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Abstract: Broad-spectrum antiviral agents that are effective against many viruses are difficult to
develop, as the key molecules, as well as the biochemical pathways by which they cause infection,
differ largely from one virus to another. This was more strongly highlighted by the COVID-19
pandemic, which found health systems all over the world largely unprepared and proved that the
existing armamentarium of antiviral agents is not sufficient to address viral threats with pandemic
potential. The clinical protocols for the treatment of COVID-19 are currently based on the use of
inhibitors of the inflammatory cascade (dexamethasone, baricitinib), or inhibitors of the cytopathic
effect of the virus (monoclonal antibodies, molnupiravir or nirmatrelvir/ritonavir), using different
agents. There is a critical need for an expanded armamentarium of orally bioavailable small-molecular
medicinal agents, including those that possess dual antiviral and anti-inflammatory (AAI) activity that
would be readily available for the early treatment of mild to moderate COVID-19 in high-risk patients.
A multidisciplinary approach that involves the use of in silico screening tools to identify potential
drug targets of an emerging pathogen, as well as in vitro and in vivo models for the determination
of a candidate drug’s efficacy and safety, are necessary for the rapid and successful development of
antiviral agents with potentially dual AAI activity. Characterization of candidate AAI molecules with
physiologically based pharmacokinetics (PBPK) modeling would provide critical data for the accurate
dosing of new therapeutic agents against COVID-19. This review analyzes the dual mechanisms of
AAI agents with potential anti-SARS-CoV-2 activity and discusses the principles of PBPK modeling
as a conceptual guide to develop new pharmacological modalities for the treatment of COVID-19.

Keywords: COVID-19; antiviral agents; dual action; PBPK modeling; molecular docking

1. Introduction

In December 2019, several cases of pneumonia of unknown etiology were reported in
the city of Wuhan in China [1]. In January 2019, the cause of these pneumonia cases was
identified to be a novel coronavirus, which was given the name “Severe Acute Respiratory
Syndrome Coronavirus 2” (SARS-CoV-2) by the International Committee on the Taxonomy
of Viruses [2]. The disease caused by SARS-CoV-2 was named “coronavirus disease 2019”
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(COVID-19) by the World Health Organization (WHO). As of today, COVID-19 has approx-
imately half a billion cases and has resulted in more than six million deaths worldwide,
according to the WHO [3].

There is a dearth of small-molecule medicines for the treatment of symptomatic
COVID-19. Two classes of small molecules are currently utilized: inhibitors of the inflam-
matory cascade, such as dexamethasone and baracitinib, and inhibitors of the cytopathic
effect of the virus, such as molnupiravir or nirmatrelvir/ritonavir [4]. There is a critical
need for an expanded armamentarium of orally bioavailable medicines, including those
that possess dual antiviral and anti-inflammatory (AAI) activity that would be available for
the early treatment of mild to moderate COVID-19 in high-risk patients [5,6]. This paper
will review the mechanisms of the dual AAI activity of antiviral agents against SARS-CoV-2
and further discuss the role of physiologically based pharmacokinetic (PBPK) modeling in
developing new medicines for the treatment of COVID-19.

Physiologically based pharmacokinetic (PBPK) modeling is a mathematical method
for modeling the absorption, distribution, metabolism, and elimination of medicinal com-
pounds in animals and humans. PBPK involves the multidisciplinary approach use of in
silico screening tools to identify the potential drug targets of an emerging pathogen, as
well as in vitro and in vivo models for the determination of a drug’s efficacy and safety [7].
Characterization of candidate AAI molecules with PBPK modeling provides critical data
for accurate dosing. This review therefore analyzes the dual mechanisms of AAI agents
with potential anti-SARS-CoV-2 activity and discusses the principles of PBPK modeling as
a conceptual guide to new therapeutic options for the treatment of COVID-19.

1.1. Molecular Targets of SARS-CoV-2

SARS-CoV-2 is an enveloped, positive-sense, single-stranded RNA betacoronavirus
of the family Coronaviridae [2]. The viral genome encodes a total of 14 open reading
frames (ORFs), which encode 29 proteins [8]. Four of these proteins are structural proteins:
the spike (S), envelope (E), membrane (M) and nucleocapsid (N) proteins. The rest are
non-structural proteins (NSPs), of which 15 are encoded as a large polyprotein (pp1ab) by
the first ORF, and the rest are encoded by several ORFs. The pp1ab polyprotein is then
cleaved by the NSP-5 (or main protease) into distinct proteins. Even though, in principle,
all proteins of SARS-CoV-2 are potential drug targets, the most attractive ones are the S
protein, on which the virus relies to enter the cells [9], and the main protease, which dictates
the life cycle of the virus by directly affecting the production of most other proteins of the
virus [10]. Other proteins of SARS-CoV-2 have also been used as potential drug targets [11],
with the most prominent example being the RNA-dependent RNA polymerase (RdRp),
which is targeted by the approved drug remdesivir [12] (Table 1).

Table 1. Mechanisms of action of antiviral agents.

Antiviral Agents with No Significant Anti-Inflammatory Activity

Antiviral Agent Structure Mechanism of Action

Remdesivir Competitive inhibitor of RNA-dependent
RNA polymerase (RdRp)
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Table 1. Cont.

Antiviral Agents with No Significant Anti-Inflammatory Activity

Antiviral Agent Structure Mechanism of Action

Lopinavir–Ritonavir

HIV-1 protease inhibitor used in
combination with ritonavir to treat

human immunodeficiency virus
(HIV) infection.

Molnupiravir
Mechanism of “error catastrophe”, by
increasing the rate of mutation of the

viral genome beyond a certain threshold.

Nirmatrelvir–Ritonavir Inhibition of the main protease
of SARS-CoV-2

Dual-activity compounds as potential drug candidates against COVID-19

Nitazoxanide
Inhibitor of several pro-inflammatory

cytokines including IL-6, IL-8 and TNF- α
in peripheral blood mononuclear cells.

Chloroquine
Inhibitor of heme polymerase in malarial

trophozoites, as well as Toll-like
receptors (TLRs).

Hydroxychloroquine

Inhibitor of Toll-like receptors, raising the
pH in endosomes and preventing virus

particles (such as SARS-CoV and
SARS-CoV-2) from entering into the cell.
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Table 1. Cont.

Antiviral Agents with No Significant Anti-Inflammatory Activity

Antiviral Agent Structure Mechanism of Action

Azithromycin

Macrolide antibiotic, stops bacterial
protein synthesis by inhibiting the

transpeptidation/translocation step of
protein synthesis and by inhibiting the
assembly of the 50S ribosomal subunit.

Sabizabulin (Veru-111)

Targeting, binding to, and crosslinking
the alpha and beta tubulin subunits of
microtubules, as well as targeting the

viral cytopathic pathway.

Opaganib Inhibitor of sphingosine kinase-2.

Selinexor

Inhibitor of nuclear transport (SINE)
compound. Possesses anti-inflammatory

activity by blocking expression of
NF-κB-mediated cytokines, including

TNFα, IL-1β, G-CSF and IL-6.

Atazanavir An anti-HIV drug, protease inhibitor.
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1.2. Targets for Anti-Inflammatory Agents against COVID-19

Manifested initially by cough, dyspnea, fever, and hypoxemia, COVID-19 may progress
to a cytokine storm, lethal respiratory disease, and multi-organ failure. COVID-19 can be
divided into three phases: (i) an asymptomatic phase with or without detectable virus, (ii) a
mild symptomatic phase with upper airway involvement and manifestations, and (iii) a
severe, acute phase with high viral role and respiratory distress, hypoxia, and progression
to acute respiratory distress syndrome (ARDS) [13]. ARDS is believed to be the main
reason for death in COVID-19, and it is characterized by the uncontrolled release of pro-
inflammatory cytokines and chemokines, known as the “cytokine storm” [14], which results
in lung damage and multiple organ failure. The mechanisms involved in the cytokine
storm have been reported in many articles [15–17] based on studies on SARS-CoV and
MERS-CoV, as well as SARS-CoV-2. More specifically, the open reading frames (ORFs) [18]
of the virus genome activate immune pathways, which results in the upregulation of
pro-inflammatory cytokines, such as IL-1, IL-2, IL-6, IL8, IL-17, G-CSF, and GM-CSF, and
chemokines such as IP-10 and MCP-1, while suppressing antiviral mechanisms, such as
type-I interferon (IFN). For example, ORF7a activates nuclear factor-κB (NF-κB) and ORF6
limits interferon production, while ORF3a induces necrotic cell death [19]. Another impor-
tant aspect responsible for complications and eventually death in critically ill patients is
the development of pulmonary thromboembolism, which further contributes to hypoxia
and lung injury. Cyclocyxenase-2 (COX-2) and 5-lipoxygenase (5-LOX), among others,
are important mediators of the cytokine storm, which intensify and worsen tissue mor-
bidity related to COVID-19 [20,21]. Inhibition of these inflammatory pathways by agents
such as dexamethasone and baricitinib has significantly improved outcomes in patients
with COVID-19.

1.3. Antiviral Agents with No Significant Anti-Inflammatory Activity
1.3.1. Remdesivir

Remdesivir is a nucleoside analog that acts as a competitive inhibitor of RNA-depen-
dent RNA polymerase (RdRp) and has previously been used against Ebola, as well as
being tested against MERS-CoV, SARS-CoV, and other coronaviruses. In 2020, remdesivir
was added to the “Solidarity” international clinical trial, which began on 18 March 2020,
developed by the World Health Organization (WHO) in an effort to produce a timely
response to the emerging COVID-19 threat [22]. Remdesivir has produced less-than-
optimal results, but has, however, been approved by the FDA for use against COVID-19, as
it was deemed the best of the available drugs against the disease at the time [12].

In terms of PBPK profiling, Luts et al., created models that accurately predict observed
adult PK profiles of remdesivir to predict pediatric PK profiles and metabolites’ steady-state
exposure. They use the Pediatric Population Model of the Simcyp simulator, incorporating
relevant physiologic and mechanistic information. Their model supported the currently
used dosing regimens in pediatric clinical trials and the emergency use authorization and
pediatric compassionate use programs [23].

In his work James Gallo created a hybrid PBPK model with each tissue presented as a
two-compartment model (extracellular and intracellular component) to predict remdesivir’s
active triphosphate nucleoside (TN) metabolite concentration in different tissues. He
found that current clinical dosing regimens are successful at achieving the desired TN
concentrations [24].

In another in silico work, Deb and Reeves, using Gastroplus© software, simulated the
physiological properties of remdesivir using its predictive modules (ADMET predictor and
PKPlus), as well as the PK profiles of remdesivir, examining its behavior for DDIs as well as
its properties in special populations that are expected to be especially affected by SARS-CoV-
2 (based on age, weight, liver function, and renal function status). In the case of DDIs, they
checked against other SARS-CoV-2 medications as well as drugs that are commonly used
for comorbidities. They concluded that GS-5734, an inactive prodrug, shows superiority
compared to remdesivir, as the latter’s disposition can be affected by physiological and
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pathological conditions and DDIs. Remdesivir has no significant immunomodulatory
activity [25].

1.3.2. Lopinavir–Ritonavir

Lopinavir is an inhibitor of the HIV-1 protease [26], and it has also shown in vitro
activity against SARS-CoV-2, SARS-CoV, and MERS-CoV [27,28]. Ritonavir is also an HIV
protease inhibitor, and is usually administered in combination with lopinavir, to increase
the plasma half-life of the latter. Similar to remdesivir, lopinavir–ritonavir has no signifi-
cant immunomodulatory activity. Using approaches of PBPK modeling, Niu et al., built
models for Caucasian and Chinese populations and, using simulated free plasma and lung
concentration values, they performed PK/PD correlations. They validated their model
against several clinical datasets and found that the current lopinavir–ritonavir regime
of 400/100 mg BID fails to achieve adequate lung concentrations and, although higher
concentrations are achieved both in plasma and in the lungs in the Chinese population, a
significant dose increase is necessary to reach the EC50 value for both populations. They con-
cluded, however, that the increase in dosage could increase potential side effects (e.g., QT
prolongation), thus suggesting to carefully weigh these concerns before administration [29].

Another possible drug combination involving ritonavir is its combination with nifedip-
ine, a calcium channel blocker, since hypertension is considered a significant co-morbidity
in COVID-19 patients. However, as ritonavir is a strong CYP3A4 inhibitor, it is possible
that a DDI between ritonavir and nifedipine occurs. Indeed, by developing and validat-
ing models for both drugs using PBPK modeling approaches, the researchers found a
strong interaction between the two drugs that could potentially lead to severe hypotension
(>40 mg Hg drop in blood pressure), recommending against the concomitant use of these
two drugs [30].

1.3.3. Molnupiravir

Initially used against influenza viruses and alpha encephalitis viruses, molnupiravir
possesses an interesting mechanism of action to exert its antiviral activity. More specifically,
this molecule uses the mechanism of “error catastrophe”, by increasing the rate of mutation
of the viral genome beyond a certain threshold. This makes viral survival impossible, since
the virus cannot tolerate such a high degree of mutation [31].

In more detail, molnupiravir is cleaved in plasma by host esterases to an active
nucleoside analog, β-D-N4-hydroxycytidine (NHC) or EIDD-1931 [32]. This active form of
the drug is distributed to various tissues and subsequently converted to its corresponding
5′-triphosphate (NHC triphosphate or MTP). This then targets the RdRp, which is virally
encoded and competitively inhibits the cytidine and uridine triphosphates and incorporates
M instead. The RdRp uses the NHC triphosphate as a substrate instead of the cytidine
and uridine triphosphates and then incorporates either A or G in the RdRp active centers,
forming stable complexes and thus escaping proof reading by the synthesis of a mutated
RNA [33].

Molnupiravir also resulted in a reduction in inflammatory biomarkers in an in vivo study
in a ferret model of influenza infection [34], but it has not shown direct anti-inflammatory
activity in SARS-CoV-2 infections, which would render it a dual-activity compound.

Despite its significant advantages against SARS-CoV-2, the mechanism of action of
molnupiravir entails the risk of causing mutations to the human genome, and therefore
inducing side effects to the host, or potentially leading to the appearance of new SARS-
CoV-2 variants [35]. However, it is believed that the proposed duration of treatment is so
short that there is not sufficient time for these side effects to manifest.

1.3.4. Nirmatrelvir–Ritonavir

Nirmatrelvir–ritonavir is another orally bioavailable molecule that has been added
to the armamentarium of compounds with anti-SARS-CoV-2 activity. Its mechanism of
action entails the inhibition of the main protease of SARS-CoV-2. Nirmatrelvir came about
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after the modification of a molecule called PF-07321332, which had been investigated
against SARS-CoV [36]. PF-07321332 was abandoned due to its low passive absorptive
permeability and poor oral absorption. To improve these properties, a new compound,
nirmaltrelvir, was created with a reversible covalent thioimidate adduct [37]. Nirmal-
trelvir exhibited higher oral absorption and was therefore deemed a good candidate for an
anti-SARS-CoV-2 compound.

In more detail, nirmaltrelvir inhibits the main protease of SARS-CoV-2 by binding to
its active site through S–C bonds. This complex is further stabilized through hydrogen
bonds and hydrophobic interactions [37]. This binding takes place in two steps: an initial
non-covalent addition with the dyad in a neutral form with the formation of the thiolate–
imidazolium ion pair, and ligand relocation for finalizing the electrophilic attack [37].

1.4. Dual-Activity Compounds as Potential Drug Candidates against COVID-19

Notably, most existing drug regimens against COVID-19 involve the use of multiple
compounds. This is likely attributed to two reasons: first, that the use of a single agent
that only targets one key pathway of the disease has not yet been shown to be effective in
improving clinical outcomes, and second, that no agent has yet been shown to address two
or more aspects of the disease simultaneously, (i.e., the cytopathic effect of the virus and the
inflammatory cascade that derives from it). Considering the potential drawback of a more-
than-one-compound approach, which is the potential drug interactions or the metabolic
burden likely to be placed on the patients from the many drugs, it is interesting that the
possibility of dual-activity compounds, which would eliminate these considerations, has
been so far overlooked.

Many of the compounds that are already being used or are being evaluated as poten-
tial anti-SARS-CoV-2 compounds potentially have multiple protein targets to tackle the
proliferation of the virus. However, few, if any, of these possess dual inhibitory activity
in the sense of both antiviral and anti-inflammatory action. The use of more than one
drug in the treatment protocols of COVID-19, of which some exert antiviral properties and
some anti-inflammatory action, showcases the need for molecules that possess a broader
spectrum of activity, in order to address both these key components of the disease, rather
than targeting multiple targets within either the viral or the inflammatory component.

Some study groups have described the use of dual antiviral/anti-inflammatory ac-
tivity compounds for the treatment of COVID-19. Of these compounds, some are in the
developmental stage, whereas others are already in clinical trials.

1.4.1. Nitazoxanide

In another case of repurposing an antimicrobial drug, Rajoli et al. [38] simulated, using
PBPK modeling, the PK profiles of nitazoxanide, an anthelmintic drug that has shown
in vitro activity against SARS-CoV-2 [38]. Nitazoxanide owes its anti-inflammatory proper-
ties to its inhibition of the production of several pro-inflammatory cytokines, including IL-6,
IL-8, and TNF-α, in peripheral blood mononuclear cells. It was also shown, in an in vivo
murine model, to decrease the IL-6 production induced by thioglycolate and lipopolysac-
charide [39]. The researchers were able to predict optimal dosing schemes, thus providing
a rational basis for the design of clinical trials for this drug [38].

1.4.2. Chloroquine, Hydroxychloroquine, and Azithromycin

Hydroxychloroquine is an aminoquinoline used for the treatment of malaria. Its
proposed mechanism of action for COVID-19 entails the inhibition of Toll-like receptors
(TLRs), which participate in the upregulation of pro-inflammatory cytokines, resulting in
the lung and other tissue damage involved in COVID-19 [40]. However, this agent has not
managed to significantly reduce mortality in COVID-19 patients [41].

Azithromycin is a macrolide antibiotic, used in patients with COVID-19 on the basis of
its antimicrobial properties for the prevention of secondary bacterial infections that might
arise, as well as its antiviral properties with potential activity against SARS-CoV-2 [42].
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Despite their potential use against COVID-19 based on their mechanism of action,
these molecules are highly affected by changes in the pH of the lungs due to infections,
resulting in altered PK profiles of these drugs in the lungs. Using PBPK modeling ap-
proaches and a mechanistic lung model, Yeo et al., simulated the PK profiles of chloroquine,
hydroxychloroquine, and azithromycin. They found that changes (reduction) in the pH
of the lungs can lead to increased exposure of the drugs locally, with a minimal overall
change in the plasma concentration profiles. They also found that if renal impairment is a
comorbidity, the increase in local exposure is even greater. Their work aimed at presenting
the capabilities of such approaches, rather than informing pharmacotherapy [42].

The Dutch Centre for Infectious Disease Control has included chloroquine against
SARS-CoV-2 disease. This, and the fact that the World Health Organization dosing guide-
lines for children have been found to be suboptimal, led Verscheijden et al., to calculate
the optimal pediatric dose for different ages utilizing PBPK modeling approaches [43].
Specifically, they calculated the optimal dosage per kg for different pediatric ages to achieve
the PK profile of adults. They support the notion of age-adjusted dosing, thus avoiding
either suboptimal or toxic drug levels in children.

Furthermore, in their work, Cui et al., used PBPK modeling to create models to predict
the concentration profiles of chloroquine in different tissues. They did so by building a
PBPK model using drug data extrapolated from animal sources. This way, they proposed
optimized dosage regimens for patient with SARS-CoV-2 infection [44]. Finally, Zhang et al.,
created a PBPK model for hydroxychloroquine to support dosing design. They focused
on drug absorption and disposition mechanisms to support optimal dosing in specific
populations that take concomitant medications, young children, the elderly, subjects with
organ impairment, inhibitors, and pregnant women. They built the model using in vitro and
in vivo experiments, validated it using published references, and informed its parameters
through experiments in monkeys. They predicted the HCQ distribution in lung tissues
using a permeability-limited lung model. Their aim was to better inform dosing for clinical
trials [45].

Following a similar principle, several other small molecules that were previously
being used for the treatment of other viral infections were tested against SARS-CoV-2
infection. Additionally, the use of non-small-molecule agents has been reported and is
applied in clinical practice, such as monoclonal antibodies or the plasma of patients who
have recovered from COVID-19 [46].

1.4.3. Sabizabulin (Veru-111)

Sabizabulin is an orally bioavailable drug in the developmental stages against prostate
cancer. Its mechanism of action entails targeting, binding to, and crosslinking the alpha
and beta tubulin subunits of microtubules and intermediate filaments of cells, resulting
in disruption of the cytoskeleton. Furthermore, Veru-111 causes apoptosis, or cell death,
by cleaving poly ADP ribose polymerase (PARP), which is important for DNA repair in
cancer cells.

Owing to its mechanism of action, it was deemed an attractive alternative for the
treatment of COVID-19, being expected to dampen the cytokine storm observed in patients,
as well as target the viral cytopathic pathway. In vitro studies further confirmed this
hypothesis, where it substantially reduced key cytokines of ARDS. Furthermore, a multi-
center, randomized, placebo control clinical trial (NCT04388826) recently presented data
according to which sabizabulin has both dual anti-inflammatory and antiviral activity, and
it reduced mortality in hospitalized patients with moderate to severe COVID-19.

1.4.4. Opaganib

Opaganib is another small molecule currently in phase II/III clinical trials (NCT0446-
7840), displaying both antiviral and anti-inflammatory activity. More specifically, it is a
novel, orally administered, sphingosine kinase-2 (SK2) selective inhibitor. The compound
has shown promising preclinical evidence of inhibiting SARS-CoV-2, by inhibiting viral
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replication, reducing the hyper-immune inflammatory response, and diminishing ARDS-
related thrombosis (blood clots). Opaganib has successfully undergone a randomized,
double-blind, placebo-controlled phase II clinical trial (NCT04414618).

1.4.5. Selinexor

Selinexor is the first selective inhibitor of nuclear export (SINE) that has been approved
for human usage by the FDA [47]. It is currently licensed with dexamethasone for the
treatment of patients with refractory multiple myeloma. Selinexor also is being studied as
an investigational agent for the treatment of diffuse large B-cell lymphomas, liposarcomas,
endometrial cancer, glioblastoma multiforme, and myelodysplasia [47]. It displays potent
antiviral activity against a wide range of RNA and DNA viruses, including influenza,
Hepatitis C, Venezuelan equine encephalitis virus, HIV, HPV 11, Kaposi’s sarcoma, Herpes
virus, Epstein–Barr virus, and Adenovirus. In addition, it possesses anti-inflammatory
activity by blocking the expression of NF-κB-mediated cytokines, including TNFα, IL-1β,
G-CSF, and IL-6 [48]. Inhibition of XPO1 also blocks the transportation of RXRo export
from the nucleus, thereby inhibiting I-O1 beta production and release [48].

Based on its potential dual activity against COVID-19, selinexor was evaluated in an
international phase 2b randomized controlled clinical trial of selinexor versus standard of
care for the treatment of patients with COVID-19 (Evaluation of Activity and Safety of Oral
Selinexor in Participants With Severe COVID-19 Infection (NCT04349098)).

1.4.6. Atazanavir

Atazanavir is a licensed anti-HIV drug, which belongs to the protease inhibitors. More
specifically, it binds to the protease active site and inhibits the activity of the enzyme [49].
This inhibition prevents the cleavage of the viral polyproteins, resulting in the formation of
immature non-infectious viral particles.

Following molecular docking studies, which showed that atazanavir has a strong
binding affinity to the main protease of SARS-CoV-2 [50] and further demonstrating high
bioavailability within the respiratory tract [51], atazanavir was deemed an interesting
candidate for anti-SARS-CoV-2 activity, and was used in in vivo studies of humanized
murine models of SARS-CoV-2 infection [50]. In these studies, it improved survival in
atazanavir-treated groups, compared with non-treated controls. In addition, it showed
sufficient anti-inflammatory activity, significantly reducing the levels of interleukin-6 (IL-6),
tumor necrosis factor-α (TNF-α), and keratinocyte-derived chemokines (KCs) in the lungs
of treated mice. Atazanavir further protected animals from severe lung injury, which
could lead to hemorrhage and shrinking of the lobe, bronchiole, and alveoli, which was
prominent in untreated groups [50].

Based on these promising preclinical data for atazanavir, the drug was registered
in phase 2 (NCT04459286) and phase 2/3 (NCT04452565) clinical trials [52]. The former
investigated the efficacy of atazanavir in combination with ritonavir and the standard
of care (SOC), in ambulatory patients with confirmed COVID-19 infection by a PCR test.
However, the study was closed per the recommendation of the DSMB in February 2022.
The latter is investigating the efficacy of atazanavir, alone or with dexamethasone, in
comparison with traneurocin (NA-831), a neuroprotective drug, normally used for the
treatment of Alzheimer’s disease. The study will further investigate the potential synergy
between atazanavir and dexamethasone.

Berlin et al., by combining in vitro tests that examined the pre-absorptive behavior of
atazanavir with literature data relating to its permeability and post-absorptive parameters,
created physiologically based models to analyze, using sensitivity analysis, the factors that
contribute to the oral absorption of atazanavir [53]. They concluded that, for atazanavir,
the post-absorptive factor had a more significant role in its absorption and that further
optimization in formulation would not induce significant improvements.
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In their work, Sychterz et al., used PBPK modeling to examine the UGT1A1-related
DDI risk with raltegravir and atazanavir in pregnant populations [54]. They found that the
induction of UGT1A1 by pregnancy is negated by atazanavir UGT1A1 inhibition.

1.4.7. Other Compounds with Dual AAI Activity

The principle governing the repurposing of other drugs for use against SARS-CoV-2
is the fact that some host cellular targets interfering with the viral growth cycle, such
as kinases, are broadly shared in the mechanisms of several viral infections and other
conditions such as cancer, making these compounds potentially interchangeable between
different types of diseases. These compounds include, among others, the Janus kinase
(JAK1) inhibitor Ruxolitinib [55], used for the purpose of controlling the cytokine storm
and consequent ARDS observed in severely ill COVID-19 patients (NCT04362137 and
NCT04377620, phase III clinical trials); plitidepsin, which blocks a human cell protein
(eEF1A) that is required for SARS-CoV-2 infection [56]; and zotatifin, which emerged as
an effective drug in reducing viral infectivity through eIF4A blockade, along with other
compounds such as ternatin-4. Toremifene, carfilzomib, dactinomycin, and valrubicin are
some other compounds that are potential candidates for repurposing towards the treatment
of SARS-CoV-2 [57].

1.5. Computer-Aided Drug Design and Its Application to COVID-19

Drug discovery is a long-lasting and costly process and it takes around ten to fifteen
years for a drug to reach the market [58]. Drug discovery begins with the identification
of the appropriate drug target, lead discovery, and optimization of lead molecules and
finishes with preclinical and clinical studies [59]. However, in most cases, the success rate of
drugs through clinical trials is only 13%, usually due to a lack of optimal pharmacokinetic
properties and toxicity [60].

Nowadays, computer-aided drug discovery (CADD) techniques are widely used in
preliminary studies by researchers and to accelerate the drug discovery and development
process, while also reducing the costs and failures in clinical trials [61]. Rational drug
design is a vital part of CADD that helps in the understanding of the binding affinity and
molecular interactions between a target protein and a ligand, and it has been simplified
by the development of supercomputers, parallel processing, and advanced programs
and algorithms. Additionally, the current improvements in machine learning methods
have significantly supported the analysis of pharmaceutical-related big data in the drug
discovery process [62] (Figure 1).

In order to identify new inhibitors from chemical databases, different methods can
be used, including pharmacophore modeling, quantitative structure–activity relationships
(QSAR), molecular docking, quantum mechanics, and statistical methods. For the identifica-
tion of lead molecules, two drug design approaches to computer-aided drug discovery can
be used, the structure-based and ligand-based. The structure-based drug design approach
depends on the three-dimensional structure of the receptor to understand the interactions
between the receptor and ligand, while ligand based-drug design depends on the interac-
tion of known ligands with the receptor [63]. Computer-aided drug design has been used
successfully over the years [64] and could play a critical role in the discovery of new drug
candidates against coronavirus disease 2019 (COVID-19).

As mentioned before, the novel coronavirus disease is caused by a new coronavirus
known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has
high nucleotide sequence similarity with severe acute respiratory syndrome coronavirus
(SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). As with
both of these viruses, the genome of SARS-CoV-2 encodes nonstructural and structural
proteins that play a key role in the virus life cycle and can be used as promising targets
for the design and development of novel SARS-CoV-2 agents with the help of CADD [65].
Moreover, with the availability of the complete genome sequence of SARS-CoV-2 and X-ray
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structures of the viral proteins, computer-aided drug design could be an important tool for
the identification of novel SARS-CoV-2 agents.

Figure 1. Drug discovery process and computer-aided drug design.

1.5.1. Structure-Based Drug Design

Structure-based drug design is supported by the extended accessibility of the three-
dimensional structures and binding sites of various therapeutic target proteins. With
this accessibility, structure-based drug design can help in the identification, at a molec-
ular level, of lead molecules against various diseases. Structure-based drug design uses
different methods, including molecular docking, structure-based virtual screening, and
molecular dynamics. These methods have been used by many pharmaceutical industries
and researchers and aided in the development of many commercial drugs, such as am-
prenavir, a protease inhibitor of the human immunodeficiency virus, developed using
molecular docking and molecular dynamics simulations [66]; norfloxacin, a topoisomerase
II and IV inhibitor [67]; an antituberculosis drug, isoniazid, discovered through structure-
based virtual screening and pharmacophore modeling [68]; and flurbiprofen, targeting
cyclooxygenase-2, a nonsteroidal anti-inflammatory drug against rheumatoid arthritis and
osteoarthritis, discovered through molecular docking [69]. SBDD follows a series of steps
including target structure preparation, identification of the ligand binding site, preparation
of a compound library, molecular docking, molecular dynamic simulation, and calculation
of the binding free energy.

For the preparation of the target structure, the continued development of structural
elucidation techniques such as X-ray and NMR has recently increased the availability of pro-
tein structures in the Protein Data Bank (PDB). On the other hand, the identification of the
ligand binding site requires specific docking studies, but it can also be found from the X-ray
crystallographic structures of proteins co-crystallized with substrates or inhibitors [70]. If
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there is no structure available in PDB, the protein binding site can be predicted successfully
by many software programs, such as DoGSite Scorer [71], DEPTH [72], MetaPocket [73],
and others. In this stage, the tested compounds that are bulky and do not fit well within the
binding pocket are excluded from the lead identification process. Furthermore, a large num-
ber of compounds can be selected from databases such as ZINC (230 million purchasable
compounds) [74], PubChem (111 million compounds) [75], ChEMBL (>1.6 million com-
pounds) [76], and DrugBank (14,528 drug molecules) [77]; then, molecular docking studies
can be performed in drug-like compounds in order to identify possible drug candidates.

Molecular docking is a computational method that studies the interactions between a
target receptor and a ligand at a molecular level and ranks the ligands using various scoring
functions [78]. There is a wide variety molecular docking programs that can be used, such
as AutoDock [79], AutoDock Vina [80], GOLD [81], FlexX [82], GLIDE [83], etc. Molecular
docking can be divided into two categories: flexible-ligand search docking and flexible-
protein docking. The flexible-ligand search docking method generally uses algorithms such
as systematic, stochastic, and simulation methods [84], while flexible-protein docking uses
Monte Carlo and molecular dynamic methods [85].

1.5.2. Ligand-Based Drug Design

Ligand-based drug design is another technique used broadly in computer-aided drug
design when the three-dimensional structure of the target protein is not available. Based
on the fact that structural similarities correspond to similar biological activities, we can use
a set of active compounds against a target protein in order to identify the physicochemical
and structural characteristics that are responsible for the biological activity [86]. Some of
the most used techniques in ligand-based drug design are pharmacophore modeling and
quantitative structure–activity relationships.

1.5.3. Computer-Aided Drug Design in COVID-19

Computer-aided drug design has been extensively used in the drug discovery process
for the SARS-CoV-2 virus. Till now, only a few molecules, which are generally repurposed
approved drugs, have been investigated in clinical trials.

With the absence of approved drugs and affective vaccines for COVID-19 and the ac-
cessibility of the complete genome sequence of SARS-CoV-2 [87] and structural elucidation
of its proteins, the research for novel antiviral agents against COVID-19 disease has been
rapidly pursued.

Researchers are swiftly working on designing and identifying inhibitors against all
possible viral key protein targets of SARS-CoV-2, such as the structural proteins spike,
envelope, membrane, and nucleocapsid, and nonstructural proteins such as the main
protease, which is also known as 3C-like protease 3CLpro, papain-like protease, RNA-
dependent RNA polymerase, nsp16 2-O-methyltransferase, nsp15 endoribonuclease, and
nsp13 helicase. The structures of all these proteins can be used for structure-based virtual
screening for the identification of specific inhibitors of the target proteins.

Computer-aided drug design has been successfully used in the drug discovery process.
Selvaraj et al., performed homology modeling and molecular dynamics (MD) simulation
and managed to solve the three-dimensional structure of SARS-CoV-2 guanine-N7 methyl-
transferase (nsp14). Moreover, based on molecular docking and simulation studies, they
proposed five TCM database compounds (TCM 57025, TCM 3495, TCM 5376, TCM 20111,
and TCM 31007) as potential antiviral phytochemicals and COVID-19 therapeutics [88].

Gao et al., reported the physicochemical properties and subcellular localization of
the SARS-CoV-2 N protein and, using mass spectrometry analysis and flow cytometry,
discovered its biological function. The revealed twelve phosphorylated sites and nine
potential protein kinase sites in the SARS-CoV-2 N protein may serve as potential targets
for drug discovery [89].

Elfiky used computational approaches such as homology modeling, molecular dynam-
ics simulations, and molecular docking to target the SARS-CoV-2 RNA-dependent RNA
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polymerase enzyme and reported the effectiveness of sofosbuvir, ribavirin, galidesivir,
remdesivir, favipiravir, cefuroxime, tenofovir, and hydroxychloroquine in binding to SARS-
CoV-2 RNA-dependent RNA polymerase as candidate drugs for clinical trials [90].

Das et al., utilized a blind molecular docking approach to identify potential inhibitors
of the SARS-CoV-2 main protease, by screening 33 molecules including natural products, as
well as antiviral, antifungal, antinematode, and antiprotozoal agents. The highest inhibitory
potency was found for rutin, a natural compound, followed by ritonavir (control drug),
emetine (antiprotozoal), and indinavir (antiviral) [91].

Gurung et al., used a library of phytochemicals with reported antiviral activity for
the identification of small inhibitors against the SARS-CoV-2 main protease (Mpro) using
a molecular docking approach. They identified three antiviral phytochemicals, namely
bonducellpin D, 5, 7-dimethoxyflavanone-4-O-β-d-glucopyranoside, and caesalmin B, as
potential inhibitors of SARS-CoV-2 Mpro, SARS-CoV Mpro, and MERS-CoV Mpro [92].
In the same direction, using molecular docking studies, Joshi et al., identified natural
molecules such as δ-viniferin, myricitrin, taiwanhomoflavone A, lactucopicrin 15-oxalate,
nympholide A, afzelin, biorobin, and phyllaemblicin B as potential inhibitors of SARS-CoV-
2 MPro [93]. Wahedi et al., with the aid of molecular docking and molecular dynamics
simulation studies, identified piceatannol and resveratrol, from stilbenoid analogues, as
important lead molecules to disrupt the formation of the SARS-CoV-2 and ACE-2 com-
plex [94].

Khan et al., using molecular docking and molecular dynamics simulation studies, tar-
geted chymotrypsin-like protease (3CLpro). The results showed that three FDA-approved
drugs, namely remdesivir, saquinavir, and darunavir, and two natural compounds, namely
flavone and coumarin derivatives, could act as promising inhibitors of the chymotrypsin-
like protease enzyme [95]. Moreover, Carnosol, arjunglucoside-I, and rosmanol, as potent
inhibitors of the SARS-CoV-2 Mpro enzyme, were identified by Umesh et al., by screening
chemical species from Indian spices using molecular docking and molecular dynamics
simulation studies [96].

Al-Khafaji et al., performed a covalent docking screening procedure joined with
molecular dynamics simulation studies to identify molecules that can form a covalent
bond with residue Cys145 within the binding pocket of the SARS-CoV-2 main protease
and identified saquinavir, ritonavir, and remdesivir as the FDA-approved drugs that were
the most promising inhibitors of SARS-CoV-2 Mpro [97]. Moreover, Peele et al., screened
FDA-approved antiviral and antimalarial drugs through molecular docking studies and
identified lopinavir and amodiaquine as promising inhibitors of the SARS-CoV-2 main
protease [98]. Wang, using virtual docking, MD simulation, and binding free energy
calculation, screened the majority of approved drugs and drug candidates in clinical trials
and identified carfilzomib, eravacycline, valrubicin, and lopinavir as potential inhibitors
of the SARS-CoV-2 main protease [99]. In this direction, Kandeel and Al-Nazami, using
molecular modeling and a virtual screening approach, identified ribavirin and telbivudine
as possible inhibitors of SARS-CoV-2 Mpro from a set of FDA-approved drugs [100]. FDA-
approved antimicrobial drugs were also screened using a combined approach of molecular
docking and molecular dynamics simulation by Mahanta et al., proposing, from the results,
viomycin as a potential inhibitor of SARS-CoV-2 Mpro [101].

Beura and Chetti used pharmacophore modeling, molecular docking, binding free
energy calculation, and ADME property analysis in order to study some chloroquine
derivatives as SARS-CoV-2 Mpro inhibitors. From their study, it was found that molecule
CQD15 is a promising inhibitor of the SARS-CoV-2 main protease, superior to chloroquine
and hydroxychloroquine [102].

Kumar et al., using molecular docking studies, screened a hydroxyethylamine (HEA—
pharmacophore derived from indinavir)-based library of chemical compounds and iden-
tified compound 16 as a promising inhibitor of SARS-CoV-2 3CLpro. Moreover, in MD
simulation studies, this compound showed drug-like properties and stable binding within
the binding pocket of SARS-CoV-2 3CLpro [103]. Likewise, Arun et al.,generated an E-
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pharmacophore hypothesis using the crystal structure of SARS-CoV-2 in complex with an
imidazole carboxamide inhibitor. They used it to perform molecular docking and dynamic
stimulation studies, which found that binifibrate and bamifylline drugs bind strongly
within the enzyme active site pocket [104].

Amin et al., in order to perform the virtual screening of some inhouse chemicals,
created a Monte Carlo optimization-based QSAR model. Among all screened compounds,
thirteen showed good drug likeness scores in the SwissADME in silico study. Additional
molecular docking studies revealed that these compounds interact in a favorable way
with enzyme SARS-CoV-2 PLpro and thereby could be potential inhibitors of SARS-CoV-
2 PLpro [105]. Similarly, Ghosh et al.,used the Monte Carlo optimization-based QSAR
model to screen a library of nature product hits. The resulting active molecules were
further analyzed from the aspects of fragment analysis, which revealed that novel potent
SARS-CoV-2 Mpro inhibitors may be synthesized by joining fragments/features together
or attaching them with other scaffolds [106].

The pharmacophore modeling approach plays an important role in the identification
of lead molecules for drug discovery against COVID-19. A ligand-based pharmacophore
model was generated by Law et al., using known antiviral drugs and was used to estimate
the antiviral activity of twenty vanillin derivatives as SARS-CoV-2 Mpro inhibitors. Fur-
ther results from the structure-based pharmacophore modeling approach suggested that
twelve vanillin derivatives exhibited promising results as potent COVID-19 antiviral active
compounds [107].

In the same way, Daoud et al., used the X-ray crystallographic structure of the COVID-
19 main protease to construct a pharmacophore model and performed molecular docking
studies in order to identify antiviral drugs as potential COVID-19 main protease inhibitors.
Five FDA-approved antiviral drugs—lopinavir, remdesivir, ritonavir, saquinavir, and
raltegravir—were successfully captured by the developed pharmacophore model and
docked inside the binding site of COVID-19 Mpro. Docking studies revealed that these
compounds exhibited specific binding interactions within the Mpro binding pocket that
were comparable to those of the co-crystallized inhibitor (X77) [108].

Singh et al.,identified five compounds, viz., paritaprevir, glecaprevir, velpatasvir,
remdesivir, and ribavirin, from a library of 1764 antiviral drugs against SARS-CoV-2 NSP12
(RNA polymerase), which exhibited high binding affinity with the drug target, performing
docking-based virtual screening [109]. Finally, Ibrahim et al., combined molecular docking
and molecular dynamics approaches to explore the potentialities of eighteen repurposed
drugs in clinical development against SARS-CoV-2 Mpro. The results revealed that TMC-
310911 and ritonavir could be promising drugs for the treatment of COVID-19 [110].

In addition, Petrou et al. [111] combined traditional medicinal chemistry, structural
biology, and computational chemistry. They designed a series of new compounds that
combine, in their structures, the minimum pharmacophores required to inhibit the main
protease of SARS-CoV-2 Mpro, using molecular docking studies. The experimental data
revealed that, among the fifteen compounds chosen, five compounds showed inhibitory
activity with IC50 values within the range of 0.01–34.4 µM. It is noteworthy that these data
provide evidence on the potential antiviral activity of these compounds against the main
protease of SARS-CoV-2, to serve as potential candidates for COVID-19 therapeutics.

1.6. PBPK Modeling of Anti-COVID-19 Small Molecules

The repurposing of existing drugs that inhibit inflammatory pathways or similar
enzymes of other viruses, and the development of synthetically novel agents, are viable
strategies for the discovery of new anti-COVID-19 therapeutics. Whether one is referring to
existing drugs that are repurposed to serve the goal of tackling a novel viral threat, or to new
drugs under development, the capacity to predict drug concentration profiles in the tissue of
interest represents a recurring challenge to accurate dosing. At the same time, the capability
to predict drug–drug interactions (DDIs) is of paramount importance in complicated
patients with multiple comorbidities. To this end, the advent of physiologically based



Int. J. Mol. Sci. 2022, 23, 8006 15 of 23

pharmacokinetic (PBPK) modeling, a branch of quantitative systems pharmacology (QSP),
is at the vanguard of modern pharmacology and has provided the industry and regulatory
environment with powerful new methodologies that have reshaped drug development
paradigms [112]. The main difference between classical descriptive (compartmental) and
PBPK models lies in the distinction between system, drug, and trial data [113] (Table 2).

PBPK models are based on in vitro and in vivo correlation (IVIVC) procedures. Striv-
ing to be as mechanistic as possible in nature, they are based on the underlying anatomical,
physiological, and biochemical characteristics of an organism [114]. In such models, the
body is a multicompartment system, with every compartment representing a different
organ, connected to other compartments by blood or lymph circulation, through a system
of differential equations describing different physiological processes, such as blood flow,
cardiac output, organ volumes, and glomerular filtration rate [115]. Such capability yields
advantages to PBPK models that lead to better identification of the sources of PK variability,
allowing extrapolation to different subpopulations [116].

In this context, precision medicine may be achieved in clinical therapeutics by connect-
ing PBPK models with pharmacodynamic (PD) prediction models and their capacity for
population simulation through the prediction of the effects of age, gender, comorbidities,
genetic polymorphisms, and lifestyle factors such as smoking [114]. Finally, an advantage
of such models is their ability to simulate the drug concentration profile at the site of
action in the targeted organ or tissue, allowing the refinement of dosage schemes and the
achievement of maximum safety and effectiveness profiles [117]. PBPK modeling may
be especially valuable in the case of advanced formulations, such as nanoformulations,
as the combination of knowledge about the structure and function of target organs with
the physicochemical properties of the nanocarriers, the individual parameters of each
patient, and the drug properties may create favorable conditions for individualized treat-
ment [118]. Several platforms exist that utilize PBPK modeling approaches, including
Simcyp (https://www.certara.com/software/simcyp-pbpk/, accessed on 1 May 2022),
Gastroplus (https://www.simulations-plus.com/software/gastroplus/, accessed on 1 May
2022), and PKSim (http://www.systems-biology.com/products/PK-Sim.html, accessed on
1 May 2022), to name some of the most commonly used.

Conducting numerically robust clinical trials for the treatment of SARS-CoV-2 is
challenging. In their work, Geerts, H. and P. van der Graaf suggest that the combination
of PBPK modeling with other QSP approaches could provide a viable alternative to the
continuation of clinical trials by creating virtual twin patients in order to study complex
clinical datasets in a biologically and therapeutically relevant manner [119]. Importantly,
the capability of combining PBPK models with pharmacodynamic (PD) and viral dynamic
models provides the basis to develop more sophisticated predictive models [24]. The
approach of creating individual pan-simulation models could permit the precise prediction
in real time of the PK/PD profiles of therapeutics. This can be achieved by also exploiting
bioinformatic data of individual patient signaling networks that are involved in PK/PD
processes [118].

PBPK modeling approaches are especially useful in addressing urgent healthcare
threats, as they contribute to: (a) individualizing the dosage schemes of currently used
therapeutics to different subpopulations; (b) adjusting the dosage in order to develop
appropriate concentration levels in specific tissues; (c) predicting the DDIs of different
drugs used either as combination therapies or because of comorbidities; (d) identifying
possible new therapeutics; and (e) calculating the appropriate dosage for repurposed drugs
already in the market. The contribution of these simulation methodologies by effectively
addressing scientific issues in model-informed drug development supports the productivity
rates in the pharmaceutical sector, as well as the therapeutic efficacy and safety profiles in
the clinical setting, especially for specific populations [120].

Pilla Reddy and colleagues used PBPK models to study changes in the PK param-
eters and DDI risks of different drugs that were repurposed for COVID-19 in different
populations (e.g., geriatric), race groups, and physiologies (e.g., renal impairment) [121].

https://www.certara.com/software/simcyp-pbpk/
https://www.simulations-plus.com/software/gastroplus/
http://www.systems-biology.com/products/PK-Sim.html
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Using these models, they also predicted the exposure of epithelial lining fluid (ELF) for
different drugs, a parameter that is relevant for patients with elevated cytokine levels.
They found that in order to attain therapeutically relevant exposures for most drugs,
no dose adjustments were warranted, except in the case of renal or hepatic impairment.
Finally, by considering ELF exposure, they found that most drugs could achieve the tar-
get exposure, with the exception of hydroxychloroquine, azithromycin, atazanavir, and
lopinavir–ritonavir.

Table 2. Application of PBPK in repurposing COVID-19 drugs.

Drug Description Purpose of PBPK Model Findings/Outcome References

Remdesivir

Extrapolate adult
PBPK models to
pediatric populations

Predict pediatric PK profile
of remdesivir and
metabolites in steady state

Predicted pediatric profiles [23]

Hybrid model with each
tissue presented as
two compartments

To predict remdesivir TN
metabolite concentration in
different tissues

Clinical dosing regimens
successful in achieving
desired TN concentrations

[24]

Simulation of physiological
properties and PK profiles

Examining DDI potential
and properties in
special populations

GS-5734 superior to
remdesivir.Remdesivir
shows no significant im-
munomodulatory activity

[25]

Ritonavir–Lopinavir Models for Caucasian and
Chinese populations

To examine the adequacy
of current 400/100 mg BID
dosing scheme in
achieving adequate lung
and plasma concentrations

Higher concentrations
achieved in the Chinese
population, but significant
dose increase required to
reach EC50 in
both populations

[29]

Ritonavir–Nifedipine
Development and
validation of PBPK models
for ritonavir and nifedipine

Examine the DDI potential
between ritonavir and
nifedipine as they are
frequently co-administered

Strong interaction that
could lead to
severe hypotension

[30]

Nitazoxanide Develop a model
for nitazoxanide

Calculate an optimal
dosing scheme
for repurposed
drug nitazoxanide

Predicted optimal dosing
schemes, providing
rational basis for
clinical trials

[38]

Chloroquine,
Hydroxychloroquine,
and Azithromycin

Utilizing PBPK with
mechanistic lung model

Predict PK profiles in lungs
as they are affected by
changes in lung pH

Reduction in lung pH can
lead to increased lung
exposure with minimal
plasma changes.Renal
impairment increases
local exposure

[42]

Chloroquine
Extrapolate adult
PBPK models to
pediatric populations

Calculate the optimal
pediatric dose for
different ages

Optimal dosing calculated
to avoid suboptimal or
toxic drug levels
in children

[43]

Chloroquine

Create PBPK models for
chloroquine using drug
data extrapolated
from animals

Sources to predict the
concentration profiles of
chloroquine in
different tissues

Proposed optimized
dosing regimens [44]

Hydroxychloroquine

Create a PBPK model for
hydroxychloroquine by
focusing on drug
absorption and
disposition mechanisms

To support dosing design
in specific populations
(concomitant medications,
age, organ impairment,
pregnancy) to inform
clinical trials

Proposed optimized
dosing regimens [45]
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Table 2. Cont.

Drug Description Purpose of PBPK Model Findings/Outcome References

Atazanavir

Create PBPK model for
atazanavir incorporating
pre-absorptive and
post-absorptive behavior

To identify the factors that
contribute to the oral
absorption of atazanavir

Post-absorptive factors
more significant and thus
formulation modification
does not induce
significant changes

[50]

Evaluating population
PBPK models

To predict the potential for
DDIs in UGT1A1 in
pregnant women

Induction of UGT1A1 by
pregnancy was negated
by atazanavir
UGT1A1 inhibition

[51]

1.7. A Combined CADD/PBPK Approach

To empower or strengthen drug development and productivity, both PBPK and CADD
present useful methodological tools in the modern pharmaceutical era. While CADD can
be used early on in preliminary studies to speed up the drug development process, PBPK
modeling can provide useful insights both in identifying the sources of PK variability and
in predicting the PK profiles in specific target organs or tissues. Furthermore, when coupled
with PD modeling, PBPK can generate predictions regarding the safety and efficacy profiles.
These computational approaches could be combined in series in order to gain earlier and
cheaper information regarding new prospective molecules. At the same time, the produced
outcomes can be utilized in a “reverse translation” approach to inform CADD. These cycles
of inputs and outputs can elucidate the optimal structure that leads to the best combination
of PK, PD potency, and also to achieve specific ADME properties upon creating tissue-
targeted pharmacological moieties. This approach is graphically represented in Figure 2.
A similar approach, termed “model-based target pharmacology assessment” (mTPA), has
been utilized by GlaxoSmithKline [122]. Furthermore, the employment of machine learning
(ML) and other artificial intelligence (AI) methodologies in such processes would further
expand their predictive capacity [123].

Figure 2. Combining PBPK and CADD methodological tools to accelerate the drug development
process. PBPK modeling identifies sources of PK variability and predicts PK profiles in specific target
organs and tissues. When combined with PD modeling, PBPK also generates predictive safety and
efficacy profiles. The produced outcomes are utilized in a “reverse translation” approach to inform
CADD. Iterative cycles of inputs and outputs may elucidate the optimal structure and lead to the best
combination of PK, PD potency, as well as specific ADME tissue-targeted pharmacological properties.

2. Conclusions

The pathogenesis of COVID-19 involves direct viral infection and the inflamma-
tory response to the pathogen and damaged host cells. Current standards of care for
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established infection include antiviral therapeutics (remdesivir, molnupiravir, and nirma-
trelvir/ritonavir), anti-inflammatory agents (dexamethasone, baricitinib, and tocilizumab),
and monoclonal antibodies binding to the spike protein of SARS-CoV-2 and preventing vi-
ral attachment to the human ACE2 receptor (bamlanivimab plus etesevimab, bebtelovimab,
casirivimab plus imdevimab, and sotrovimab). Small molecules that possess dual antiviral
and anti-inflammatory (AAI) activity may simplify therapy, prove to be more effective, pre-
vent relapse, and reduce long-term COVID-19 complications. Dual AAI molecules may be
especially helpful in resource-challenged countries, where access to new anti-inflammatory
agents and to monoclonal antibodies may be limited. The discovery and development
of dual-mechanism antiviral/anti-inflammatory small molecules may be accelerated by
in silico structure-based and ligand-based computer-aided drug design using molecular
docking and QSAR methods. Physiologically based pharmacokinetic (PBPK) modeling
may be used to further optimize candidate AAI molecules and provide essential data for
the accurate dosing of new therapeutic agents against COVID-19.
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