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Introduction

Enteroviruses (EVs) are classified within the genus Enterovirus of the Picornaviridae 

family, exhibiting associations with various human and mammalian diseases. The En-

terovirus genus comprises 15 species, including EV-A-L and rhinovirus A, B, and C. 

These entities are non-enveloped viruses with diameters of approximately 30–50 nm, 

displaying icosahedral capsids composed of 60 identical subunits. The genome of EV 

consists of an approximately 7,500-nucleotide-long single-stranded positive-sense 

RNA, encompassing the 5’ untranslated region, the 3’ untranslated region, and the 

open reading frame (ORF). The ORF of EV is composed of three regions: P1, P2, and 

P3. This ORF is translated into a polyprotein that is subsequently cleaved by proteoly-

sis into functional viral proteins. The P1 region encompasses four structural proteins 

(VP4, VP2, VP3, and VP1) which constitute the viral capsid [1]. Additionally, the P2 

and P3 regions give rise to non-structural involved in viral replication. The VP1 protein 

contains crucial neutralization epitopes that are utilized for virus serotype identifica-

tion and evolutionary investigations [2]. EV enters host cells through specific recep-
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Enterovirus infections induce infectious diseases in young children, such as hand, foot, and 
mouth disease which is characterized by highly contagious rashes or blisters around the 
hands, feet, buttocks, and mouth. This predominantly arises from enterovirus A71 or coxsacki-
evirus A16 infections and in severe cases, they can lead to encephalitis, paralysis, pulmonary 
edema, or even fatality, representing a global health threat. Due to the absence of effective 
therapeutic strategies for these infections, various experimental animal models are being in-
vestigated for the development of vaccines. During the early stages of research on enterovirus 
infections, non-human primate infections exhibited symptoms like those in humans, leading to 
their utilization as model animals. However, due to economic and ethical considerations, their 
current usage is limited. While enterovirus infections do not readily occur in mice, an infection 
model with mouse-adapted strain in neonatal mice has been employed. Cellular receptors 
have been identified in human cells, and genetically modified mice expressing these receptors 
have been used. Most recently, the utilization of Mongolian gerbil model is actively being con-
sidered and should be pursued for further animal model development. So, herein, we provide 
a summarized overview of the current portfolio of available enterovirus infection models, em-
phasizing their respective advantages and limitations.
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tors, namely human P-selectin glycoprotein ligand-1 (PS-

GL-1) or scavenger receptor class B member 2 (SCARB2) and 

others [3-6].

  Hand, foot, and mouth disease (HFMD), as well as respira-

tory infections, diarrhea, viral myocarditis, encephalitis, and 

aseptic meningitis, are induced by EV. Among these, entero-

virus A71 (EV-A71) and coxsackievirus A16 (CV-A16), both 

belonging to the EV-A species, serve as primary pathogens 

responsible for HFMD cases globally [7-10]. The reporting of 

the EV-A71 epidemic began in the Netherlands in 1963 [11] 

and presently, this disease has become a severe and life-

threatening ailment for children worldwide. EV-A71 carries a 

single serotype and has been classified phylogenetically into 

three genotypes (genotype A, genotype B, genotype C). The 

latter two genetic groups further differentiate into B1 to B5 

and C1 to C5 sub-genotypes. Due to the lack of effective treat-

ments for diseases caused by EV, vaccines have emerged as 

the most effective solution for preventing EV-related illnesses. 

In 2015, two inactivated EV-A71 vaccines were approved in 

China for the prevention of HFMD [12]. Additionally, both 

monovalent CV-A16 vaccines and bivalent EV-A71 and CV-

A16 vaccines have demonstrated promising efficacy in pre-

clinical studies for preventing severe HFMD [13]. While re-

search on CV-B3 vaccines has been conducted over several 

years, there currently exists no vaccine capable of safeguard-

ing children from CV-B3 infections leading to viral myocardi-

tis [14]. Furthermore, epidemiological investigations reveal 

evolving trends in the prevalence characteristics of EVs. CV-

A6 and CV-A10 are gradually replacing EV-A71 and CV-A16 

as major pathogens HFMD, while the incidence of CV-B3 

and CV-B5 is on the rise [15-17]. Although EV-A71 infections 

generally manifest as mild and self-limiting, at times, such 

infections escalate into central nervous system (CNS) infec-

tions involving aseptic meningitis, encephalitis, and acute 

flaccid paralysis.

  Consequently, collaborative endeavors are currently un-

derway for the research and development of EV vaccines 

aimed at preventing severe infections in children, necessitat-

ing the establishment of suitable animal models. Thus, this 

review investigates the establishment and types of various 

animal models utilized in vaccines.

Neonatal Suckling Mouse Model with 
Mouse Adapted Enterovirus Strains

While viral infections and host defense mechanisms have 

been proposed, the detailed mechanism of EV-A71’s trans-

mission and pathology remain incomplete [18]. In contrast to 

humans, viral replication in mice predominantly occurs in 

muscle and adipose cells and mice older than 3 weeks do not 

manifest sensitivity to EV-A71. However, neonatal mice have 

been routinely employed as models for virus-induced en-

cephalitis caused by various neurotropic viruses such as fla-

viviruses [19,20], alphaviruses [21,22], and other enteric vi-

ruses [23-25]. In these models, viruses are either congenitally 

transmitted or administered within the first week of birth to 

generate desired infection and disease phenotypes in neo-

nates. Therefore, similarly, a neonatal mouse model could be 

considered for exploring the applicability of an approach to 

EVs.

  According to the research by Sickles et al. [26], coxsackievi-

rus A is normally potent pathogenicity in neonatal mice, and 

they established the CV-A16 neonatal mouse model for eval-

uation of vaccine protective efficacy using a clinically isolated 

BJCA08/CA16 strain. The BJCA08 strain can induce a 100% 

fatality rate in neonatal mice under 5 days old and inciting 

clinical symptoms in murine subjects. The neonatal mouse 

model of EV-A71 infection developed by Chua et al. [27] uti-

lizes a mouse-adapted strain (MP-26M) derived from the 

clinical isolate EV-A71-26M (sub-genogroup B3). This strain 

was generated by subjecting the EV-A71-26M virus to six seri-

al passages in BALB/c mice [28,29]. Two mutations in the 

capsid proteins VP1 (G145E) and VP2 (K149I) were found to 

generate the mouse-adapted phenotype. The resulting MP-

26M strain induces acute flaccid paralysis in neonatal BALB/

c mice, accompanied by the development of severe skeletal 

muscle myositis [27]. A similar mouse model was developed 

using 1-day-old ICR mice, wherein the Taiwan EV-A71 strain 

4643 (subgenogroup C2) was subjected to four serial passag-

es to generate the mouse-adapted strain MP4 [30,31]. Histo-

pathological examination of tissues from mice infected with 

MP4 revealed the presence of skeletal muscle myositis, along 

with evidence of neural loss and cell apoptosis in the spinal 

cord and brainstem. In this virus, two mutations responsible 

for the mouse adaptation of MP4 have been identified, locat-

ed in the structural protein genes VP1 (G145E) and VP2 

(K149M) [32].

  While the neonatal mouse model has greatly enhanced the 

investigation of EV pathogenicity, validating vaccine efficacy 

using this model still presents challenges. The neonatal mouse 

model cannot be directly employed for vaccine candidate re-

search since mice that are less than 1 week old have an imma-
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ture immune system, and the mice take about 2–3 weeks to 

mature into adulthood, during the vaccine administration. 

An alternative method for utilizing the neonatal mouse model 

in vaccine efficacy testing involves assessing the protective 

antibodies transferred from vaccinated parents to their off-

spring. Through this approach, the offspring of parent mice 

that have been vaccinated exhibit elevated titers of EV-A71-

specific immunoglobulin G, reaching levels comparable to 

those observed in immunized parents. When exposed to EV-

A71 virus, these neonatal mice do not experience CNS com-

plications and even survive at lethal doses [33]. Nonetheless, 

there remains a necessity for animal models that offer a more 

precise assessment of vaccine efficacy beyond these indirect 

methods.

Mongolian Gerbil: A Rodent Model Close to 
the Age of An Adult Individual

As previously mentioned, a fully validated adult mouse mod-

el with complete relevance for confirming vaccine efficacy 

has not yet been established. Despite efforts to enhance 

mouse virulence through adaptation with EV-A71 clinical iso-

lates, the adapted virus itself is unable to infect mice with a 

mature immune system after a certain age. On the other 

hand, Mongolian gerbil is a more desirable animal model for 

validating vaccine efficacy. Mongolian gerbils, belonging to 

the Gerbillinae subfamily, are rodents native to the Mongo-

lian steppe. According to previous research, gerbils have been 

utilized as models for infections caused by a variety of viruses, 

including hantaviruses, La Crosse encephalitis virus, enceph-

alomyocarditis virus, and hepatitis E virus [34,35]. In addition, 

infections with EV-A71 and CV-A16 have shown disease 

symptoms like those in humans, making gerbils a valuable 

model for studying these viruses. Yao et al. [36] employed in-

traperitoneal inoculation to experimentally infect 21-day-old 

Mongolian gerbils (Meriones unguiculatus) with a clinically 

isolated strain of EV-A71 (EV-A71/58301, C4 genotype). In-

fected animals exhibited neurological disorders and histo-

pathological abnormalities like those reported in mouse 

models. A 2015 paper by Xu et al. [37] demonstrated the man-

ifestation of neurological symptoms associated with neuro-

pathology in gerbils infected with EV-A71, including hind 

limb paralysis, ataxia, and lethargy. In their report, they con-

firmed that gerbils aged 7 to 21 days, infected with EV-A71 via 

intraperitoneal or intramuscular routes, exhibited severe lung 

lesions a pathology not observed in normal Balb/c mice. 

Moreover, they provided evidence that passive transfer of 

specific EV-A71 antisera after a lethal EV-A71 challenge can 

prevent EV-A71-induced lung lesions. Consequently, the ger-

bil EV-A71 model has exhibited its potential as an animal 

model for studying the pathogenesis of EV-A71-mediated 

pulmonary diseases and vaccine study.

  Recently, Sun et al. [38] and Yi et al. [39] established a vac-

cine efficacy model using Mongolian gerbils. In the study by 

Yi et al. [39], 3-week-old Mongolian gerbils were immunized 

with EV-A71 and CV-A16 inactivated at 1 and 2 weeks of age 

and then infected with the viruses at 3 weeks of age. Mongo-

lian gerbils infected with EV-A71 C4a or CV-A16 exhibited 

high mortality, severe morbidity, histopathological damage, 

and elevated viral replication within tissues. In contrast, the 

vaccinated group displayed significantly reduced symptoms 

and virus proliferation. These research findings suggest that 

Mongolian gerbils can serve as a valuable animal model for 

the development of HFMD vaccines [39].

Immunologically Modified Mouse Model

Given the essential role of the host immune system in sup-

pressing viral infections [40], innate immunity such as inter-

feron (IFN) responses are imperative for preventing EV-A71 

infection and disease onset as well [41,42]. Therefore, im-

mune-deficient mice such as IFN knock out (KO) can facili-

tate infections caused by clinical isolates of EV-A71, relying on 

mouse-adapted lineages, even in the absence of human re-

ceptors required for viral entry. Immunologically modified 

mouse, AG129, with dual knockout of IFN α/β receptors and 

IFN γ receptors, is employed for the analysis of EV-A71 patho-

genicity [43]. AG129 mice exhibit heightened susceptibility to 

EV-A71 compared to wild-type mice and are readily infected 

up to the age of 2 weeks. The virus primarily replicates in skel-

etal muscles and subsequently reaches the CNS, inducing 

neurological symptoms such as flaccid paralysis. Research in-

volving the AG129 mouse model and EV-A71 mouse-adapted 

strains, established through serial passages in rodent cells or 

animals, is conducted. This approach can extend the sensitiv-

ity window for more than 6 weeks [27,32,44]. Experimental 

successes have demonstrated infection with non-mouse 

adapted EV-A71 strains in AG129 mice [43] and the virus ex-

hibited marked neurotropism and induced neurological 

symptoms upon intraperitoneal and oral administration 

routes.

  Stat-1, a key transcription factor in host cells, plays a crucial 
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role in the signaling cascade of IFNs. It has been shown that 

Stat-1 KO mice can be effectively infected by both genetic 

subtypes B and C clinical isolates of EV-A71 [45,46]. One of 

the chemokines highly expressed during EV-A71 infection is 

IFN gamma-inducible protein 10 (IP-10) [47]. IP-10 KO mice 

infected with mouse-adapted EV-A71 exhibited a higher mor-

tality rate compared to wild-type mice, indicating a protective 

role of IP-10 in EV-A71 infection [48]. These research findings 

underscore the crucial role of IFN signaling in protecting ani-

mals from EV-A71 infection.

Cellular Receptor Transgenic Mouse Model

Currently, cellular receptors have been suggested for mediat-

ing the entry of EV-A71 virus into host cells. Human PSGL-1 

(CD162) [5] and human SCARB2 [3], have been identified as 

specific receptors for EVs. PSGL-1 is a sialomucin membrane 

protein expressed exclusively on myeloid and lymphoid leu-

kocytes as well as platelets, playing a pivotal role in the early 

stages of inflammation. SCARB2, also known as lysosomal in-

tegral membrane protein II or CD36b-like-2, is primarily con-

fined to lysosome, and is widely expressed in numerous hu-

man tissues and cell types. Additionally, nucleolin and annex-

in II have been reported as putative receptors for EV-A71 [49].

  Recently, transgenic (Tg) mice carrying human SCARB2 

have been generated [50,51]. hSCARB2 Tg mice exhibit age-

dependent susceptibility up to 3 weeks postnatal, primarily 

displaying characteristics like previously reported wild-type 

mouse models, including viral replication in muscle and CNS 

regions. A 3-week-old hSCARB2-Tg mice infected with EV-

A71 via intravenous, intraperitoneal, and oral routes demon-

strated symptoms of motor impairment, paralysis, and fatali-

ty [51,52]. The pathological features of these mice were remi-

niscent of human EV-A71 encephalitis. hSCARB2-Tg mice 

older than 6 weeks of age are readily susceptible to infection 

by clinical isolates of EV-A71 and CV-A16, utilizing SCARB2 

as a receptor, following intracerebral, intravenous, intraperi-

toneal, and oral administration. These mice exhibit neurotro-

pism, neuropathology, and clinical features akin to those 

manifested in humans, primates, and wild-type mice, namely 

EV-A71’s neurotropism, neuropathology, and characteristics 

such as motor impairment, paralysis, and fatality. Unfortu-

nately, however, none of the mouse models exhibited the in-

duction of pulmonary edema or the subsequent rapid onset 

of cardiopulmonary failure, which are the causes of death 

following EV-A71 infection. The absence of pulmonary ede-

ma limits the applicability of these mouse models to the 

study of EV-A71’s disease mechanism [51].

  Liu et al. [50] established a Tg mouse expressing the hu-

man PSGL-1 gene. However, these animals were only suscep-

tible to EV-A71 strains adapted to mouse muscles and lacked 

susceptibility to clinical isolates of EV-A71. The expression of 

human PSGL-1 facilitated virus replication and symptom se-

verity; however, this effect was limited to the early stages of 

infection. These results indicate that human PSGL-1 alone is 

not sufficient to mediate EV-A71 infection, but it can function 

as a supplementary factor in the early stages of viral infection 

in mice.

Non-human Primate; Cynomolgus Macaque, 
Rhesus, Green Monkey

Early studies showed that non-human primates, including 

cynomolgus, rhesus and green monkeys, are susceptible to 

EV-A71 infection [53-55]. In 2002, Nagata et al. [56] estab-

lished a monkey model as an EV-A71-infected primates 

through intraspinal injections in cynomolgus monkeys. In 

this experiment, infected animals exhibited neurological 

symptoms within 1 to 6 days after virus inoculation. Further-

more, viral replication was observed in various organs in-

cluding the spinal cord, brainstem, cerebellar cortex, and ce-

rebral hemispheres [56]. Zhang et al. [57] reported that in 

adult rhesus macaques, administration of clinical isolate EV-

A71/FY-23 via intracerebral, oral, or intratracheal routes re-

sults in CNS infection and lung tissue damage. Furthermore, 

the infected animals do not exhibit vesicular lesions on the 

skin, decreased muscle tone in the limbs, or typical neuro-

logical symptoms. These findings suggest that beyond neu-

rotropism, EV-A71 induces respiratory tropism in rhesus ma-

caques. These observations contrast with observations based 

on cynomolgus monkeys and mice. A neonatal primate 

model that exhibits symptoms more closely resembling hu-

man infections has also been established. Liu et al. [58] uti-

lized clinically isolated C4 EV-A71 strain to infect neonatal 

monkeys aged 4 to 6 weeks, resulting in the observation of 

vesicle-like formations on their hands and mouths, closely 

resembling humans. So far, the established primate models 

have primarily encompassed cynomolgus monkeys and ma-

caques, allowing for the prediction of clinical protective effi-

cacy of experimental vaccines [58-61]. However, due to finan-

cial and ethical constraints, this model has not been widely 

employed.



� Jae Min Song • Animal models for enterovirus vaccine

295https://www.ecevr.org/https://doi.org/10.7774/cevr.2023.12.4.291

Conclusion

Over the past 2 decades, the prevalence and frequency of 

outbreaks of EV-A71 and CV-A16 in the Asia-Pacific region 

have escalated, giving rise to significant public health con-

cerns. An inactivated EV-A71 vaccine has been approved and 

used in China. However, due to the ongoing emergence of 

variant viruses and the substantial proliferation of circulating 

genotypes, there is a notable increase in demand for multiva-

lent vaccines. In general, mice serve as the most extensively 

employed experimental animals for evaluating the efficacy of 

vaccine candidates. However, mice infected with EV-A71 or 

CV-A16 do not exhibit symptoms, thus rendering them un-

suitable as experimental animal models. At present, the most 

appropriate strategy for vaccine development involves utiliz-

ing mouse-adapted viruses in genetically modified mice ex-

pressing human receptors, which mimic human susceptibili-

ty to the virus. The Mongolian gerbil model recently attempt-

ed has demonstrated favorable outcomes and has substantial 

potential for future implementation. However, to provide a 

more effective framework for the development of vaccines 

aimed at suppressing rapidly evolving and diverse circulating 

viruses, it remains imperative to continue the development 

and utilization of appropriate animal models that possess 

comprehensive validity.
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