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ABSTRACT Automatic arrhythmia detection using 12-lead electrocardiogram (ECG) signal plays a critical
role in early prevention and diagnosis of cardiovascular diseases. In the previous studies on automatic
arrhythmia detection, most methods concatenated 12 leads of ECG into a matrix, and then input the matrix
to a variety of feature extractors or deep neural networks for extracting useful information. Under such
frameworks, these methods had the ability to extract comprehensive features (known as integrity) of 12-lead
ECG since the information of each lead interacts with each other during training. However, the diverse
lead-specific features (known as diversity) among 12 leads were neglected, causing inadequate information
learning for 12-lead ECG. To maximize the information learning of multi-lead ECG, the information fusion
of comprehensive features with integrity and lead-specific features with diversity should be taken into
account. In this paper, we propose a novel Multi-Lead-Branch Fusion Network (MLBF-Net) architecture for
arrhythmia classification by integrating multi-loss optimization to jointly learning diversity and integrity of
multi-lead ECG.MLBF-Net is composed of three components: 1) multiple lead-specific branches for learning
the diversity of multi-lead ECG; 2) cross-lead features fusion by concatenating the output feature maps of all
branches for learning the integrity of multi-lead ECG; 3) multi-loss co-optimization for all the individual
branches and the concatenated network. We demonstrate our MLBF-Net on China Physiological Signal
Challenge 2018which is an open 12-lead ECG dataset. The experimental results show thatMLBF-Net obtains
an average F1 score of 0.855, reaching the highest arrhythmia classification performance. The proposed
method provides a promising solution for multi-lead ECG analysis from an information fusion perspective.

INDEX TERMS Arrhythmia classification, multi-lead ECG analysis, co-optimization, deep learning.

I. INTRODUCTION
Cardiovascular disease (CVD) is the leading cause of global
mortality. It was announced by the World Health Organi-
zation (WHO) that an estimated 17.9 million people died
from CVD in 2016, accounting for 31% of global deaths [1].
Cardiac arrhythmia is a very common type of CVD, which
manifests as abnormal heart rhythms. According to statistics,
about half of all cardiovascular deaths are sudden cardiac
deaths and about 80% of these are caused by cardiac arrhyth-
mia [2]. Electrocardiogram (ECG) is a widely accessed, non-
invasive, and inexpensive tool for arrhythmia diagnosis in
clinic. It records the heart’s electrical activities over time

through electrodes attached to the skin surface. Recently,
intelligent healthcare has become increasingly prominent.
Automatic arrhythmia detection based on ECG could assist
doctors in clinical practice, and also provide ordinary people
with daily monitoring using wearable devices. Therefore,
how to promote the accuracy of automatic arrhythmia detec-
tion is a critical issue.

Over the last decades, a large number of traditional
ECG classificationmethods have been developed. Traditional
methods primarily comprise three procedures involving pre-
processing (e.g. denoising and heartbeat segmentation), fea-
ture extraction, and classification. Of these, feature extraction
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is the most crucial step, which relies on professional knowl-
edge to construct a set of hand-craft features. In recent years,
deep learning hasmade great success in the field of healthcare
with its powerful capability to extract high-level abstract
features automatically, avoiding laborious manual feature
design. Many studies have designed deep learning-based
approaches for arrhythmia detection using ECG signals.

A standard ECG record contains 12 leads (i.e. I, II, III,
avR, avL, avF, V1, V2, V3, V4, V5, V6), which is widely
used in clinical arrhythmia diagnosis. The 12-lead ECG has
two inherent properties: integrity and diversity [3]. On the
one hand, the 12-lead ECG signal contains comprehensive
information by recording the electrical potential from differ-
ent spatial angles of the heart. It gives an overall reflection
on the heart’s condition. Thus, the 12-lead ECG could be
treated as an integrated one to make a diagnosis. On the other
hand, different leads correspond to different anatomical areas
of the heart, providing distinct perspectives. Thus, the ECG
signal under each lead contains lead-specific features, and
the 12-lead ECG signal has diverse information across
leads. To maximize information learning for 12-lead ECG,
integrity and diversity should be both taken into account. For
multi-lead ECG analysis, most existing studies concatenated
multi-lead ECG into a matrix, and then input the matrix
to a variety of feature extractors or deep neural networks
for extracting useful information. However, such approaches
lacked explicit mechanisms to realize lead-specific fea-
tures extraction and only considered comprehensive features
extraction of multi-lead ECG. Furthermore, they were diffi-
cult to utilize the adequate information fusion of diversity and
integrity to enhance the detecting performance.

To address the limitations mentioned above, how to fully
utilize the diversity and integrity of multi-lead ECG and
thereby maximize the information learning is investigated in
this paper. The main contributions of this paper are concluded
below:

1)We propose a novelMulti-Lead-Branch Fusion Network
(MLBF-Net) architecture with multiple branches for arrhyth-
mia classification using 12-lead ECG. For realizing diversity
learning, each branch of MLBF-Net is designed to classify
the ECG signal under a specific lead, which could learn
lead-specific features. Specifically, each branch introduces a
hierarchical network structure consisting of the convolutional
layers, bidirectional gated recurrent unit (BiGRU), and an
attention module to mine the discriminative information fur-
ther. For realizing integrity learning, the output feature maps
from all branches are concatenated to form the concatenated
network of MLBF-Net. It is responsible for learning to clas-
sify the ECG signal based on all 12 leads, which could extract
comprehensive features.

2) We design a collaborative optimization strategy with
multiple losses, specialized for all the individual branches
and the concatenated network. This strategy not only opti-
mizes comprehensive features of multi-lead ECG, but also
realizes lead-specific features learning simultaneously during

the training process, which could achieve the information
fusion of diversity and integrity.

The remainder of this paper is arranged as follows.
Section II outlines the related works. Section III describes
the architecture of the proposedMulti-Lead-BranchNetwork.
Section IV presents the experimental result. Section V gives
the discussions. Finally, Section VI summaries this paper.

II. RELATED WORKS
Traditional ECG classification methods designed a num-
ber of hand-craft features. Typical hand-craft features
include statistical features [4]–[6], P-QRS-T features
[7]–[9], morphological features [9]–[12], and wavelet
features [13]–[16]. Also, mathematical transformations
that transform the high-dimensional ECG signal into a
lower-dimensional space can be used for extracting mean-
ingful information, such as independent component anal-
ysis (ICA) [17]–[19], principal component analysis (PCA)
[19]–[21], and linear discriminant analysis (LDA) [19], [21].
Following feature extraction, a variety of classifiers are
carried out to classify the extracted features. This can be
implemented by artificial neural network (ANN) [7], [13],
support vectormachine (SVM) [12], [14], [16], [22], k nearest
neighbor (KNN) [10], [17], decision tree [15], [17] and
bayesian classifier [12], [18].

Deep learning is increasingly predominant in recent
studies on ECG classification. Convolutional neural net-
works (CNNs) are a commonly adopted type of deep
neural network due to its effectiveness in extracting fea-
tures. Kiranyaz et al. [23] designed an adaptive CNN for
patient-specific ECG heartbeat classification, which incor-
porates traditional feature extraction and classification into
a single learning structure. Rahhal et al. [24] transformed
ECG signals to image-like representations using continuous
wavelet transform, and then fed these representations into
a deep CNN pretrained on ImageNet with a large number
of annotated images, which achieved a good detection per-
formance for supraventricular ectopic beats and ventricu-
lar ectopic beats. Hannun et al. [25] presented a 34-layer
residual CNN with a cardiologist-level accuracy in detect-
ing twelve cardiac arrhythmias. In other studies, the ECG
signal was viewed as a time-series and recurrent neural net-
work (RNN) specialized for tackling sequential data was
adopted. The representative variants of RNN include long
short-term memory (LSTM) and gated recurrent unit (GRU).
Saadatnejad et al. [26] developed a real-time heartbeat clas-
sification algorithm for personal wearable devices based on
multiple LSTMs and wavelet transform. Lynn et al. [27]
proposed a deep bidirectional GRU network for classify-
ing biometric ECG signals. Further, many research works
have designed hierarchical networks by stacking CNN and
RNN. He et al. [28] stacked a deep residual CNN and a
bidirectional LSTM layer for arrhythmia classification, and
obtained a good performance. Yao et al. [29] classified
multi-class arrhythmias using an integrated model consisting
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FIGURE 1. The proposed network architecture.

of VGGNet-based CNN and varied-length LSTMs, which
allows for varied-length signal input and is effective in detect-
ing paroxysmal arrhythmias.

Recently, Liu et al. [3] proposed a multiple-feature-branch
convolutional neural network (MFB-CNN) for myocardial
infarction detection using 12-lead ECG, aiming at exploit-
ing both integrity and diversity. Particularly, 12 ECG leads
were input into different branches of MFB-CNN for learning
lead-specific features; a fully connected layer was used to
summarize the output feature map of 12 feature branches,
utilizing the integrity. However, the parameters ofMFB-CNN
were optimized by only a single loss function in an end-
to-end way. This single-loss training strategy is unable to
fully exploit the specific information of each individual
branch in an isolated way, since the classification loss of
training samples is backwardly propagated to all 12 branches
[30]. Therefore, diversity learning is weakened significantly.
In [31], Liu et al. refined the network architecture of MFB-
CNN, in which the fully connected layer was replaced by
LSTM for summarizing all the branches. In addition, several
branches were randomly deactivated at each training iteration
for improving the generalization of the model. Nevertheless,
as with [3], the deficiency in diversity learning still exists.
Currently, the existing works have not achieved joint learning
for the diversity and integrity of multi-lead ECG. In other
words, the fusion of diversity and integrity to maximize the
information learning of multi-lead ECG is worthy of further
investigation.

III. METHODS
A. MODEL OVERVIEW
The proposed Multi-Lead-Branch Fusion Network (MLBF-
Net) is illustrated in Fig. 1. It is mainly composed of three
components: 1) multiple lead-specific branches for learning
the diversity of multi-lead ECG; 2) cross-lead features fusion
by concatenating the output feature maps of all branches
for learning the integrity of multi-lead ECG; 3) multi-loss
co-optimization for all the individual branches and the con-
catenated network. These three components are described in
detail below.

B. SINGLE LEAD-BRANCH FEATURE LEARNING
The preprocessed 12-lead ECG signals X are split into 12 sin-
gle leads, denoted as Xj ∈ RL×1, j ∈ {1, 2, . . . , 12} where
L is the length of the preprocessed signal. Xj is then fed
into the jth branch. The configuration of all branches is the
same. For convenience, we name the single branch network
‘‘BranchNet’’, of which the configuration is shown in Table 1.
BranchNet combines 15 convolutional layers, a bidirectional
gated recurrent unit (BiGRU) layer, and an attention module.
Its internal behavior can be formulated as:

fcnnj = CNN (Xj) (1)

fBiGRU j = BiGRU (fcnnj ) (2)

fatt j = Attention(fBiGRU j ) (3)
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TABLE 1. The configuration of each branch.

where CNN , BiGRU , and Attention denote the convolu-
tional neural subnetwork, BiGRU layer, and attention mod-
ule, respectively. fcnnj , fBiGRU j , and fatt j denote the output
feature map of these three modules of the jth branch.

The cross-entropy loss is employed for training single
branch, calculated as:

Lj = −
1
N

N∑
i=1

log(
exp(p(X (i)

j , y
(i)))∑

c exp(p(X
(i)
j , c))

) (4)

where N is the number of training samples, y(i) is the true
label of ith sample, and p(X (i)

j , c) denotes the probability

that the input X (i)
j is predicted as label c. By minimizing

the cross-entropy loss function during training, lead-specific
features are iteratively optimized for achieving diversity
learning.

1) CONVOLUTIONAL NEURAL SUBNETWORK
As shown in Table 1, the convolutional neural subnetwork is
composed of 5 convolutional blocks, with a total of 15 convo-
lutional layers. Each convolution block includes three convo-
lution layers, together with a dropout [32] layer. The output of
each convolutional layer is nonlinear transformed by a leaky
rectified linear unit (LeakyReLU) activation function, where
the operation is omitted for brevity in Table 1. Although
ReLU [33] is a more common choice, LeakyReLU [34] is
applied due to the ability to avoid the dead neurons problem.
To mitigate the neural network from overfitting, the dropout
rate is set to 0.2.

2) BIDIRECTIONAL GRU
The output feature map fcnn of convolutional neural subnet-
work flows into a bidirectional GRU layer. GRU [35] and
LSTM [36] are the evolutionary implementations of RNN.
We select GRU since it has similar performance to LSTM but

FIGURE 2. The illustration for a bidirectional GRU. ‘‘Cat’’ is an
abbreviation for concatenation operation.

with less computational complexity. As illustrated in Fig. 2,
the bidirectional GRU consists of a forward GRU and a
backward GRU, which read the time-series feature map in the
temporal and anti-temporal directions, respectively. At time
t , the forward GRU aggregates the information of fcnn from
1 to t and the backward GRU aggregates the information of
fcnn from T to t . In our model, T equals 469, which is the time
length of fcnn. The features from both opposite directions are
incorporated by the bidirectional GRU to obtain the contex-
tual information. Note that we achieve the incorporation by
concatenation operation, summarizing the features centered
around time t . In our experiments, the unit number of the
bidirectional GRU layer is configured to 12, meaning that the
dimension for each time step is 12.

3) ATTENTION MODULE
Different ECG components such as P wave, QRS complex
wave, and ST-segment contribute differentially to the patho-
logical information of the whole ECG segment. Hence, atten-
tion mechanism [37] is introduced to extract the informative
segments and merge the representation of these important
segments. This process is formulated as:

ujt = tanh(WwfBiGRUjt + bw) (5)

αjt =
exp(uTjt uw)∑
t exp(u

T
jt uw)

(6)

fattj =
∑
t

αjt fBiGRUjt (7)

That is, the encoded ECG signal fBiGRUjt is fed into a
one-layer multilayer perceptron to obtain ujt as a hidden
representation of fBiGRUjt . Then the similarity of ujt and a
trainable vector uw is measured and a normalized importance
weight vector αjt is obtained through a softmax function.
Afterwards, the weighted sum of the encoded ECG signal
fBiGRUjt and its corresponding weight vector αjt is computed
to get the weighted representation fatt j . Ww, uw, and bw are
randomly initialized trainable parameters.

1900211 VOLUME 9, 2021



J. Zhang et al.: MLBF-Net for Multi-Class Arrhythmia Classification Using 12-Lead ECG

C. MULTI-LEAD FEATURE FUSION LEARNING
For learning complementary cross-lead information and pro-
viding more robust diagnosis, we fuse the features extracted
from each lead by concatenating the lead-specific feature
maps fBiGRU j of all branches in channel axis:

F = Cat(fBiGRU1 , fBiGRU2 , . . . , fBiGRU12 ) (8)

Then the concatenated feature map F is fed through the same
attention module used in BranchNet to build the concatenated
network. The concatenated network shares the feature maps
from the input Xj to the output fBiGRU j of BiGRU layer
with each branch for obtaining the comprehensive prediction
based on 12-lead ECG. Similar to single lead-branch training,
a cross-entropy loss is also employed to train the concatenated
network, calculated as:

Lc = −
1
N

N∑
i=1

log(
exp(p(X (i), y(i)))∑
c exp(p(X (i), c))

) (9)

where p(X (i), c) denotes the probability that the input X (i) is
predicted as label c.

D. JOINT OPTIMIZATION WITH MULTIPLE LOSSES
It is noted that lead-specific branches are interrelated rather
than independent. In order to jointly learning the diversity
and integrity of multi-lead ECG, we design multiple dedi-
cated losses for collaboratively optimizing multiple branches
and the concatenated network. The loss for each branch is
designed to optimize lead-specific features for maximizing
the discriminative capability of single-lead ECG, and the loss
for the concatenated network aims to optimize multi-lead
comprehensive features simultaneously. For the training of
the whole model, the final loss function is defined as:

L = Lc + λ(L1 + . . .+ L12) (10)

where λ is a balance parameter used for determining the
importance ratio between diversity and integrity, which is
set to 1 in our experiments. Lc and Lj are the cross-entropy
losses of the concatenated network and the jth branch,
respectively.

The co-optimization strategy not only optimizes multi-lead
comprehensive features, but also realizes lead-specific fea-
tures learning simultaneously during the training process.
Compared with the regular single-loss learning, this strategy
achieves the information fusion of diversity and integrity,
thereby promoting the maximum of multi-lead ECG infor-
mation learning.

IV. EXPERIMENT
The proposed method is performed using Python language
and Keras 2.2.4 framework. All experiments in this paper
were run on a server with Xeon E5 2620 CPU, 128GB
memory and four GeForce RTX cards.

TABLE 2. Distribution of ECG classes on the public dataset of CPSC 2018.

A. DATA DESCRIPTION
1) CPSC 2018 DATASET
China Physiological Signal Challenge 2018 (CPSC 2018)
provides 12-lead ECG records, which is suitable for
multi-lead ECG analysis. CPSC 2018 dataset includes pub-
licly accessible 6877 12-lead ECG records (female: 3178;
male: 3699) and the private test set consisting of 2954 12-
lead ECG records. The private test set is inaccessible for
researchers to ensure a fair comparison. These ECG records
were acquired from 11 hospitals. The length of the records
lengths varying from 6 to 60 seconds, and the sampling
rate is 500Hz. The details of the public database can be
found in Table 2, with a total of 9 ECG classes containing
normal rhythm and 8 types of arrhythmias. Figure 3 gives an
example of a 12-lead ECG record. More details about CPSC
2018 database can be seen in [38].

2) PTB-XL DATASET
PTB-XL dataset [39] contains 21837 clinical 12-lead ECG
records of 10 seconds length from 18885 patients. The
ECG statements used for annotation are conforming to the
SCP-ECG standard, and each record may contain more than
one statement. The dataset covers 71 different ECG state-
ments, which can be further aggregated into 44 diagnostic,
19 form, and 12 rhythm statements. The three statement
levels are non-mutually exclusive categories, and the diag-
nostic ECG statements include 4 form rhythm statements. For
diagnostic statements, they can be organized into five coarse
superclasses (NORM: normal ECG, CD: conduction distur-
bance, MI: myocardial infarction, and STTC: ST/T changes)
and 23 subclasses, as described in Table 4. Table 3 shows the
number of ECG statements per record for different annotation
levels. The sampling rate of 100Hz was used in this paper.

B. EVALUATION METRIC
In this research, F1 score is used to measure the model’s clas-
sification performance for each class of CPSC 2018 dataset.
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FIGURE 3. An example of normal 12-lead ECG record.

TABLE 3. Number of ECG statements per record for different annotation
levels on PTB-XL dataset.

It is the harmonic mean of precision and recall, defined as:

Precision =
TP

TP+ FP
(11)

Recall =
TP

TP+ FN
(12)

F1 =
2× (Precision× Recall)
Precision+ Recall

(13)

The terms TP, FP, and FN refer to the sample number of true
positive, false positive, and false negative, respectively. The
average of F1 scores for all classes, namely macro-F1 score,
is computed to make a final evaluation.

Following the recommendation in [39], we use macro-
averaged and threshold-free area under curve (AUC) metric
to evaluate the classification performance of the proposed
model on PTB-XL dataset.

C. IMPLEMENTATION DETAILS
1) PREPROCESSING
Similar to our previous work [44], the preprocessing for
the original ECG signal provided by CPSC 2018 dataset
includes two procedures: downsampling and cropping or
padding. In the first step, the downsampling from 500Hz to
250Hz was performed to speed up the training. In the second
step, the downsampled ECG signals were cropped or padded

TABLE 4. SCP-ECG acronym descriptions for superclasses and subclasses
of PTB-XL dataset.

with zeros to the same length because convolutional neural
networks do not accept varied-length input. In our setting,
60 seconds was the target length. It means that the signals
longer than 60 seconds were cropped and those less than
60 seconds were padded with zero. For PTB-XL dataset,
the original ECG signal was fed into the model without
preprocessing.

2) TRAINING SETTING
We trained the proposed model in an end-to-end way. The
preprocessed (for CPSC 2018 dataset) or raw (for PTB-XL
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TABLE 5. Comparison for classification performance of previous works and ours evaluated on the private test set of CPSC 2018.

dataset) training data was grouped into batches of 64 samples
to fed into MLBF-Net. We set 64 to batch size by tuning this
hyperparameter. The batched updating of network parameters
takes less memory and is more computationally efficient.
More importantly, a more robust convergence can be obtained
by mini-batch, averting local minima. We applied adaptive
moment estimation (Adam) optimizer [46] to update the
weights of the whole model iteratively with a fixed learning
rate of 0.001. Adam, which updates weights based on expo-
nential decaying averages of past gradients and past squared
gradients, is usually considered to converge to an excellent
performance [47].

In order to alleviate the proposed model overfitting during
the training process, another two strategies were adopted in
addition to dropout layers of the network structure. The first
strategy is earlystopping, which stops training if the classifi-
cation performance of the model on validation data remains
unimproved up to 50 epochs. The best-performing model was
saved. The second strategy is that we set macro-F1 score
and macro-AUC of validation data as the stopping criterion
for CPSC 2018 dataset and PTB-XL dataset, respectively.
Different from the accuracy metric that is dominated by the
classes with more samples, macro-F1 score is an unbiased
metric towards unbalanced ECG classes.

D. CLASSIFICATION PERFORMANCE
1) EVALUATION ON CPSC 2018 DATASET
Table 5 shows the classification performance of the proposed
method, and makes a comparison with eight previous works
in detail. To ensure a fair comparison, our models was trained
using the public dataset and evaluated on the private test set of
CPSC 2018 that is also used in the evaluation of these works.
In order to provide a more robust prediction, We applied
10-fold cross validation to get an ensemble model, denoted
as Ours2. In particular, the public dataset was randomly split
into ten subsets, with each subset in turn as validation data
and the rest ones as training data. Ten training data sets were
separately preprocessed by the above preprocessing opera-
tions and then input into the proposed network architecture

to obtain ten models. Finally, the prediction probabilities of
these models were averaged as the final probabilities. In addi-
tion, a single model without ensemble was also evaluated,
denoted as Ours1.
Reference [45] was the first place among CPSC 2018 com-

petitors, where their average F1 score is 0.837. As shown
in Table 5, the proposed method outperforms the existing
methods in the average screening capability for 9 types of
ECG. It even beats the previous first place by 1.8% average
F1 score, achieving the highest classification performance.
It is observed that our model makes a superior diagnosis
than other models for Normal, I-AVB, LBBB, RBBB, STD,
and STE. Among them, the most significant superiority
lies in the identification of Normal and STE, gaining 2.7%
(0.82-0.847), 3.7% (0.64-0.677) F1 score increase than the
previous best-performing ones, respectively.

2) EVALUATION ON PTB-XL DATASET
Table 6 compares the macro-AUC score of seven reference
models reported in [48] and ours under different annotation
levels. Reference [39] split the whole PTB-XL dataset into
ten folds, and recommended the tenth fold as the test set
and the remaining nine folds as training and validation set.
Following the recommendation, the tenth fold was only used
when evaluating the model in the experiments of this paper
and [48]. Similar to the ensemble method adopted for CPSC
2018 dataset, an ensemble model was obtained by nine-fold
cross validation.

As shown in Table 6, the proposed MLBF-Net reaches
the highest performance than other methods under ‘‘all’’,
‘‘diag.’’, ‘‘sub-diag.’’, ‘‘super-diag.’’ and ‘‘rhythm’’ annota-
tion levels, obtaining an overall classification AUC score
of 0.934, 0.938, 0.943, 0.931 and 0.968, respectively. Com-
pared to wavelet-based traditional algorithm, the macro-AUC
score increases by about 8.5% in average(increases by
8.5%, 8.3%, 8.4%, 5.7%, 12.5% and 7.8% under the six
annotation levels). It is noted that the performance of the
feature-based classifiers is rather sensitive to the quality
of extracted features. In comparison with the recurrent
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TABLE 6. Comparison for classification performance of previous works and ours evaluated on the recommended test set of PTB-XL.

TABLE 7. Classification performance comparison for single-branch and multi-branch frameworks with 12-lead ECG as input by 10-fold cross validation
(mean±SD).

architectures (i.e. ‘‘lstm’’ and ‘‘lstm_bidir’’) and convo-
lutional neural network models (i.e. ‘‘resnet1d_wang’’,
‘‘fcn_wang’’ and ‘‘xresnet1d101’’), the proposed model has a
best-performing classification performance in all annotation
levels. And comparedwith ‘‘inception1d’’, our model is supe-
rior in almost all annotation levels except for form statements
where our model performs satisfactorily. More description
about these reference models can be seen in [39].

V. DISCUSSION
A. ABLATION STUDIES
To verify the effectiveness of main components in MLBF-
Net, we also evaluated several variants of the network. The
following experiments involved in the Discussion section
were evaluated through 10-fold cross validation, not the pri-
vate test set. Unlike the experiment conducted in the Experi-
ment section, the public dataset was randomly divided into
ten subsets, with each subset taking turns as the test set.
The remaining records were further divided into training data
and validation data, of which 11.12% was as validation data.
Finally, the ratio of training data, validation data, and test data
in each fold is 8: 1: 1.

1) SINGLE-BRANCH FRAMEWORK VS. MULTI-BRANCH
FRAMEWORK
When dealing with multi-lead ECG signals, the regular
frameworks are that multi-lead ECG is concatenated into
an integrated matrix and then input into a feature extractor
or deep neural network. They can be regarded as single-
branch. Despite the simplicity of such network frameworks,
the diversity of multi-lead ECG signal is neglected. To ana-
lyze the effect of multi-lead diversity, we take the BranchNet
to classify 12-lead ECG signals. Table 7 shows the perfor-
mances of BranchNet with a single branch againstMLBF-Net
with multiple branches. In terms of network architecture,

TABLE 8. Classification performance comparison for single-loss and
multi-loss optimization by 10-fold cross validation (mean±SD).

BranchNet is a branch of MLBF-Net, but it should be noted
that in this experiment, the input to BranchNet is 12-lead
ECG signals, not single-lead ones. We can observe that
multi-branch model is far superior to single-branch model
for all classes in the F1 score, gaining 3.7% increase in
the average F1 score. It is proved that lead-specific features
do considerably improve the classification performance of
MLBF-Net.

2) SINGLE-LOSS OPTIMIZATION VS. MULTI-LOSS
OPTIMIZATION
The hyperparameter λ governs the participation rate of
lead-specific features in our model. Here, we conducted some
experiments to explore the sensitiveness of this hyperpa-
rameter. The first experiment was implemented for eval-
uating the effectiveness of the multi-loss co-optimization
strategy, in which the attention modules from all branches
are removed. These attention modules are used to generate
lead-specific features that correspond to all branch losses.
Finally, we only keep the loss for the concatenated network.
Table 8 shows the above experimental result. It is observed
that multi-loss co-optimization improves the F1 score by
2.4% (0.828-0.852). Furthermore, extra experiments were
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FIGURE 4. The t-SNE visualization for the performance of MLBF-Net (a) and each branch (b-m).

conducted to analyze the effect of different participate rates
of lead-specific features by setting λ from 0 to 10 in our
model. As we can see from Table 8, the classification per-
formance is highest on the condition that lead-specific fea-
tures with diversity and comprehensive features with integrity
are equally important (λ=1). When either of lead-specific
features and comprehensive features is more predominant,
the classification performance is slightly worse than that of
their equal participation rate. It is clear that the arrhyth-
mia detection performance is significantly improved through
multi-loss co-optimization to jointly learning diversity and
integrity.

B. VISUALIZATION OF LEARNED FEATURES
The t-distributed stochastic neighbor embedding (t-SNE)
[49] visualizes high dimensional data in a two or
three-dimensional map. Here, we introduced t-SNE algo-
rithm to evaluate the proposed method visually. The attention
modules in each branch and the concatenated network output
the 24-dimensional features. These features are as the input
of t-SNE to visualize the performance of learned the compre-
hensive features and lead-specific features, shown in 4a and
Fig. 4b-4m. As we can see from Fig. 4b-4m, the dots of differ-
ent colors represent the extracted features of different types
of ECG signals with varying degrees of overlap, meaning
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TABLE 9. Parameter amount for the proposed model, MLBF-Net.

that only lead-specific features of a single lead are incapable
of distinguishing multi-class arrhythmias well. Due to the
small number of STE samples, the purple dots representing
STE are difficult to observe. Excluding STE, the heaviest
overlapping is in distinguishing STD from Normal signals,
probably because the tiny changes in ST-segment are prone
to be contaminated by various noises. In Fig. 4a, the colorful
dots are separated obviously. Thus, the features learned by
multi-branch with multi-loss co-optimization are discrim-
inative for classifying 9 ECG classes. It can be observed
from this figure that the yellow dots representing RBBB
have two clusters, possibly because the used dataset contains
both complete RBBB and incomplete RBBB in which QRS
complex durations are different.

C. MODEL PARAMETER
In this subsection, the parameter amount of the proposed
MLBF-Net is analyzed, shown in Table. 9. The multi-branch
architecture seems to introduce a large number of parameters
exponentially. In fact, our model is still lightweight in com-
parison with many previous deep learning-based studies for
arrhythmia detection. In [25], the comparable performance to
cardiologists was reported for the identification of 12 types of
arrhythmias by using a 34-layer ResNet. However, the train-
ing parameters were as high as about 10.47 million. Yao et al.
[42] evaluated their proposed method on the same indepen-
dent test set as ours, and obtained a F1 score of 0.812. In their
study, the parameters were about 4.98 million. As calculated
in Table. 9, only 0.42 million parameters need to be trained in
our model, realizing a tens of times parameter reduction than
[25] and [42].

VI. CONCLUSION
In this paper, we propose a novel end-to-end Multi-
Lead-Branch Fusion Network (MLBF-Net) for ECG classi-
fication using 12-lead ECG records. MLBF-Net fully utilizes
the diversity and integrity of multi-lead ECG by integrating
multiple losses to optimize lead-specific features and com-
prehensive the 12-lead features collaboratively. We demon-
strate that our MLBF-Net reaches the highest arrhythmia

classification performance on China Physiological Signal
Challenge 2018 which is an open 12-lead ECG dataset.
In addition, compared with many existing deep neural net-
works, MLBF-Net is a parameter-efficient model that is less
prone to overfitting, despite its multiple branches architec-
ture. The proposed model has the advantages of both high
screening capability and light weight. Therefore, it has the
potential to be applied in clinical applications and daily mon-
itoring.
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