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Abstract

Background: Spatial heterogeneity is essential for the persistence of many inherently unstable systems such as predator-
prey and parasitoid-host interactions. Since biological interactions themselves can create heterogeneity in space, the
heterogeneity necessary for the persistence of an unstable system could be the result of local interactions involving
elements of the unstable system itself.

Methodology/Principal Findings: Here we report on a predatory ladybird beetle whose natural history suggests that the
beetle requires the patchy distribution of the mutualism between its prey, the green coffee scale, and the arboreal ant,
Azteca instabilis. Based on known ecological interactions and the natural history of the system, we constructed a spatially-
explicit model and showed that the clustered spatial pattern of ant nests facilitates the persistence of the beetle
populations. Furthermore, we show that the dynamics of the beetle consuming the scale insects can cause the clustered
distribution of the mutualistic ants in the first place.

Conclusions/Significance: From a theoretical point of view, our model represents a novel situation in which a predator
indirectly causes a spatial pattern of an organism other than its prey, and in doing so facilitates its own persistence. From
a practical point of view, it is noteworthy that one of the elements in the system is a persistent pest of coffee, an important
world commodity. This pest, we argue, is kept within limits of control through a complex web of ecological interactions that
involves the emergent spatial pattern.
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Introduction

It is familiar knowledge that local interactions can sometimes

create complex and surprising self-organized spatial patterns [1–

3]. Spatial patterns from spots in animal coats to animal

distribution patterns, have been shown to arise from simple local

dispersion and interactions. For example, the distribution of

species in simple predator-prey and parasitoid-host deterministic

models in homogeneous environments can form spiral waves,

clustered distributions, crystal lattices, and chaotic patterns

[1,2,4,5]. Furthermore, it has often been noted that spatial

heterogeneity can allow coexistence of predator-prey and parasit-

oid-host associations that are otherwise prone to local extinctions

[6–11]. In the present communication, stimulated by the natural

history of a community of ladybeetles, ants, and scale insects in

a coffee agroecosystem, we propose that the spatial heterogeneity–

used here to describe two different habitat types with a specific

spatial arrangement–needed for the persistence of a system might

be indirectly caused by the dynamics of that very system. That is,

the habitat conditions required for persistence of a population may

be caused by the dynamics of that very population.

The heterogeneous habitat that allows beetle persistence is the

clustered spatial distribution of a tropical arboreal ant species,

Azteca instabilis, in a coffee agroecosystem [12]. This tree-nesting

ant occupies about 3% of shade trees in a 45-ha plot, and its nests

form a clustered distribution in the farm (Vandermeer et al. [12]

defined two nests as belonging to the same cluster if they were less

than 20 m apart). Given the lack of evidence for environmental

factors to explain these patterns (i.e. they found no differences in

tree species composition, tree size or canopy cover between areas

with and without ant clusters), these authors hypothesized that the

clustered spatial pattern could be explained by positive density-

dependent spread of ant nests from tree to tree balanced by

a negative density-dependent control from a natural enemy of the

ant (parasitoid phorid flies (Diptera: Phoridae) from the genus

Pseudacteon: P. laciniosus, P. planidorsalis and P. pseudocercus [13]).

Given the demonstrated tendency of these phorid flies, to

concentrate on large ant nest clusters, Vandermeer and colleagues

[12] attributed the negative density-dependent force that is
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inhibiting ant nest clusters from unrestricted expansion to the

direct effect of this parasitoid fly. Using a stochastic cellular

automaton, these authors closely approximated the actual spatial

pattern with this hypothesized dynamic. The resulting emergent

spatial pattern creates significant habitat variability and thus

a potentially influential force for any organism associated with A.

instabilis.

The ladybeetle, Azya orbigera, is an example of an organism that

might be strongly influenced by the spatial pattern of A. instabilis.

This predatory ladybeetle is a voracious predator of the green

scale, Coccus viridis, an important coffee pest. Coccus viridis maintains

a mutualistic association with A. instabilis and is thus only highly

abundant on coffee plants in close proximity (2–3 m) to ant nests

[14]. For A. orbigera, this mutualistic association has two

contradictory effects. On the one hand, adult ladybeetles are

normally not permitted to eat in ant-tended areas due to the

aggressive action of the ants [15]. On the other hand, given that

the ladybeetle larvae are covered by waxy secretions that deter ant

attacks, they are able to live and prey in ant-tended plants [16].

Furthermore, due to the ants’ generalized harassing behavior,

natural enemies (predators and parasitoids) that normally attack

the ladybeetle larvae are prevented from doing so (see Video S1).

Thus, in areas with ants, larval beetles have abundant food and

enemy-free space, while adults are almost completely prevented

from eating. Contrastingly, in areas without ants patrolling the

poorly-dispersing ladybeetle larvae are under considerable risk of

starvation and pressure from their natural enemies, while adult

ladybeetles are able to fly from plant to plant searching for sparsely

distributed, non-tended scales. Indeed, field surveys in the area

show that both beetle adults and larvae are significantly more

abundant in areas with ants but that due to ant harassment adults

are forced to disperse to areas without ants to feed (Liere et al. in

preparation). Given this natural history, we suspected that the

beetle population must live in a spatially heterogeneous environ-

ment with respect to the A. instabilis distribution in such a way as to

provide adequate habitat for both larval and adult stages, the

larvae requiring ant habitats to survive and the adults requiring

ant-free habitats.

Thus, an ant/scale insect mutualism affected by phorid

parasitoids that attack the ants could create a spatial pattern (as

in Vandermeer et al. [12]) which provides a habitat background

that permits the predatory ladybeetle to persist. However, the

basic natural history of the system suggests the possibility of

a distinct, more interesting, dynamic. The beetle itself, rather than

the parasitic phorid fly, could determine the spatial pattern of the

ant nests in the first place. As stated above, Vandermeer et al. [12]

showed that the clustered spatial structure of ants can be attributed

to the expansion of ant nest satellites controlled by a negative

density-dependent force, which they hypothesized to be a result of

a parasitoid phorid fly directly acting on the ant. However, the

structure of their model included only a generalized density-

dependent mortality term, which could be due to the phorid, as

they suggest, but also could be due to other density-dependent

forces. In particular, like many honeydew-collecting ants [17],

A. instabilis may depend on the energy source provided by its

mutualistic partners to survive; consequently, any organism that

reduces the population of scale insects could increase the mortality

of ant nests. Additionally, if this control force increases the

likelihood of ant nest mortality in a density-dependent fashion (in

other words, if this force has a tendency to be stronger in larger

clusters of ant nests), it could also play a role in the cluster-forming

spatial dynamics of ant nests. Consequently, given that A. orbigera,

just like the phorid fly, responds in a density-dependent fashion to

ant nest clusters (Liere et al. in preparation), and due to its voracity

and ability to exploit ant-tended scale colonies [15,16] we propose

that this predatory beetle may be responsible for the formation of

ant clusters.

Thus, our goal in this communication is to demonstrate the

feasibility for a clustered spatial pattern of ant nests to emerge from

the natural history of the ant/scale/beetle system alone. At the

same time, we seek to determine whether this pattern could then

prove to be essential for the survival of one of the species that plays

a key role in generating it. While many studies have shown similar

predator/prey pattern-generating mechanisms, and other studies

have demonstrated that heterogeneous spatial patterns are

necessary for the persistence of predator/prey systems, this is

a novel situation where a predator indirectly causes a spatial

pattern of an organism other than its prey, and in doing so,

facilitates its own persistence.

Specifically, we constructed a spatially-explicit demographic

model to address the following questions: 1) Starting from random

distributions, can the beetle/scale insect dynamics generate

a clustered spatial pattern of ant nests similar to that seen in

nature and to the one emerging from the Vandermeer et al. [12]

model? And 2) Is the consequent spatial pattern of the ant nests

important for the persistence of the beetle?

Methods

To answer these questions, we constructed a spatially-explicit

model as a cellular automata (CA) to simulate the presence and

absence of ant nests. We then coupled the CA model with three

coupled map lattices to simulate the scale insects and the

ladybeetle (adults and larvae) populations in the lattice.

To answer the first question, we started by randomly scattering

ant nests, scale insects, and beetle larvae and adults over the

lattice, with some of the parameters delimited by the natural

history of the system. We then used a genetic algorithm (GA) to

search for values for the remaining parameters (see below). Then,

we qualitatively compared the spatial distribution of the ant nests

resulting from our model with that found in the field. Additionally,

we compared the frequency distribution of ant nest clump sizes

with that obtained by the Vandermeer et al. [12] model.

To answer the second question, we ran the model with the GA-

fitted parameters and simulated four different scenarios: (1) we

fixed the ant nest mortality parameters so that the ants went

extinct; (2) we fixed the ant expansion parameters so that ant nests

covered the entire lattice; (3) we modified the beetle migration

parameters in order to eliminate the ability of the beetles to

‘perceive’ and respond to the emergent ant nest clusters; and (4) we

ran the model so that the beetle contributed to the emergence of

ant nest clusters, and this time allowing the beetles to perceive and

respond to the clusters. We then followed the scale and beetle

populations over time to determine their population persistence in

the different scenarios.

Model Description
The research that led to our understanding of the natural

history of the system took place in a traditional shaded coffee

plantation in southern Chiapas, Mexico (for review see [18]). Our

model is intended to capture the essence of the biological

interactions that create spatial structure and allow a beetle

population to persist in this coffee agroecosystem without in-

cluding any unnecessary details (the model pseudocode can be

found in Methods S1). Therefore, our emphasis was on simplicity

and not on all of the known aspects of the natural history of the

system.

Spatial Heterogeneity and Population Persistence
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As with the model in Vandermeer et al. [12], our model uses

a 120 cell X 90 cell grid with periodic boundaries to represent

a 800 m6600 m study plot. Each of the four populations– ants,

scale insects, beetle larvae, and beetle adults – is represented using

a separate 120 cell X 90 cell grid. Each cell in these grids

represents a shade tree (where the ants nest) and its neighboring

coffee bushes (where the scale insects live and the beetles forage).

Since we were interested in the effects of ant presence and

absence, the ant nest grid in our model contains only zeros and

ones representing the presence or absence of ant nests, re-

spectively. By contrast, each cell in the scale insect grid has

a number representing the population size at each time-step and

likewise for the beetle larvae and beetle adults.

Process Overview and Scheduling
The model operates in discrete time and uses synchronous

updating. Each time step corresponds to a six-month period,

which matches the frequency of field surveys [12]. In accordance

with the natural history of the system) this formulation assumes

that larvae either eclose or die in one time step, and all adult

beetles live only a single time step (under field conditions, the time

from larval emergence to pupation is less than two months and

adults survive an average of 4 months).

Model parameters. We employed a genetic algorithm

implemented using the Java package JGAP (Java Genetic

Algorithms Package) to search for parameter values that could

generate model behavior consistent with the known characteristics

of the natural system [19] (for details, see Methods S2). Our goal

was to determine if it was possible, given the natural history of the

system, to find parameter values that would result in the

hypothesized dynamics: the emergence of ant nest clusters due

to the indirect effect of beetle predation and the requirement of

this emergent spatial pattern for the beetle survival. Thus, the

performance (fitness) of parameter value combinations was

calculated based on the following criteria: number of ant nests,

complete extinction of beetles when ants are fixed to occupy 100%

of the lattice points, complete extinction of beetles when ants are

fixed to occupy 0% of the lattice points, numbers of beetle adults

and larvae in locations with ant nests, and numbers of beetle adults

and larvae in locations without ant nests (see Table S1). The target

values for the numbers of ant nests, adults, and larvae were

obtained from field data. As detailed in the following sections,

certain parameter values were constrained based on the known

biology of the system, e.g., the survivorship of beetle larvae in

locations without ants was constrained to be less than the

survivorship with ants.

In order to find acceptable parameter values more rapidly, the

GA was run on 12 computers simultaneously. Each instantiation of

the GA had a population of 100 possible solutions, with the

parameter values in the first generation chosen at random (the

maximum fitness per generation for each of the 12 instantiations is

shown in Fig. S2). There was significant variability in the speed of

the computers used, so there was substantial variation in the

number of generations the machines completed before the search

was terminated. The model, in the end, is quite parameter heavy,

precluding a full sensitivity analysis; however, all of the GA

instantiations converged rapidly to similar marginally acceptable

or acceptable outcomes, suggesting that the range of acceptable

parameter values is relatively large, i.e., the model output is

relatively robust to changes in parameter values.

Interactions. Interspecific interactions in this model include:

1) the predator-prey relationship between beetle larvae and scale

insects; 2) the predator-prey relationship between beetle adults and

scale insects; 3) the mutualism between ants and scale insects,

which is incorporated, on the one hand, in the increased ant nest

mortality with decreased scale insect density and, on the other, in

the increased intrinsic growth rate of scale insects and the reduced

predation pressure suffered by scale insects in the presence of ants;

4) the inadvertent protection of beetle larvae by ants, which is

incorporated in the ant nest-dependent survivorship rates of the

larval beetles; and 5) the inhibitory effect of ants on beetle adults,

which is incorporated in the ant nest-dependent consumption and

survivorship rates of the adult beetles. Conspecific interactions are

implicit in 1) the logistic growth rate of the scale insects, 2) the

density-dependent expansion of ant nests, and 3) the density-

dependent migration rates of scales and beetle adults.

The model starts with randomly scattering ant nests (ones and

zeros), scales and beetles over the lattice (for details see pseudocode

in Methods S1) and then iterates over the following five steps:

1) Beetle population growth. For each iteration of the

model, we first allow the beetles to reproduce and eat scales

according to the cell type (with or without ants) with a Holling type

II functional response:

Atz1~e
cLNtLt
1zgNt

� �

Ltz1~b
cA(i)NtAt

1zgNt

� �

where each time step or generation time coincides with the six

month sampling of ant nests we have from the field; At and At+1

represent the beetle adult population at time t and t+1 respectively;

Lt and Lt+1 represent the beetle larvae population at time t and t+1

respectively; Nt is the population of scale insects at time t; e

represents the eclosion rate (from larvae to adults); cL is the

consumption rate of larvae; g is the Type II functional response

term for both larvae and adults, i.e. 1/g is the maximum predation

rate per unit of time; b is the beetle birth rate; cA(i) is the

consumption rate of adults and according to the natural history of

the system adult consumption rate of scales is smaller in patches

with ants (cA (A)) than in patches without ants (cA (noA)) [15]. In

contrast, the larval consumption rate of scales (cL) is not affected

by the presence of ants [16]. Thus in the first step of our model the

population of beetle adults in time t+1 depends on the larvae to

adult eclosion rate (e) and on the consumption rate of the larvae at

time t. The larval population at time t+1 depends on the birth rate

(b) and on the consumption rate of adult beetles at time t.

2) Ant nest mortality, ant short- and long-distance

migration. These are all modeled probabilistically following

the Vandermeer et al. [12] model with the exception of the

mortality effect. Here we formulated the probability of mortality of

an ant nest as a decreasing linear function of the local population

of the scale insect. Thus, if a population of scale insects in a given

cell is low, the probability of ant nest mortality is higher than for

a cell where the population of scale insects is high. Short-distance

migration reflects the satellite ant nest expansion that occurs in the

field, and is modeled probabilistically as a linear function of the

number of occupied cells in the Moore neighborhood (the

surrounding 8 cells). Long-distance migration, which was added

to reflect ant queen nuptial flight and new nest formation in the

field, was modeled stochastically as propagule rain.

3) Beetle and scale insect local and long-distance

migration. We included stochastic migration of adult beetles

both locally to the Moore neighborhood and globally as propagule

rain. For local migration, the larger the local population (in the

Moore neighborhood) of adult beetles, the higher the probability

Spatial Heterogeneity and Population Persistence
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a given cell will receive migrants (a proportion of the adult beetle

population from neighboring cells). For global migration, the

likelihood that each cell received migrants was also stochastically

determined and, according to the demonstrated ability of beetles

to perceive ant pheromones [20], a cell with ants had a higher

probability of receiving migrants than a cell without ants. ‘Chosen’

cells then received a proportion of the total adult beetle population

in the whole lattice. We applied the same rules to scale insect local

and global migration; however, since unlike adult beetles, scale

insects in the field exhibit a ‘true’ propagule rain in the sense that

they are dispersed by wind currents and land randomly in the

landscape [21], their dispersal did not have a preference towards

cells with ant nests in our model.

4) Scale local dynamics. Scale population size is determined

by equations inspired by a Rosenzweig-MacArthur model (with

K = 1):

Ntz1~r(i)Ntz1(1{Ntz1){
cA(i)Atz1Ntz1

1zgNtz1

� �
{

cLLtz1Ntz1
1zgNtz1

� �

where the intrinsic rate of increase of scale insects, r(i), was slightly

lower in cells without ants as suggested by field data [22]. Thus,

scale insects in our model have a logistic growth and experience

death rates that depend on predation terms already described for

the beetle adults and larvae.

5) Beetle differential survival. Adult mortality:

Atz1~Atz1|sA(i)

Larval mortality:

Ltz1~Ltz1|sL(i)

Given the natural history of the system, the proportion of

surviving adults in cells with ants (sA(A)) is smaller than the

proportion of surviving adults in cells without ants (sA(noA)); while

the opposite is true for the proportion of surviving larvae (sL(i)).

After this, the number of ant nests and the population size of

scales and beetles was calculated and the spatial distribution was

plotted.

Comparing the Models and Field Data
To compare the model output with the field data, we examined

two indicators of spatial pattern: first, the approximation to

a power law distribution of cluster sizes and second, clustering of

ant nests as measured by Ripley’s K [23]. The power law fitting of

field data and of our simulation results was performed principally

for comparison purposes; our objective was not to suggest that the

power law was the best possible fit for the cluster size distribution

but rather to be able to contrast our simulations/field data

comparison with that showed by the Vandermeer et al. [12] paper.

To calculate Ripley’s K, the number of other nests in the

neighborhood of each nest is compared with the number expected

for a random (Poisson) distribution. The neighborhood is defined

by a sampling circle with a specific radius. To determine the

degree of spatial clustering at different spatial scales, Ripley’s K is

calculated for a range of sampling circles. Deviations from the

random expectation indicate that the spatial pattern is either more

clustered or more uniform than random, depending on the

direction of the deviation [23].

We calculated Ripley’s K for the Vandermeer et al. [12] model,

for the beetle model with the GA-fitted parameters, and for two

sets of field data (as in their model, the rainy season 2004 and dry

season 2004). To show the variability due to model stochasticity,

we estimated 95% confidence limits calculated from 200

realizations of the two models. Additionally, we included 95%

confidence limits for 200 random distributions generated using

282 nests (this is the number of nests present in the 2004 rainy

season, which gives more conservative, i.e., larger, confidence

intervals than using the 384 nests present in the 2004 dry season).

The Four Scenarios
In the first scenario, we ran the model with the GA-fitted

parameters but we modified the ant mortality parameter so that

the ants became quickly extinct. Likewise, for the second scenario,

we modified the expansion probability of the ants so that they

quickly occupied the whole lattice. In the third scenario, we

modified the beetle migration parameters so as to only allow them

to migrate as propagule rain (probability of local migration = 0;

probability of global migration = 1). The elimination of local

migration in the simulation prevented the beetles from building up

their populations in response to the clustering effect of the ants.

Consequently, they responded only to the global populations and

migrated accordingly. Lastly, we ran the model as described in the

previous sections with the GA-fitted parameters so that the beetles

contributed to the emergence of ant nest clusters and, this time,

the beetles ‘perceived’ and responded to those clusters.

Results

Starting from a random distribution of ants, scale insects, and

beetles, and using the parameters found with the GA (see Methods

S2, Table S2), the clustering of nests that emerges from our model

is similar to that observed in the field (Fig. 1). Thus, casting the

beetle population as an indirect density-dependent negative force

indeed produces qualitative patterns that are similar to those

observed in the field and reported by Vandermeer et al. [12]. Like

their model, ours also produces a distribution similar to the field

data, with a close fit to a power function (Fig. 2).

The profile of Ripley’s K-function, transformed such that the

expectation for all spatial scales is zero for a random spatial

pattern and greater than zero for a clustered pattern [24] (Fig. 3)

suggests that the field data might be better explained by the

Vandermeer et al. [12] model than by the beetle model at short

spatial scales, and vice versa for large spatial scales. Thus, when

the sampling circle is between 0 and approximately 25 m, the data

closely approximate the pattern from the phorid model while

between 25 and 75 m the beetle model gives a better fit. Above

75 m, the overlap of the two models does not allow them to be

distinguished statistically.

In the end, our model corresponds quite well with our

expectations based on general field observations. The underlying

dynamics generate, for some parameter values, the expected

qualitative result that the beetles go extinct when the ants are

either absent or cover the whole landscape, but are able to persist

over the long term when the ant nests form a clustered

distribution. Thus, as shown in Fig. 4, we were able to recreate

the hypothesized dynamics based on the natural history of the

system (with the parameter set displayed in Table S1): the beetles

were only able to persist when the ant nests formed a spatial

pattern which was, in turn, indirectly caused by the beetles

themselves. The GA algorithm was able to efficiently find a set of

parameter values that produced all the scenarios (Methods S2,

Fig. S2). When the ant mortality parameters were set such that the

Spatial Heterogeneity and Population Persistence
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ants went extinct, the beetle population crashed and the scale

insects quickly reached their carrying capacity. Similar results were

obtained in the second scenario, where the ant expansion

parameters were set so that ant nests quickly occupied 100% of

the lattice points. Finally, and most importantly, when the beetles

were unable to perceive the ant nest clusters and responded only to

global densities, the beetles quickly went extinct followed by the

loss of the clustered pattern of the ant nests and an explosive

increase of the scale insect populations.

Discussion

Our model provides a conceptual representation of a subset of

the key interactions in the system, and a possible explanation for

Figure 1. Field vs. simulation snapshot of the distribution of ant nests. A) From the 120690 lattice from the theoretical model. B) From
a 45 ha plot field survey conducted in the summer of 2006, qualitatively similar to the model results (for methods see Vandermeer et al. 2008). We use
this size lattice as in their model, since the study system in nature is approximately that size and contains about 11,000 potential ant-nesting sites
(shade trees).
doi:10.1371/journal.pone.0045508.g001

Figure 2. Log of cumulative frequency vs. log cluster sizes of
ant nests (for easier interpretation, the axes have arithmetic
scales). The open circles represent field data from 2004 (rainy and dry
seasons) and the dashed line is the combined power law fit to both
field surveys. Cluster size is based on a minimum distance of 20 m
between nests, when these are judged to belong to the same cluster
(see Vandermeer et al. 2008). The blue lines represent the fitted power
law lines to each of 200 runs for the Vandermeer et al. 2008 model
where a parasitic phorid fly is the cause of density dependent ant nest
mortality. The red lines represent the power law fits to each of 200
model runs, where the coccinellid beetle is the indirect cause of ant
nest mortality.
doi:10.1371/journal.pone.0045508.g002

Figure 3. Ripley’s K index versus size of sampling circle around
each tree. The blue color represents the results from the phorid model
(Vandermeer et al. 2008) (the dashed line is the median and the shaded
area shows the 95% confidence limits calculated from 200 realizations
of the model); the slate blue color represents the results from the beetle
model (200 realizations with the GA-fitted parameters); the dark gray
shaded region represents the 95% confidence limits for 200 random
distributions generated using the 2004 rainy season field data. The solid
black lines are the results from rainy season and dry season field surveys
performed in 2004. Deviations above the zero line indicate the data are
more clustered than expected by random.
doi:10.1371/journal.pone.0045508.g003

Spatial Heterogeneity and Population Persistence
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both the emergence of spatial clustering and the persistence of the

interacting species in the field. It is feasible that some abiotic or

microclimatic condition that we have not yet measured could be

driving the ant nest spatial pattern. We have, however, not been

able to find any significant relationship between tree species, tree

size or canopy cover and the formation of ant nest clusters (see

Supporting Information for [12]) and given the uniform manner

with which the whole farm is managed (in terms of soil fertility and

shade cover), we strongly believe that the clusters are indeed

caused by biotic interactions. Just as Vandermeer et al. [12]

showed that with very simple local interactions a clustered pattern

of ant nests similar to the one in the field could be generated, we

showed that with an implicit density-dependent controlling force

(i.e., the beetles eating the scale insects) a qualitatively similar

pattern of ant nests can emerge for a feasible range of parameter

values. Specifically, our model simulations show that starting with

all the populations randomly distributed, ant satellite expansion

coupled with predation pressure by the beetle on scale insects can

form a clustered distribution of ant nests. At the same time, the

existence of areas with and without ants created by this emergent

spatial pattern was key to the persistence of the predatory beetle

itself. Thus, we propose that through a complex network of

interactions the beetles might be helping to create ant clusters that,

in turn, provide the habitat heterogeneity necessary for their own

survival.

Since our model was intended to produce qualitative results, the

details of the parameters are not that important, and therefore

a full sensitivity analysis was not performed. However, the speed at

which the multiple GAs found parameter values that converged to

an acceptable performance of our model, suggests that the model

output is relatively robust to changes in parameter values (for

details see Methods S2, Fig. S2). Although here, as in all parameter

fitting exercises, it is impossible to know that our results are not

derived from a local maximum, it is generally considered that

a way of minimizing that likelihood is through the use of a genetic

algorithm [25]. Given that we ran 12 different realizations of the

genetic algorithm and they all converged on a similar fitness (see

Fig. S2), it is unlikely that other, more fit, maxima exist.

In our model, the beetle acting as an indirect cause of ant nest

mortality is the controlling force that counteracts the expansion of

ant nests by satellite nest formation and contributes to the

formation of the clustered spatial distribution of ant nests (Fig. 5B):

The scale populations in newly colonized areas by ant nests can

increase to relatively high values compared with areas with no

ants, probably because of the combined action of A. orbigera

(explicit in our model in the predation term) and other natural

enemies. In areas with ant nests, where the protection by ants

excludes most other natural enemies except A. orbigera (mostly the

larvae), scale populations thrive and grow in size. This is followed

by an increase of the beetle population, which eventually imposes

a sufficient predation pressure to cause scale populations to

decrease. These dynamics leave ants without their main carbohy-

drate source, and in doing so, increase their probability of

mortality. Because of the build up of beetle populations in areas

with ants, these areas act as sources for beetle adults that then

disperse to the rest of the farm and contribute (most likely in

conjunction with other predators, pathogens and parasitoids) to

the maintenance of low scale insect populations. Due to the

tendency of beetles to concentrate in areas with large clusters of

ant nests (Liere et al. in preparation) and the diffusive nature of

Figure 4. Simulation time series of the four populations (ants, scales, larvae beetles and adult beetles). Population sizes on the y-axis
are on a log+1 scale. A) Simulation in which the ant population goes extinct (ant mortality parameters: do = 0.85; d1 = 0). B) Simulation in which the
ant population occupies the whole lattice (ant mortality parameters: do = 0.2; d1 = 0.3). C) Simulation in which the ant population is similar to the one
observed in the field, the beetles however, are not able to ‘perceive’ the ant clusters (local migration parameter: 0; global migration parameter = 1). D)
Simulation in which the ant spatial pattern emerges from the model interactions and is similar to the one found in the field.
doi:10.1371/journal.pone.0045508.g004
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beetle migration, there is a stronger effect of beetle predation in

larger clusters of ant nests, resulting in a density-dependent effect.

The ability to respond in a density-dependent fashion to ant nests

renders this beetle not only potentially important for the formation

of ant nest clusters [12] but also sets up one of the most important

traits of successful natural pest controllers, namely being able to

concentrate in areas of high pest density [11].

A central assumption of the model is that beetles are able to

decrease scale insect populations, indirectly increasing ant nest

mortality. Some indirect evidence does suggest that this is

possible in the field. First, we know that while A. orbigera is not

the only natural enemy of C. viridis in the area, it is a voracious

predator during both its larval and its adult stages. An individual

beetle is able to consume an average of 25 scales per day, or as

many as 600 scales as a larva and 1200 as an adult (Liere

unpublished data). Given that in the field, on average, there are

3.8 larvae per coffee bush in areas with ants and 5.8 adults in the

peripheries of these areas, beetles could indeed be a strong

population control for the scale insects (Liere et al. in

preparation). Second, while A. instabilis could conceivably survive

on alternative carbohydrates and extrafloral nectaries, thus not

depending solely on honeydew from C. viridis, only a few of the

shade trees in the farm have extrafloral nectaries and populations

of other species of scale insects are not as abundant as C. viridis

(personal observations). Furthermore, a short-term study in the

area suggests that A. instabilis colonies shift their foraging area in

response to high levels of C. viridis mortality [26]. Thus, although

we do not propose that the beetle is the sole driving control force

in the field (other candidates being the phorid flies as

Vandermeer et al. [12] proposed, and an entomopathogenic

fungus that attacks the scale insect as proposed in Jackson et al.

[26]), we suggest that given its voracity and natural history, the

Figure 5. Diagrammatic representation of the proposed mechanisms allowing beetle population persistence (A.) and the formation
of clusters of ant nests (B.). Arrowheads indicate positive effects, closed circles indicate negative effects.
doi:10.1371/journal.pone.0045508.g005
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beetle could easily decrease scale populations so as to increase

the probability of A. instabilis mortality. Furthermore, we suggest

that given the tendency of beetles to aggregate in larger clusters

of ant nests (Liere et al. in preparation), the beetle could also be

a density-dependent force driving the formation of the clusters of

ant nests, just as Vandermeer et al. [12] show for the phorid flies.

The result that A. orbigera requires areas with and without

A. instabilis to survive depends on the assumption that A. orbigera is

a specialist consumer of C. viridis. First, while it is true that

A. orbigera adults, like the majority of ladybeetle species, are able to

survive feeding on alternative prey [27], most other species of scale

insects are generally scarce throughout the farm and even if tended

by ants (A. instabilis or other ant species) they are never as

abundant as C. viridis (personal observation). Second, while

ladybeetle adults could survive for a while feeding on extrafloral

nectaries, nectar or pollen, in the absence of their preferred or

‘essential’ prey, coccinellid beetles are not able to properly

reproduce and larval mortality is very high [27,28]. Thus, we

believe that even if not strictly a specialist on C. viridis, this resource

is important for the beetle’s proper growth, development and

reproduction. This suggests that the existence of habitats with and

without ants, as well as adult dispersal between habitat types, is

essential for the beetle’s population persistence (Fig. 5A).

In reality, a combination of different forces is likely acting

directly and indirectly on ant nest mortality in the field. For

example, when comparing the frequency distribution of ant nest

cluster sizes resulting from our model with the one generated by

the Vandermeer et al. model, we see that the field data fall

somewhere between the pattern predicted by the two models. This

result suggests that both density-dependent forces, i.e., the beetle

predation of scales and phorid fly parasitism, may be involved in

the creation of the pattern. Accordingly, evidence gathered from

the field strongly suggests that the phorid and the beetle are

behaviorally interactive with one another [15]. In fact, by

a reduction of ant activity, the presence of the phorid fly indirectly

facilitates the consumption of scales by the adult ladybeetle and is

also thought to increase the oviposition chances for female beetles

in ant-tended areas (Liere et al. in preparation and [20]),

supporting a synergistic role of these two forces in pattern

formation and species persistence.

Furthermore, the Ripley’s K-function suggests that the field

data correspond more to the phorid model than to the beetle

model at short spatial scales and more to the beetle model at larger

scales. The different ways in which the density dependence

appears to operate both in the field and in the two models

probably explains why the models seem to correspond to the field

data at different scales. In the phorid model, density-dependent

mortality is local (operating strictly in the Moore neighborhood of

a nest). In contrast, concentrations of beetles that build up near ant

nests can diffuse into the surrounding area through local dispersal,

thereby reducing scale populations and affecting ant nest mortality

over a larger area. Due to the overlapping influences of

neighboring nests, this effect is stronger in larger ant clusters.

Given that in nature the two forces are likely acting in conjunction

and their effects might be non-additive, the comparison between

the two models is in no way conclusive. Interestingly, however, the

result coincides with what happens in nature, where the phorid

flies directly affect ants locally by forcing them to reduce their

tending and foraging activities [29,30] while the aggregation (and

hence predation) of beetles decreases more slowly with increasing

distance from an ant nest, thus indirectly affecting the landscape of

the ants at a larger scale.

Our various scenarios represent, first, two extreme cases, one

with no ant nests and another with ant nests everywhere. Second,

we simulated two scenarios where the number and spatial pattern

of ant nests were similar to what is found in the field. The beetles,

however, were only able to survive when they were able to

perceive and respond to the clustered pattern of ant nests that was

generated due to the indirect effect of the beetles themselves. Field

evidence suggests that this spatial pattern is indeed important for

the beetles’ persistence. The existence of large clusters of ant nests

appears to be crucial for beetle oviposition, while small clusters of

ant nests appear to improve larval survival (Liere et al. in

preparation).

Not surprisingly, when the beetles went extinct in our model,

the scale insects almost doubled their densities. Although we do

not have direct evidence of the potential consequences of an

extinction of beetle populations in the field, we believe that after

being released from the controlling effect of such an abundant and

voracious predator, the likelihood of scale insect outbreaks would

increase, as our model results suggest.

There have been several theoretical studies reporting that

predators (or parasitoids) can cause the formation of high and

low prey-density patches in a homogeneous environment. In

turn, prey spatial heterogeneity has been shown to be essential

for the regional persistence of the predator/parasitoid population

[31–35]. What is new about our system is not that a predator-

prey system is able to persist by an emergent spatial pattern, but

that the predator can indirectly generate a spatial pattern of an

organism other than its prey, and that this pattern, in turn, is

required by the predator for reasons other than variability in

prey densities. A predator persists because the mutualistic partner

of its prey is spatially structured and this spatial structure is only

possible if the predator persists. Given the ubiquity of indirect

interactions in biodiverse communities, we speculate that similar

empirical examples may be common but have been widely

overlooked.

From a practical point of view, the persistence of important

natural enemies in agricultural systems is key for the natural

control of potential pests. Furthermore, studying the details of

arthropod food-webs in agricultural systems and consequent

spatial distributions is particularly important since in order to

keep herbivores below damaging levels, predators have to have the

ability to aggregate in high density patches [36,37], as is the case

with A. orbigera. Furthermore, our results challenge the apparently

straightforward implication that ants have a damaging effect to the

plantation by protecting potentially harmful pests from their

natural enemies [38,39]. In fact, our results suggest that ants are

necessary for the persistence of the important predatory ladybeetle

and thus for the population control of green scales in the farm.

Given that the scale insect is a persistent pest of coffee in many

coffee-producing areas in the world, its maintenance below

damaging levels in this particular farm may be an example of an

important ecosystem service provided by complex local and spatial

dynamics. From a theoretical point of view, the study of the effects

of autonomously-created spatial patterns could shed light on the

mechanisms that make biodiversity essential for the provisioning of

ecosystems services and help explain how biodiversity enhances

persistence and stability in biological communities.
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