4), Transforming growth factor-b (TGF-b),
and Mouse mast cell protease-1 (mMCP-1).

Besides, to estimate body temperature, the rectal temperature
of each mouse was detected with a WI88375 probe (Beijing
Science and Technology, Beijing) and recorded 10 min prior to
the challenge and at 10 min intervals (for up to 50 min) after the
challenge to assess their allergic reactions. Meanwhile, the
symptoms of clinical anaphylaxis were monitored according to
previous research (5): 0, no clinical symptom; 1, repetitive ear/
mouth scratching and ear canal digging with hind legs; 2,
decreased activity, self-isolation, and puffiness around eyes or
mouth; 3, periods of motionless for more than 1 min, lying prone
on the stomach, and decreased activity with an increased
respiratory rate; 4, no response to whisker stimuli and reduced
or no response to prodding; and 5, tremor, convulsion, and
death. Then peritoneal lavage was performed with saline in each
mouse and the saline was collected for detection of protein using
a BCA kit (enhanced) purchased from Beyotime Biotechnology
(Kit No. P0010S, Shanghai, China).
June 2021 | Volume 12 | Article 631494
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Detection of Serum IgE, IgG1, IgG2a,
Cytokines, and mMcp-1
The levels of OVA-specific IgE (sIgE), total IgG1, and IgG2a in
serum of each mouse were tested using ELISA kits from Beijing
Mecen Unicreate Bio-tech Co., LTD according to the protocols
provided by the manufacturer. The concentration of IFN-g, IL-
10, IL-4, TGF-b, and mMcp-1 in the sera were measured using a
multi-cytokine U-PLEX designed kit (Lot No. K152XWK-1 for
TGF-b and K15069L-1 for others, Meso Scale Diagnoistics, LLC.,
Rockville, USA) according to the instruction of the
manufacturer. The U-PLEX kit was designed to provide
ultimate flexibility for the detection of several cytokines in only
25 ul sera through MSD electrochemiluminescence detection
technology using SULFO-TAGTM markers. Sensitivity levels of
the kits were 0.1 mg/mL for IgE, 1.0 mg/mL for IgG1, 0.1 mg/mL
for IgG2a, 0.16 pg/mL for IFN-g, 3.8 pg/mL for IL-10, 0.56 pg/
mL for IL-4, 37 pg/mL for TGF-b, and 1.4 pg/mL for mMcp-1.

Measurement of Th1, Th2, Treg, and
DCs Cells
The isolation of splenocytes and mesenteric lymph node (MLN)
cells was performed as previously described (25). Then, the cells
were divided into tubes with 5106 cells per tube. The FITC
conjugated rat anti-mouse CD69, Brilliant Violet 421™

conjugated Armenian Hamster anti-mouse CD183 (CXCR3),
and PE-conjugated rat anti-mouse IL-33Ra (ST2) monoclonal
antibodies (mAb) were used to stain Th1 and Th2 cells. FITC
conjugated rat anti-mouse CD4, PE-conjugated rat anti-mouse
CD25, and APC-conjugated rat anti-mouse Foxp3 monoclonal
antibodies (mAb) were used to stain Treg cells (Tregs). FITC-
conjugated rat anti-mouse CD11C, PE-conjugated Armenian
Hamster anti-mouse CD103, APC-conjugated rat anti-mouse
CD80, PE/Cy7-conjugated rat anti-mouse CD86, and PerCP/
Cyanine5.5-conjugated rat anti-mouse MHC class II (MHCII)
mAbs were used to stain dendritic cells (DCs). The anti-mouse
CD4, CD69, CD11C, and CD80 mAbs were purchased from
Tonbo Bioscience (San Diego, CA, USA). The anti-mouse CD25
Frontiers in Immunology | www.frontiersin.org 3
and Foxp3 mAbs were purchased from eBioscience (Waltham,
MA USA). Additionally, the other mAbs were bought from
BioLegend Inc (San Diego, CA, USA). The detailed staining
steps were performed based on the previous description (26).
Briefly, single-cell suspensions (5106 cells) were blocked with
PBS containing 5% fetal calf serum (FCS) and 1% BSA, following
with incubation of 30 min with either mAb. For detection of
Foxp3, cells were permeabilized and incubated with anti-Foxp3
according to the manufacturer’s protocol (eBioscience). Finally,
the stained cells were analyzed using a flow cytometer
(NovoCyte, ACEA, Hangzhou, China). For each sample, more
than 10000 events were required.

Fecal DNA Extraction and
PCR Amplification
To analyze the composition of intestinal microbiota, fecal
samples of every mouse were collected on the 42nd day. To
avoid contamination, two feces of each mouse were collected in
an EP tube during defecation. Microbial community genomic
DNA was extracted from 0.2–0.3g of feces using the E.Z.N.A.®

soil DNA Kit (Omega Biotek. Norcross, GA, U.S.) according to
the manufacturer’s instructions. The DNA extract was checked
on 1% agarose gel, and DNA concentration and purity were
determined with NanoDrop 2000 UV-vis spectrophotometer
(Thermo Scientific, Wilmington, USA). The hypervariable
region V3-V4 of the bacterial 16S rRNA genes were amplified
with primer pairs 338F (5’-ACTCCTACGGGAGGCAGCAG-3’)
and 806R(5’-GGACTACHVGGGTWTCTAAT-3’) by an ABI
GeneAmp® 9700 PCR thermocycler (ABI, CA, USA), with an
eight-base sequence barcode unique to each sample at the 5′ end
of 338F and 806R, respectively. The PCR amplification of
16S rRNA gene was performed as follows: initial denaturation
at 95°C for 3 min, followed by 27 cycles of denaturing at 95°C for
30 s, annealing at 55°C for 30 s and extension at 72°C for 45 s,
and single extension at 72°C for 10 min, ending at 10°C. The
PCR mixtures contain 4 mL of 5 × TransStart FastPfu buffer, 2 mL
of 2.5 mM dNTPs, 0.8 mL of forward primer (5 mM), 0.8 mL of
FIGURE 1 | The schematic of the animal experiment of this research. The 7-week-old female C3H/HeJ mice were sensitized once weekly in the first 28 days with
1mg OVA dissolved in 200 ul saline or 200 ul saline by oral gavage. Then, on day 42, were orally challenged with 5mg OVA dissolved in 1 ml saline or 1 ml saline,
followed by sera collection, temperature detection and sacrifice.
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reverse primer (5 mM), 0.4 mL of TransStart FastPfu DNA
Polymerase, 10 ng of template DNA, and finally up to 20 mL of
ddH2O. The PCR product was extracted from 2% agarose gel
and purified using the AxyPrep DNA Gel Extraction Kit (Axygen
Biosciences, Union City, CA, USA) according to manufacturer’s
instructions and quantified using QuantiFluor™ -ST
(Promega, USA).

Illumina MiSeq Sequencing
Purified amplicons were pooled in equimolar and paired-end
sequenced (2 ×300) on an Illumina MiSeq PE300 platform
(Illumina, San Diego, USA) according to the standard
protocols by Majorbio Bio-Pharm Technology Co. Ltd.
(Shanghai, China). The raw reads were deposited into the
NCBI Sequence Read Archive (SRA) database (Accession
Number: PRJNA658922).

Bioinformatics Analysis
The raw 16S rRNA gene sequencing reads were demultiplexed,
quality-filtered by Trimmomatic, and merged by FLASH with
the following criteria: (i) the 300 bp reads were truncated at any
site receiving an average quality score of <20 over a 50 bp sliding
window, and the truncated reads shorter than 50 bp were
discarded; (ii) exact barcode matching, 2 nucleotide mismatch
in primer matching, and reads containing ambiguous characters
were removed; and (iii) only overlapping sequences longer than
10 bp were assembled according to their overlapped sequence.
Reads that could not be assembled were discarded. Then the
number of obtained sequences was normalized by randomly
subsampling each sample to the lowest level of sequences
among samples.

Operational taxonomic units (OTUs) with 97% similarity
cutoff (27) were clustered using UPARSE (version 7.1, http://
drive5.com/uparse/), and chimeric sequences were identified and
removed using UCHIME. The taxonomy of each OTU
representative sequence was analyzed by RDP Classifier (http://
rdp.cme.msu.edu/) against the 16S rRNA database (Silva
SSU132) with a confidence threshold of 0.7.

The community richness, diversity, and evenness of species
were assessed through several a-diversity indices, including
Coverage, Ace, Chao, Shannon, Simpson, Phylogenetic
diversity (PD), Shannoneven, and Sampsoneven, which were
calculated using a mothur (version v.1.30.1) program basing on
OTUs with 97% similarity. Wilcoxon rank-sum test was used to
compare their diversity. The R package and Abund_jaccard
distance metrix were used to perform Hierarchical clustering
analysis on the OUT level. And the abund_jaccard distance
metrix was also used to carry out Principal Component
Analysis (PCA) and Principal coordinates analysis (PCoA) on
the OUT level. Visualization of interactions among bacterial taxa
in different samples was conducted using the R package.
ANOSIM was performed to compare the microbiota
composition between samples (28). Apart from the analysis
above, Linear discriminant analysis (LDA) coupled with effect
size measurements (LEfSe) analysis was conducted to search for
statistically different bacteria species between two groups. Thus
the different taxa from the phylum to the genus level were
Frontiers in Immunology | www.frontiersin.org 4
analyzed and visualized by taxonomic charts using the LEfSe
tool (http://huttenhower.sph.harvard.edu/galaxy/root) since the
analysis of the large number of OTUs detected in this study
would be computationally too complex (29, 30).

Statistical Analysis
All of the data were analyzed using SPSS 23.0 software and
expressed as mean ± SD. GraphPad Prism V.5.0 (San Diego, CA,
USA) was employed for graph preparation. The statistical analysis
was performed using two-tailed Student’s test with the exception of
16S rRNA sequencing data, which were analyzed using a Wilcoxon
rank-sum test. Spearman correlation analysis was performed for
determining the correlation coefficient between distinguished
intestinal flora and other allergy-related indicators. The p value of
less than or equal to 0.05 was considered statistically significant.
*p ≤0.05, **p ≤0.01, ***p ≤0.001.
RESULTS

C3H/HeJ Mice Performed Significant
Allergic Reactions to OVA
It has been verified in a previous experiment that the C3H/HeJ
mouse did not show any specific immune responses to the
commercially standard feeding. Thus, the concentrations of
sIgE, IgG1, and IgG2a in the sera of mice were measured and
the ratio of IgG1/IgG2a was calculated to estimate their allergic
reaction to OVA through oral administration. As shown in
Figures 2A, B, mice produced significantly higher levels of IgE
in response to OVA oral treatment than did mice in Control
group (p ≤0.05). And the ratios of IgG1/IgG2a in OVA treated
mice were also significantly higher than those in Control mice
(p ≤0.05). This suggested that the mice developed humoral
immune responses to oral OVA sensitization.

To further verify the mice’s allergic reactions to OVA,
concentrations of mMCP-1 in serum, levels of protein in
peritoneal lavage fluid, drop in mice body temperature, and
clinical anaphylaxis were measured. As shown in Figure 2, the
sera of OVA-treated mice contained higher levels of mMCP-1,
which is primarily released from mast cell degranulation, than
those of Control mice (p ≤0.05, Figure 2C). The concentrations
of protein in peritoneal lavage fluid of OVA treated hosts were
remarkably higher than those in Control hosts (p ≤0.05,
Figure 2D). In addition, the drop in body temperature in
OVA-treated mice was also greater than that in Control mice
(p ≤0.005, Figure 2E). Although there was no significant
difference in anaphylaxis score between the two groups, OVA-
treated mice showed higher scores when comparing with Control
mice (Figure S1). These results suggested that the OVA-treated
mice performed more severe mast cell degranulation, greater
vascular permeability and more powerful allergic manifestation.

To determine whether the activation of Th1, Th2, and Treg
cells underlies the observed allergic manifestations, levels of Th1,
Th2, and Foxp3+ Treg cells in the spleen andMLNwere detected.
As shown in Figure 3, oral administration of OVA increased the
proportion of effector Th2 cells in the spleen andMLN compared
June 2021 | Volume 12 | Article 631494
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to saline treatment (p ≤0.05, Figures 3A, D). In contrast, the
splenic and MLN levels of Th1 and Foxp3+ Treg cells in saline-
treated hosts were significantly higher than those in OVA treated
hosts (p ≤0.05, Figures 3A–C, E).

Different effector cells usually secrete different cytokines, which
usually play different roles in the differentiation of cells. Thus
concentrations of INF-g, IL-4, IL-10, and TGF-b1 in the serum of
mice were determined. Levels of INF-g and TGF-b1, which are
primarily related to differentiation and development of Th1 and
Treg respectively, were significantly higher in the serum of Control
mice than in OVA treated mice (p ≤0.05, Figure 3F). Levels of Th2
related cytokines IL-4 and IL-10 in sera collected from challenged
OVA-treated mice were significantly higher than those from
Control hosts (p ≤0.05, Figures 3F, G). These data suggested that
the distinct allergic manifestations in OVA treated mice might be
due to decreased levels of Th1 and Treg populations and increased
proportions of Th2 subsets in the spleen and MLN.

Relative Abundance of Matured Dendritic
Cell Subsets in Mesenteric Lymph Nodes
During the development of food allergy, the activation of CD4+ T
cells is usually affected by antigen present cells (APCs) (31). As
Frontiers in Immunology | www.frontiersin.org 5
an important APC, mature CD11+ DC in MLN plays a critical
role in the activation and differentiation of Th1 and Th2 subsets
through co-stimulation signal produced by CD80 or CD86
expressing on DCs (32). Furthermore, the levels of
CD11+CD103+ DC, MHCII+CD80+ DC, MHCII+CD86+ DC,
CD103+CD80+ DC, and CD103+CD86+ DC in the MLN and
spleen of different treated mice were determined using flow
cytometer. As shown in Figure 4, proportions of CD11+ DC in
the MLN of saline-treated mice were significantly higher than
those in OVA-treated mice (p ≤0.05, Figures 4A, B). In contrast,
levels of MHCII+CD86+ DC and CD103+CD86+ DC were
significantly lower in MLN of Control hosts than that in OVA
treated hosts (p ≤0.05, Figures 4A, D, F). In addition, the levels
of MHCII+CD80+ DC, and CD103+CD80+ DC did not show a
remarkable difference between the two groups (p ≥0.05,
Figures 4A, C, E). Although the levels of CD11C+ DC
decreased in the MLN of allergic mice, proportions of
MHCII+CD86+ DC and CD103+CD86+ DC, but not
MHCII+CD80+ DC and CD103+CD80+ DC, increased during
allergic reactions. In the spleen, most of the DC subsets did not
show a noticeable difference between the two groups with the
exception of CD11+CD103+ DC as shown in Figure S2.
A B

C D E

FIGURE 2 | Concentrations of sIgE (A) and ratios of IgG1/IgG2a (B) in sera of OVA-treated (OVA) and saline-treated (Control) mice; Scatter plot of mMCP-1 level of
mice serum (C), protein concentration of peritoneal lavage fluid (D) and drop of temperature (E) in Control and OVA treated mice. The sera and peritoneal lavage
fluid collection were conducted after the challenge, and protocols were described in Methods. The changes in body temperature were calculated by subtracting the
rectal temperature (°C) of mice at 10 minutes before the challenge from the rectal temperature (°C) of mice at 50 minutes after the challenge. One plot denotes one
sample, and the bar in the graph denotes Mean and SD. n=6-12/group. *p ≤ 0.05 vs OVA-treated group. Statistical analyses were performed with a two-tailed
Student’s test. **p ≤ 0.01 vs OVA-treated group.
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Microbiota Richness and Diversity
Difference Between Two Groups

A total of 899552 usable sequence reads with a mean length of
416.73 ± 3.80 bp were obtained from 24 fecal samples,
accounting for 79.28% of raw sequences according to
demultiplexing and quality-filtering. Then, after subsampling
each sample to an equal depth (21344 sequences per sample)
and clustering, 694 operational taxonomic units (OTUs) at 97%
identity were obtained, with OTUs ranging from 228 to 449 per
sample. Coverage indices of all samples were more than 99%,
indicating a sufficient sequencing depth in the two groups. The
rarefaction analysis of species richness and Shannon indices
based on OTUs level indicated that the data volume covered
all species contained in fecal sample communities (Figure S3).

Analysis of alpha indices shown in Table 1 compared the
richness, diversity, and evenness of intestinal microbiota
community in the two groups. The Chao and Ace estimators
were significantly lower in OVA-allergic mice than in Control
mice (p ≤0.0005), indicating that the microbial abundance in the
stool of OVA-allergic mice was considerably lower. In addition,
the Shannon, Simpson, and Phylogenetic diversity showed that
the alpha-diversity was significantly lower in OVA-allergic hosts
than in Control hosts (p ≤0.005). Furthermore, the extremely
Frontiers in Immunology | www.frontiersin.org 6
significant lower value of the Shannoneven and Simpsoneven
indices (p ≤0.0005) in OVA-allergic mice demonstrated the
considerably lower community evenness in feces of allergic
mice. These results suggested that the richness, diversity, and
evenness of the intestinal microbial community were all down
regulated by OVA oral administration in mice.

The average hierarchical clustering analysis of b-diversity was
conducted through abund_jaccard distances calculation to indicate
the similarities among the fecal samples. As shown in Figure 5A,
the samples from different treated mice can be clearly clustered into
separate groups, although each group can be further divided into
subgroups. Principle component analysis (PCA) revealed that the
OVA treatment caused significant structural changes of fecal
microbiota in mice (R =0.4443, p =0.001), as shown in plots
(Figure 5B), and the PC1 and PC2 explained the 17.11% and
11.67% of variance respectively. Similarly, the principal coordinate
analysis (PCoA) plots as shown in Figures 5C, D indicated that
50.33%, 15.72%, and 3.65% of the variation could be explained by
PC1, PC2, and PC3 respectively with noticeable significance (R =
0.9081, p =0.001). Both PCA and PCoA plots demonstrated that
most samples from Control hosts had negative PC1 value while
most samples from allergic animals had positive value. These results
suggested significant different fecal microbiota community
structures between the two treated groups.
A

B

C

D

F E

FIGURE 3 | Splenic and MLN levels of Th1, Th2, Foxp3+ T regulatory (Treg) populations and concentrations of related cytokines in two groups. The bar in the graph
denotes Mean and SD. n=6-12/group. *p ≤0.05 vs OVA-treated group; Statistical analyses were performed with two-tailed Student’s test. (A) Percentage of T
subsets (Th1, Th2) in spleen and MLN. (B) Percentage of Treg in CD4+ T cell in spleen and MLN. (C–E) Representative images showing Th1, Th2 and Foxp3+ Treg
levels in speen and MLN. (F) Level of cytokines (INF-g, IL-4, IL-10 and TGF-b1) in sera of animals.
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Community Structure of Stool Microbiota
in Mice
Comparison of taxonomic composition in feces of different
treated mice was conducted due to the distinguished difference
in PCA and PCoA plots. The bar charts in Figure 6 showed the
distribution of taxonomic composition in each sample from two
groups at the phylum and genus levels. There were four major
phyla, including Firmicutes, Bacteroidetes, Proteobacteria, and
Actinobacteria in all of the samples, as shown in Figures 6A, B.
Among all the genera, a total of 29 genera were dominant,
Frontiers in Immunology | www.frontiersin.org 7
accounting for more 0.5% in all of the fecal samples, as shown in
Figures 6C, D.

To further analyze the change of microbiota community in
the intestinal tract of allergic mice, the significant differences in
the relative abundance of fecal bacteria at different taxonomic
levels were identified and presented in Tables S1–S5. Compared
with those of the Control group, the relative proportions of
phyla, including Tenericutes, Deferribacteres, and Patescibacteria,
were significantly decreased in allergic mice (p ≤0.05, Table S1).
And although the percentages of Firmicutes and Bacteroidetes
TABLE 1 | Comparison of a-indices of gut microbiota species in two groups.

Group Richness estimator Diversity indices Evenness

Chao*** Ace*** Shannon*** Simpson*** PD** Shannoneven*** Simpsoneven***

Control 461.93 ± 28.60 456.15 ± 23.76 4.51 ± 0.14 0.024 ± 0.0042 29.56 ± 1.28 0.751 ± 0.021 0.106 ± 0.018
OVA 351.50 ± 44.93 349.01 ± 40.13 3.70 ± 0.39 0.073 ± 0.044 25.38 ± 3.38 0.648 ± 0.058 0.057 ± 0.024
June 2021 | Volume 1
Values are expressed as Mean ± SD. n=12/group. **p ≤ 0.005 when Control vs OVA group, ***p ≤ 0.0005 when Control vs OVA group.
A B

C D

E F

FIGURE 4 | Levels of CD11+CD103+ DC, MHCII+CD80+ DC, MHCII+CD86+ DC, CD103+CD80+ DC, and CD103+CD86+ DC populations in the MLN of different
treated mice. The bars in dot plot (A) indicate the percentages of five DCs populations with Mean + SD (n=6/group). The graph (B–F) appeals to the flow cytometry
density maps of five DCs subsets in MLN of mice. *p ≤0.05 vs OVA-treated group; Statistical analyses were performed with two-tailed Student’s test.
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did not show a significant difference between the two groups, the
ratio of Firmicutes/Bacteroidetes decreased remarkably in allergic
mice as shown in Table S1 (p ≤0.05).

The different relative proportions of families and genera were
presented in Tables S4, S5, and Figure 7. As shown in Figure 7,
among the families with a relative abundance of more than 0.1%,
10 families were significantly different between mice in two
groups. In comparison with the Control hosts, the relative
abundances of Ruminococcaceae , Clos tr id iaceae_1 ,
Deferribacteraceae, norank_o:Mollicutes_RF39, unclassified_o:
Bacteroidales, Peptostreptococcaceae, and Saccharimonadaceae
decreased significantly (p ≤0.05), while the proportions of
Prevotellaceae, Tannerellaceae, and Burkholderiaceae increased
Frontiers in Immunology | www.frontiersin.org 8
significantly in the allergic hosts (p ≤0.05). At the genus level, 51
significantly different microbiota populations were identified
between the two groups, as shown in Table S5. Among
predominant genera accounting for more than 1% relative
abundance in Control group, 9 genera, unclassified_f:
Lachnospiraceae , Alistipes , norank_f:Lachnospiraceae ,
Ruminococcaceae_UCG-014, Ruminiclostridium, [Eubacterium]
_xylanophilum_group, Turicibacter, norank_f:Ruminococcaceae,
and Roseburia showed a significant decrease in allergic samples
when compared with Control samples, while the other 2 genera
of Prevotellaceae_UCG-001 and Rikenellaceae_RC9_gut_group
showed an increase (p ≤0.05, Figure 7B). Changes in the
relative abundance of the other 17 less predominant genera,
A B

C D

FIGURE 5 | Hierarchical clustering tree on OUT level (A), Principle component analysis (PCA) plots (B), and principal coordinate analysis (PCoA) plots (C, D) on
OUT level of all samples. (C, D) indicate the two- and three-dimensional PCoA plots.
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which account for 0.1% to 1% of fecal microbiota of mice, were
also shown in Figure 7C. The different minor bacterial families
and genera (relative frequency less than 0.1%) were not displayed
in Figure 7 due to the very low abundance levels of these bacteria
which can’t explain biological significance strongly, and are
presented in Tables S4 and S5.

Associations Between Fecal Microbiota
Community and Allergy
To investigate the relationship of altered gut microbiota structure
and food allergy, a Spearman correlation coefficient analysis
between the relative abundance of noticeably changed genera
and the subgroups of DCs, T cells in MLN, allergy-related
cytokines, and symptoms was conducted based on the
identification of statistically different bacteria species between
two groups.

Enriched species playing important roles in the differences
between two groups were shown in cladograms, and LDA scores
of three or more were confirmed by the LEfSe tool. According to
Frontiers in Immunology | www.frontiersin.org 9
Figures 8A, B, 18 genera of bacteria were significantly enriched
in Control group (p ≤0.05). In OVA allergic group, six microbes
on genus level were remarkably enriched, among which five
genera were detected at a significant level (p ≤0.05) with the
exception of Lachnoclostridium (p =0.053).

Among all of the identified significantly changed 23 genera,
unclassified_f:Eggerthellaceae and Coriobacteriaceae_UCG-002
accounted for less than 0.01% relative abundance. Therefore,
the Spearman correlation coefficients of the remaining 21
genera and allergy-related parameters (IgE, mMCP-1, protein
in the protoneal lavage saline, decrease in body temperature, IL-
4, IL-10, IFN-g, and TGF-b) of the cell subsets in MLN, referring
t o MHCI I +CD86+ DC , CD103+CD86+ DC , Th2 ,
MHCII+CD80+ DC, CD103+CD80+ DC, CD11C+CD103+ DC,
Th1, and Treg, were analyzed, and the results were displayed
in a heat map as shown in Figure 8C. Among all of the
identified species, an abundance of genera Ruminococcaceae_
UCG-014, Ruminiclostridium, norank_f_Ruminococcaceae, and
unclass ified_f_Ruminococcaceae , included in family
A B

C

D

FIGURE 6 | Distribution of fecal bacterial communities at the phyluam and genus levels for all mice. (A, B) show the phylum level; (C, D) show the genus level. (A, C)
represent the intestinal flora composition of each sample, while (B, D) represent that of different groups.
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Ruminococcaceae, were significantly positively correlated with
Treg or CD11C+CD103+ DC in MLN and negatively correlated
with protein in protoneal lavage saline and a decrease in body
temperature, IgE, mMCP-1, IL-4, and IL-10 in serum. In family
Lachnospiraceae, genera unclassified_f:Lachnospiraceae,
norank_f_Lachnospiraceae, Roseburia, Blautia, and GCA-
900066575 were negatively related to protein in protoneal
lavage saline, MHCII+CD86+ DC, CD103+CD86+ DC, and Th2
levels in MLN and positively related to Treg levels in MLN. The
genus Clostridium_sensu_stricto_1 belonging to family
Clostridiaceae_1 performed similar spearman correlation,
negatively relating to protein in protoneal lavage saline, a
decrease in body temperature, mMCP-1, IL-4, and IL-10 in
serum, CD103+CD86+ DC and Th2 in MLN, and positively
relating to Treg level in MLN. The abundance of genus
Romboutsia belonging to the family Peptostreptococcaceae was
positively correlated with levels of MHCII+CD80+ DC in MLN.
An abundance of genus Parabacteroides belonging to family
Tannerellaceae and genus Rikenellaceae_RC9_gut_group
belonging to family Rikenellaceae was noticeably positively
correlated to a proportion of Th2 in MLN. The level of
genus norank_f_norank_o_Mollicutes_RF39 in family
norank_o_Mollicutes_RF39 was negatively related to levels of
IgE, mMCP-1, IL-4, and IL-10 in sera, protein in protoneal
lavage saline, and a decrease in body temperature, while it was
positively related to CD11C+CD103+ DC and Treg levels
in MLN.

Besides, Figure 8C also displayed species from phylum to
order containing statistically changed genera that were identified
in OVA treated mice. Most of the genera positively relating to
levels of Treg or MHCII+CD80+ DC or CD11C+CD103+ DC,
while showing a negative correlation to Th2, Th2-related
Frontiers in Immunology | www.frontiersin.org 10
cytokines, MHCII+CD86+ DC, and CD103+CD86+ DC in
MLN, belonged to orders Clostridiales and Mollicutes_RF39,
classes Clostridia and Mollicutes, and phylum Firmicutes and
Tenericutes. On the other hand, genera positively relating to Th2
subsets in MLN were included in order Bacteroidales, class
Bacteroidia , and phylum Bacteroidetes . These results
demonstrated that the gut microbiota community, especially
families Ruminococcaceae, Lachnospiraceae, Clostridiaceae_1,
and norank_o_Mollicutes_RF39 play a critical role during the
inhibition of food allergy, while the species belonging to families
Rikenellaceae and Tannerellaceae prompted the development of
food allergy. Furthermore, we also identified that orders of
Clostridiales and Mollicutes_RF39 were negatively related to
protein concentration in protoneal lavage saline (r2 = 0.224,
p =0.047; r2 = 0.485, p =0.001) and positively related to Treg in
MLN (r2 = 0.760, p =0.0002; r2 = 0.554, p =0.0135) of mice, as
shown in Figures 8D–G.
DISCUSSION

Although allergic responses between human and mice are
substantially different (33, 34), mice models are commonly
used to investigate the mechanism of allergic reactions (35,
36). The C3H/HeJ mice are a typical strain used in food allergy
for their high susceptibility and remarkable hypersensitization
reactions to food allergen (37, 38).

In this study, C3H/HeJ mice showed extensive reactions, such
as increased IgE, IgG1, and mMCP-1, and Th2-associated
cytokine levels, decreased Treg populations in immune tissues,
as well as decreased body temperature after OVA treatment
without adjuvant. In previous researches, similarly, the C3H/HeJ
A B C

FIGURE 7 | Comparisons of relative abundance of main bacterial populations at the family (A) and genus (B, C) levels. The bar charts indicate the percentages
of bacteria with Mean + SD (n=12/group). *p ≤ 0.05; **p ≤ 0.01 and ***p ≤ 0.001 vs OVA-treated group; Statistical analyses were performed with Wilcoxon
rank-sum test.
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strain mice also displayed obvious humoral immune reactions,
cellular immune responses, and systemic allergy symptoms to
ovomucoid (OM) (39), peanut (40–42), and fish allergens (43) by
oral administration combined with cholera toxin (CT). The route
and mechanism of CT influencing the intestine might be the
same as those by which some bacteria act on the intestinal
barrier, although the CT is not involved in the pathogenesis of
food allergy itself (44, 45). In addition to demonstrating that
C3H/HeJ mice were sensitized successfully, it is worth noting
that the mice herein also showed an altered intestinal microbiota
after oral administration of OVA without using any adjuvant,
suggesting that the OVA allergy might lead to changed intestinal
flora. The disturbed intestinal flora described in previous
researches, in turn, is considered one reason for food allergy
since the use of CT corresponded to changes in intestinal
Frontiers in Immunology | www.frontiersin.org 11
microbiota (20, 46). Therefore, these studies suggest that gut
flora and food allergy probably interact with each other rather
than flora dysbiosis causing food allergy.

As the most potent antigen-presenting cells, the DCs,
especially the CD11C+CD103+ DCs has been found to play a
crucial role in the activation or regulation of T cells through
inducing Foxp3+ Treg cells in the spleen and MLN (44, 47).
According to the research of Fu et al., the maturation of
CD11C+CD103+ DC induced regulatory T cells differentiation
for the suppression of Th2-biased response (39). Thus, besides
investigating the allergy-associated response, levels of
CD11C+CD103+ DC as well as DC expressing mutation
markers, including CD80, CD86, and MHCII in MLN, were
also determined using flow cytometer in the current study. The
decreased levels of CD11C+CD103+ DC and Tregs in the allergic
A B

C

D

E

F

G

FIGURE 8 | Identification of intestinal microbiota accounting for allergy and their correlation with allergic parameters in MLN. (A) Cladogram showing the
phylogenetic distribution of the bacterial lineages associated with allergy from the two groups. Different-colored regions represent different constitutes. Circles
indicate phylogenetic levels from phylum to genus. The diameter of each circle is proportional to the abundance of the group. (B) Indicator bacteria with LDA scores
of 3 or greater in bacterial communities associated with allergy from two groups. (C) Heat map showing the Spearman correlation coefficient between identified
significantly different species from phylum to genus level and the allergic indexes in MLN. (D, E) Spearman correlation of the order Clostridiales in intestinal microbiota
with protein concentration in peritoneal lavage saline and Treg in MLN. (F, G) Spearman correlation of the order Mollicutes_RF39 in intestinal microbiota with protein
concentration in peritoneal lavage saline and Treg in MLN. *, ** and *** refer to significant Spearman correlation (p ≤ 0.05, p ≤ 0.01, p ≤ 0.001).
June 2021 | Volume 12 | Article 631494

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhou et al. Intestinal Microbiota Influence Immune Cells
group were consistent with those found in other studies (48),
indicating that the CD11C+CD103+ DC may drive the
differentiation of Tregs. Populations of CD103+CD86+ DC and
MHCII+CD86+ DC increased in OVA allergic mice, while those
of CD103+CD80+ DC and MHCII+CD80+ DC did not display a
significant difference between the two groups. These results
suggested an important role of CD86 expressing on DC in
inducing food allergy. The study conducted by other
researchers also reported similar results, showing that CD86 is
an important factor in the induction of peanut allergy and the
interaction between CD80 expression on DCs and CTLA-4
expression on T cells are both crucial for the induction of
tolerance (49).

It is certain that the growing evidence points to an important
role of the commensal microbiota in food allergy (24). We
conducted a comparative structural analysis of intestinal
microbiota from control and OVA-allergic mice. The major
intestinal microbial community is composed of Firmicutes,
Bacteroidetes, Proteobacteria, and Actinobacteria, which is
consistent with the reported results of studies in mice (50) and
human (51). The proportion of Deferribacteres was decreased in
OVA-allergic mice compared with control hosts, which were
dominated by Deferribacteraceae, which had decreased in OVA-
treated mice. A previous report indicated that the level of
Deferribacteres increased after oral treatment of beneficial
probiotics in OVA-induced allergic mice (52). Deferribacteres in
intestinal flora plays a role in the iron metabolism and iron balance
of the gastrointestinal tract (53). It was inferred that food allergy is
related to iron metabolism in the intestine. The richness of phylum
Tenericutes also declined in allergic mice due to the decrease of
bacterial family norank_o_Mollicutes_RF39. This is consistent with
the result reported by Ogita T et al. (54), indicating an increased
level of Tenericutes in combination with the reduction in the OVA
allergic response. Studies have found that the phylum Tenericutes
can digest fibers in the intestinal tract (55) and is conducive to
maintaining the integrity of intestinal mucosa (56). So this result
suggested that Tenericutes may associate with the protection of
intestinal mucosa. Besides, similar to the results revealed in human
research (57), the ratio of Firmicutes/Bacteroidetes also decreased in
allergic mice, and this was attributed to the decreased proportion of
Firmicutes and elevated richness of Bacteroidetes in OVA allergic
hosts. However, there were also studies obtaining conflicting results
with present research. Liu et al. reported increased richness of
phylumDeferribacteres and ratio of Firmicutes/Bacteroidetes in mice
with food allergy (50). We speculate this difference may be due to
their use of adjuvants in OVA sensitization.

On the family level, we observed more than 10 altered intestinal
flora in allergic animals. Belonging to Clostridiales, genera of
Ruminococcaceae, unclassified_o:Clostridiales, and Clostridiaceae_1
displayed a remarkable decrease in OVA allergic mice, and this is
similar to previous research in human and mice (58–60). As a
dominant bacterial community, Ruminococcaceae can decompose
dietary fiber to produce short-chain fatty acids (SCFA) in the
intestinal tract of mammals to protect intestinal mucosa (24, 61,
62). Studies indicated that Clostridiales plays an important role in
intestinal homeostasis and in promoting Treg cell proliferation in
Frontiers in Immunology | www.frontiersin.org 12
intestinal immune tissues (63, 64). Thus, we infer that OVA
sensitization downregulated the richness of order Clostridiales and
destroyed its protection on intestinal mucosa while reduced the
proliferation of Treg cells. Belonging to Bacteroidetes, the family
Tannerellaceae showed an increased richness in allergic mice. This
was consistent with results from a study in patients with Cohn’s
disease (65) while its exact mechanism of influence on food allergy
is unclear and needs to be investigated.

In recent years, it has been indicated that intestinal
microbiota plays important role in immune homeostasis and
the prevention of FA (22, 46, 64). The bacteriotherapy of FA has
thus become a concern for many researchers. Esber and
colleagues demonstrated the potentially beneficial role of three
probiotic strains in cow’s milk allergy with regard to tolerance
acquisition (66). Microbes from the Clostridia class and two
other commensal species were enriched in healthy twins without
FA (67). Abdel-Gadir and colleagues found that therapy with
commensals including Clostridiales species suppressed FA in
mice by inducing Treg cells expressing the transcription factor
ROR-gt in a MyD88-dependent manner (68). In the present
study, we confirmed the different crucial bacteria species between
two groups using the LEfSe tool, on the basis of which the
correlation of identified intestinal microbiota with levels of DC
and T sub-populations in MLN were then analyzed. Most of the
genera that were positively correlated with Treg and
CD103+CD80+ DC (although without significance) belonged to
Mollicutes_RF39 and Clostridiales, which has been proved
beneficial to intestinal immune balance through inducing Treg
proliferation (64), protecting intestinal barrier function (69) and
producing SCFA (5). In addition to previous research,
considering the essential role played by intestinal DC subsets
in the inhibition or prevention of food allergy (44) and the
significant correlation with Mollicutes_RF39 and Clostridiales,
we may infer that OVA sensitization decreased the intestinal
richness ofMollicutes_RF39 and Clostridiales, which may induce
Treg proliferation through CD103+CD80+ DC subsets in MLN.
So Mollicutes_RF39 and Clostridiales may be candidates in
bacteriotherapy for FA in the future. This study may provide a
reference for treating or preventing food allergy effectively by
probiotic therapy. However, there are several limitations to this
study. Firstly, although all of the mice were purchased from the
same laboratory at the same time, the microbiota composites
analysis should be conducted before OVA sensitization in order
to demonstrate that the microbiota composites were altered by
OVA treatment. Secondly, although OVA-specific Tregs has
been demonstrated to suppress allergic reaction in previous
research (70), they should be separated and used to treat
OVA-sensitized mice to explore the exact mechanisms of
OVA-induced food allergy without adjuvants in the
present study.
CONCLUSION

In conclusion, sensitization of C3H/HeJ mice using OVA
without any adjuvant can induce remarkable allergic responses
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and noteworthy alteration of intestinal microbiota, demonstrating
that allergen sensitization might cause disturbance of intestinal
flora, which further confirms the relationship between food
allergens, intestinal flora, and genetic susceptibility in the
establishment of food allergy. This study also assessed the
correlation between DC subsets, T subpopulation in MLN, and
altered intestinal bacteria, which supplies novel possible evidence
about the mechanism of Mollicutes_RF39 and Clostridiales in
promoting Treg proliferation. However, further studies using
fecal microbiota transplantation (FMT) are needed to uncover
the exact mechanism to provide persuasive evidence for the
employment of Mollicutes_RF39 and Clostridiales as anti-
allergy probiotics.
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