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Abstract

Background

Type 2 Diabetes Mellitus (T2DM) is characterised by hyperglycemia due to the incidence of

insulin resistance. Testosterone supplementation has been shown to have a positive co-

relation with improved glycemic control in T2DM males. Clinical studies have reported that

Androgen Replacement Therapy (ART) to hypogonadic males with T2DM resulted in

improved glycemic control and metabolic parameters, but, these studies did not address in

detail how testosterone acted on the key glucose homeostatic organs.

Method

In this study, we delineate the effect of testosterone supplementation to high-fat diet (HFD)

induced T2DM in male C57BL6J mice and the effect of testosterone supplementation on the

skeletal muscle insulin responsiveness. We also studied the effect of testosterone on the

insulin signaling pathway proteins in C2C12 myocyte cells to validate the in vivo findings.

Results

We found that testosterone had a potentiating effect on the skeletal muscle insulin signaling

pathway to improve glycaemic control. We demonstrate that, in males, testosterone

improves skeletal muscle insulin responsiveness by potentiating the PI3K-AKT pathway.

The testosterone treated animals showed significant increase in the skeletal muscle Insulin

Receptor (IR), p85 subunit of PI3K, P-GSK3α (Ser-21), and P-AKT (Ser-473) levels as com-

pared to the control animals; but there was no significant change in total AKT and GSK3α.

Testosterone supplementation inhibited GSK3α in the myocytes in a PI3K/AKT pathway

PLOS ONE | https://doi.org/10.1371/journal.pone.0224162 November 6, 2019 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Pal M, Khan J, Kumar R, Surolia A, Gupta

S (2019) Testosterone supplementation improves

insulin responsiveness in HFD fed male T2DM

mice and potentiates insulin signaling in the

skeletal muscle and C2C12 myocyte cell line. PLoS

ONE 14(11): e0224162. https://doi.org/10.1371/

journal.pone.0224162

Editor: Makoto Kanzaki, Tohoku University, JAPAN

Received: March 9, 2019

Accepted: October 7, 2019

Published: November 6, 2019

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This study was supported by grants from

SERB-DST, SB/WEA/011/2013, Govt. of India, and

National Institute of Immunology Core Fund, New

Delhi, India to SG. This study was also supported

by the University Grants Commission, F-25-1/

2013-14(BSR)/7-91/2007(BSR) to JK, the Science

and Engineering Research Board, DST NPDF to RK,

and the The Council of Scientific and Industrial

http://orcid.org/0000-0002-3054-0337
https://doi.org/10.1371/journal.pone.0224162
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224162&domain=pdf&date_stamp=2019-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224162&domain=pdf&date_stamp=2019-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224162&domain=pdf&date_stamp=2019-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224162&domain=pdf&date_stamp=2019-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224162&domain=pdf&date_stamp=2019-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224162&domain=pdf&date_stamp=2019-11-06
https://doi.org/10.1371/journal.pone.0224162
https://doi.org/10.1371/journal.pone.0224162
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/


dependent manner; on the other hand GSK3β gene expression was reduced in the skeletal

muscle upon testosterone supplementation.

Conclusion

Testosterone increases insulin responsiveness by potentiating insulin signaling in the skele-

tal muscle cells, which is in contrast to the increased insulin resistance in the liver of testos-

terone treated T2DM male animals.

Introduction

Type 2 Diabetes Mellitus (T2DM), also known as Non-Insulin Dependent Diabetes Mellitus,

one of a components of Metabolic Syndrome (Met S) and has a very complex pathology. It is

one of the major reasons of morbidity and mortality across the world. Insulin resistance, a

pathological condition characterised by the body’s inability to effectively utilise insulin pro-

duced by the β-islets of pancreas, results in hyperglycemia in T2DM. It is a condition that is a

precursor to developing type 2 diabetes and marked by the incidence of hyperinsulinemia.

One of the key treatment strategies of T2DM is to increase insulin sensitivity of the tissues that

take up glucose in response to insulin in the body [1, 2].

A number of physiological factors are related to the propagation and pathophysiology of

T2DM. Testosterone supplementation has been shown to have a positive co-relation with

improved glycemic control and increased insulin responsiveness in hypogonadic males.

Androgen Replacement Therapy (ART) in hypogonadic males or males with sub-normal tes-

tosterone, who also had T2DM, showed improvement in their glucose homeostasis parameters

like reduced fasting and post prandial blood glucose levels (BGL) along with reduction in waist

circumference and lower levels of triglycerides [3, 4, 5]. Studies in isolated rat myocytes have

shown that testosterone treatment increase the insulin responsive glucose transporter, Glut 4

translocation to plasma membrane of the skeletal muscle, resulting in increased glucose uptake

by skeletal muscle cells [6]. Glut 4 translocation can be both insulin dependent and indepen-

dent as certain bioactive molecules can increase Glut 4 translocation in skeletal muscle and tes-

tosterone activates Glut 4 translocation in 3T3-L1 adipocytes by stimulating the LKB1/AMPK

pathway, in an insulin independent manner [7, 8]. However, in these studies, the underlying

mechanism of action of testosterone on the insulin signaling pathway and insulin responsive-

ness in the major glucose homeostatic tissues, resulting in the enhanced glycemic control

remained unanswered. In our study, we address how testosterone acted on the key glucose

homeostatic organs, liver and skeletal muscle, to bring about this outcome. In a previous study

[9] we observed that the control or vehicle treated T2DM male mice and testosterone treated

T2DM male mice did not show any significant change (p-value> 0.1) in the serum levels of

the key glucose homeostatic hormones and cytokines like insulin, glucagon, C-peptide, leptin,

GLP-1 Il-6, MCP-1 and TNFα; and thus, the testosterone mediated improvement in glycemic

control in T2DM male mice is due to the alteration in signaling pathways in the tissues

involved in glycemic control. In a previous study we demonstrated that the FOXO1-Androgen

Receptor interaction in the liver of the testosterone treated male T2DM mice inhibited the glu-

coneogenic action of FOXO1, decreasing the PEPCK levels, thereby reducing fasting BGL,

despite an increased hepatic insulin resistance [9]. In this study, we demonstrate that testoster-

one supplementation improves insulin responsiveness by potentiating insulin signaling in

skeletal muscle of HFD induced T2DM male mice.

Testosterone augments T2DM both in vitro and in vivo
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Materials and methods

Animal experiments

Animal models were generated as described before [9] with approval of the animal care and

ethics committee of National Institute of Immunology (IAEC No. 296/12). Briefly, 8 weeks old

male C57BL6J mice were fed with 60% kcal fat diet or High Fat Diet (HFD) (from Research

Diets. Inc. New Brunswick, NJ, USA, Cat. No. D12492) till the end of the experiment. Animals

were randomly grouped into the treated and the control groups, after confirmation of T2DM

model (see supplementary material). In treated group, 18 weeks age onwards till the end of the

experiment, 8mg/kg body weight Testosterone Propionate (from Sigma Aldrich, St Louis,

MO, USA) suspended in sesame oil was subcutaneously injected twice a week and the control

group was treated with vehicle sesame oil. All experiments were performed after 24 hr of tes-

tosterone propionate/ vehicle treatment. Animals were randomly selected from the treated

and the control groups for experiments with blinding.

For Glucose Tolerance test, the animals were fasted for 16 hours and 3mg/kg body weight

D-Glucose (from Sigma Aldrich) was injected intraperitoneally and blood glucose level (BGL)

measured every 30min for next 120 minutes. For Insulin Tolerance test, the animals were

fasted for 2 hours and 0.75 IU insulin/kg body weight was injected intraperitoneally. Then

BGL were measured every 30min for next 120 minutes. BGL was measured with the help of a

glucometer (Roche) by taking a drop of blood from the tail vein.

For tissue isolation and lysate preparation, animals were euthanized by cervical dislocation,

after 32 weeks of treatment, at the age of 50 weeks, skeletal muscle from hind limb removed

completely, snap frozen and homogenised in chilled condition. The clear lysate was used for

immunoblot and immuno precipitation studies. Animals were not fasted prior to sacrifice. In

animals given insulin treatment, 0.75IU insulin/kg body weight was intraperitoneally injected

without fasting and were euthanized after 1hr.

Immuno blotting

For immuno blotting, equal amounts of protein (50μg) for each group were resolved by 10%

or 12% SDS-PAGE and then transferred onto PVDF membranes (Mdi, Membrane Technolo-

gies, Ambala, India). The membranes were then incubated with the appropriate primary anti-

body as indicated, overnight at 4˚C. Bound antibodies were visualized using HRP-conjugated

secondary antibodies. Primary antibodies were procured from Cell Signaling Technologies

(Danvers, MA, USA) and Santa Cruz (Santa Cruz, CA, USA) (see supplementary material).

HRP-conjugated secondary antibodies were procured from Santa Cruz (Santa Cruz, CA,

USA). Blots were developed and images captured in Fuji LAS 3000 and densitometric analysis

was done by normalising the blots with loading control—GAPDH or α-Tubulin.

Plasma isolation and testosterone ELISA

Animals were bled at the age of 50 weeks after 24 hours of treatment. Testosterone levels in

plasma were measured using Testosterone ELISA kit procured from DRG International, Ger-

many (Catalogue No. EIA-1559). The experiment analyses were done as per the manufactur-

er’s protocol.

Ex-vivo [3H] 2-DG uptake assay

Skeletal muscles were isolated from the hind limb of the treated and the control animals after

28 weeks of treatment. 1g tissue was weighed and washed in PBS. Each muscle was then incu-

bated in 2 mL Krebs Henseleit buffer [KHB] supplemented with 0.1% bovine serum albumin
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[BSA] [KHB-BSA], 1 mmol/L 2-DG and 1μCi [3H]-2-DG (Perkin Elmer) for 30 min at 37˚C.

The muscle were then washed in PBS and lysed in 1% SDS. Scintillation fluid was added to the

lysate and reading was taken in β-counter (Perkin Elmer). Assay method was adapted based

on method described by Mitsuhashi et al., 2016 [8].

Microarray analysis

For microarray analysis, skeletal muscle were isolated from 3 animals of each group (the

treated and the control and age matched normal chow fed male C57BL6J mice) and was

pooled. The RNA preparation from the pooled samples and microarray analysis was out-

sourced to Sandor Life Sciences Pvt. Ltd.

The analysis was performed by uploading the data onto Genome-studio software and analy-

sis was performed considering normalization and FDR (False discovery rate). Filtering of the

data was done based on detection p-value (for both case and control samples) and diff score /

diff p-val (only for case).� Detection and Diff P-value cut off was taken as� 0.05 (diff score cut

off considered is ± 13). The genes and probes falling in these cut-off regions were considered

as significant ones. From these results, diff score; diff p-val�- 13; 0.05 are down-regulated

genes and diff score; diff p-val >+ 13; 0.05 are considered as up-regulated genes. From signifi-

cant differential results, log2 ratio and fold change was calculated. Then further filtering was

done based on fold change cut-offs and significant results were considered. � Detection p-

value is indication of good quality signal and diff p-val is for differential analysis results.

In vitro experiments

C2C12 cells (from ATCC), were grown in high glucose DMEM with 10% Horse serum and 1%

anti-biotic anti-mycotic (all from GIBCO, Auckland, New Zealand) till 80% confluency. Cells

were serum starved in serum free media for 6 hours before the experiment. Insulin, testoster-

one and LY294002 were procured from Sigma Aldrich. Cell lysates were used for Immunoblot.

Cells tested negative for mycoplasma contamination (EZ-PCR mycoplasma test kit, Biologi-

cal Industries, Beit-Haemek, Israel was used).

Glycogen content assay

Glycogen content was measured according to the spectrophotometric method of Roelandt

et al., 2010 [10] (see supplementary material).

Statistical analysis

The data have shown normal distribution. All values were presented as the mean and ±S.D.

Statistical significance was estimated either by unpaired, two tailed Student’s t-test (for two

comparisons) or two-way repeated measures ANOVA test (for more than two comparisons)

followed by Bonferroni post hoc analysis. P-values less than 0.05 were considered significant.

Results and discussion

Increased glucose dispersal and insulin responsiveness in treated animals

without any significant change in the body mass as compared to control ones

The glucose level in the blood rises after a carbohydrate rich meal and the excess glucose is

taken up by body cells in response to the glucose induced insulin secretion. Post-prandial (PP)

BGL is a marker of glucose dispersal in the body [11, 12]. In our study we observed that the

treated animals had lower PP BGL compared to the control, throughout the experimental
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period of 28 weeks (Fig 1A), which indicated better glucose dispersal upon testosterone

treatment.

The treated and the control animals showed no significant change in the body mass

(p>0.1) over a period of 36 weeks (Fig 1B). The testosterone treatment to HFD fed male mice

decreased the fat content over the period of treatment (<5% of total body mass) as compared

to that in the control animals (>10% of body mass). The anabolic steroid, testosterone is

known to increase the skeletal muscle mass and decrease adipose tissue mass [13] which might

have resulted in no significant alteration in the body weight of the treated animals as compared

to the control ones in our study. In our preliminary experiments, we observed that the myo-

tubes were better formed in the skeletal muscle of the treated animals as compared to the con-

trol ones (data not shown).

To further check the efficacy of glucose dispersal in the animals, we performed Glucose Tol-

erance Test (GTT). The treated animals were more glucose tolerant as compared to the control

ones (Fig 1C–1E). The insulin responsiveness or sensitivity is studied by performing Insulin

Tolerance Test (ITT). The insulin responsive tissues take up glucose from blood in response to

insulin, lowering the BGL. Individuals with T2DM do not efficiently utilise the administered

insulin to lower the BGL [14, 15]. In the ITT, the treated animals were more insulin responsive

as compared to the control ones (Fig 1F–1H). We also observed that glucose tolerance and

insulin sensitivity in the treated animals improved with duration of treatment.

The plasma testosterone level in the control and the treated group were measured. The

mean plasma testosterone level of the control mice was 5.11 ng/ml (±3.32) and was signifi-

cantly less than that of the treated ones, which was 13.13 ng/ml (±5.74) (n = 10, p<0.005). The

plasma testosterone level of the control animals were in the range described by Nelson et al.,

1975 for age matched normal male C57BL6J mice (0.19–12.18 ng/ml) [16]. We found that the

HFD fed animals were not hypogonadic and testosterone supplementation increases serum

level to near normal range.

Increased ex vivo glucose uptake and glycogen content in skeletal muscle of

the treated animals

Skeletal muscle is one of the main organs that takes up excess glucose from the blood and

stores as glycogen. The observed improved glycemic control in treated animals, prompted us

to validate whether testosterone treatment promoted glucose uptake by the skeletal muscle

and increase glycogen content. Ex vivo radioactive 2-deoxy glucose (2-DG) uptake assay was

performed in isolated skeletal muscle of treated and control animals. We found that the treated

animals showed increased radioactive 2-DG uptake as compared to control animals (Fig 1I).

The glycogen content in the isolated skeletal muscle of the treated animals was significantly

higher than that of the control ones (Fig 1J).

In our previous study [9], we found that the treated and control animals showed no signifi-

cant alteration in intrinsic insulin and other glucose homeostatic hormone levels, but both

groups showed significant alteration in intrinsic glucose homeostatic hormones and cytokine

levels as compared to age matched normal chow fed C57BL6J male mice (S1 Table). Thus, this

enhanced glycemic control in the treated animals could be due to altered insulin sensitivity in

the skeletal muscle. Hence, insulin signalingin the skeletal muscle of the treated and control

animals was examined.

Increased insulin responsiveness in skeletal muscle of treated animals

The insulin signalingis initiated by binding of insulin to the Insulin Receptor (IR) on the mem-

brane of insulin responsive cells. We immunoblotted the skeletal muscle tissue lysate of control

Testosterone augments T2DM both in vitro and in vivo
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Fig 1. Increased glucose dispersal and insulin sensitivity in treated animals as compared to control ones without

any significant change in the body weight. Fig 1A: PP BGL of the control and the treated animals. The data were

analyzed by t-test, data represents mean ±S.D. n = 8, N = 2, p< 0.05. B: Body weight of the control and treated animals.

The data were analyzed by t-test, data represents mean ±S.D. n = 8, N = 2, p> 0.1. Figs C-E: GTT of the control and the

treated animals after 4 (Fig 1C), 16 (Fig 1D) and 32 (Fig 1E) weeks of treatment. Figs 1F-H: ITT of the control and the

treated animals after 4 (Fig 1F), 16 (Fig 1G) and 32 (Fig 1H) weeks of treatment. The data were analyzed by t-test, data

represents mean ±S.D. n = 8, N = 2, p< 0.05, � = p> 0.05. Fig I: Ex-vivo 2-DG� uptake in skeletal muscle of control and

treated animals after 32 weeks of treatment. The data were analyzed by t-test, data represent mean ±S.D. of 3

independent experiments (n = 3), p< 0.05. J: Glycogen content assay in skeletal muscle of control and treated animals

after 32 weeks of treatment. The data were analyzed by t-test, data represent mean ±S.D. of 3 independent experiments

(n = 3), p< 0.05.

https://doi.org/10.1371/journal.pone.0224162.g001
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and treated animals for IR. The treated animals showed significant increase in the IR level as

compared to the control ones without any significant change in the Pro-IR levels in the two

groups (Fig 2A). O’Neil et al., 2016 have demonstrated that IR plays a critical role in maintain-

ing skeletal muscle mass and IR content increased in mature muscle as compared to the early

myoblast stage [17]. The increase in the IR content in the skeletal muscle of the treated animals

confirms increased myotube maturation in these animals.

We also found increased p85 levels in skeletal muscle of the treated animals (Fig 2A). To

check further for insulin responsiveness in the skeletal muscle of the treated and the control

animals, AKT was immuno precipitated from skeletal muscle tissue lysate of the treated and

the control animals and immunoblotted for P-AKT (Ser-473 and Thr-308) which are markers

for insulin responsiveness [14, 18, 19]. The treated animals showed significant increase in the

P-AKT (Ser-473 and Thr-308) levels as compared to the control ones (Fig 2B).

Glycogen Synthase Kinase 3 (GSK3), a serine-threonine kinase, phosphorylates and inacti-

vates Glycogen Synthase, the key enzyme in glycogen synthesis. GSK3 also negatively regulates

key signaling molecules like AKT, mTOR and Insulin Receptor Substrate 1 (IRS1). GSK3 per-

turbs the insulin signaling pathway and its inhibition is decreased in insulin resistance condi-

tion [14, 18, 20, 21]. Apart from glycogen synthesis, GSK3β inactivation also plays an

Fig 2. Increased insulin responsiveness in skeletal muscle of treated animals. Fig 2A: Immunoblot for Pro-IR, Insulin Receptor (IR) and p85 in

skeletal muscle of control (C) and treated (T) animals. Fig 2B: IP for AKT and Immunoblot for P-AKT (Ser-473 and Thr-308) in skeletal muscle of the

control (C) and the treated (T) animals. Fig 2C: Immunoblot for P-GSK3α (Ser-21) in skeletal muscle of control (C) and treated (T) animals. Fig 2D:

Immunoblot for P-GSK3β (Ser-9) in skeletal muscle of control (C) and treated (T) animals. Fig 2E: Immunoblot for CCRK in skeletal muscle of control

(C) and Treated (T) animals. Fig 2F: Densitometry for Pro-IR, Insulin Receptor (IR), p85, P-GSK3α (Ser-21), P-GSK3β (Ser-9) and P-GSK3β (Ser-9) in

skeletal muscle of control (C) and treated (T) animals. The data were analyzed by t-test, data represents mean ±S.D. of 3 independent experiments

(n = 3), p< 0.05, � = p>0.05. G: Immunoblot and densitometry for P-AKT (Ser-473) in control and treated animals upon insulin administration,

C = control, C+I = control animal with insulin treatment, T = treated, T+I = treated animals with insulin treatment. The data were analysed by two-way

repeated measures ANOVA test followed by Bonferroni post hoc analysis; data represents mean ±S.D. of 3 independent experiments (n = 3), p<0.05.

https://doi.org/10.1371/journal.pone.0224162.g002
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important role in myogenic differentiation of atrophied skeletal muscle [22] and resistance

training induced skeletal muscle hypertrophy in humans is due to inactivation of GSK3β and

activation of mTOR due to Akt phosphorylation and activation [23]. Thus, we checked

the inhibitory phosphorylation levels of GSK3α (Ser-21) and GSK3β (Ser-9) in the skeletal

muscle of the treated and the control animals. We observed increased P-GSK3α (Ser-21) and

P-GSK3β (Ser-9) levels in skeletal muscle of treated animals (Fig 2C and 2D). Collectively, the

treated group of animals had increased levels of IR, p85, P-AKT (Ser-473 and Thr-308),

P-GSK3α (Ser-21) and P-GSK3β (Ser-9) and decreased levels of total GSK3β as compared to

the control ones but there was no significant change in total AKT and GSK3α levels.

In 2011, Feng et al. [24] reported the interaction of an androgen regulated kinase, Cell

Cycle Related Kinase or CCRK, with GSK3β. The interaction of CCRK with GSK3β increased

Ser-9 phosphorylation. A significant increase in CCRK levels in the skeletal muscles of treated

animals as compared to the controls was observed (Fig 2E). Hence a major role is apparently

played by the androgen regulated CCRK in GSK3β phosphorylation and inactivation in the

skeletal muscle of the treated animals.

Tissue insulin responsiveness is reflected by the P-AKT (Ser-473) levels upon insulin action.

To test for insulin responsiveness in the skeletal muscle of the treated and the control animals,

we administered exogenous insulin and subsequently checked for P-AKT (Ser-473) levels in

their skeletal muscle. The skeletal muscles were isolated 60min after extrinsic insulin adminis-

tration because in the ITT, we found that the BGL was lowest at the 60min time point. P-AKT

(Ser-473) levels were noted to be highest in the treated animals which were also given insulin

followed by control animals treated with insulin (Fig 2G). This indicates a scenario of

enhanced insulin responsiveness in the skeletal muscle of the treated animals.

The chronic testosterone supplementation could cause global changes and alter glucose

homeostasis in the treated animals as testosterone increases myogenesis and the improved gly-

cemic control in the treated animals could be a result of an increased muscle mass. [13]

Studies on C2C12 cells show that testosterone potentiates insulin signaling

in skeletal muscle

Previously, numerous studies have been carried out in which the effect of androgen receptor

inhibition, by the use of antagonists or by down regulation, have been studied in numerous

cell types and in skeletal muscle. These studies hint to a correlation between the androgen sig-

naling and the insulin signaling pathways. Ma et al., 2017, reported that cyclic mechanical

stretch positively regulated proliferation of C2C12 cells, which was directly regulated by

PI3K-AKT and MAPK pathways and AR inhibition by flutamide blocked the mechanical

stretch regulated proliferation of these cells [25]. In another study using BLA3A cells, it was

reported that androgen had a protective effect on H2O2 treated cells that experienced oxidative

stress. This protective effect was mediated through the PI3K-AKT pathway and was reversed

in the presence of flutamide [26]. Rossetti et al., 2017, summarized that castration of male mice

reduced skeletal muscle P-AKT (Ser-473) and P-mTOR (Ser-2448) level, along with skeletal

muscle protein synthesis and this effect was reversed upon exogenous administration of

androgen to the to the castrated mice [27].

To study the effect of testosterone specifically on the insulin signalling PI3K-AKT pathway

in skeletal muscles we conducted in vitro experiments in C2C12 myocyte cell line. C2C12 cells

were subjected to an acute exposure of testosterone to minimise the effect of mitogenic and

differentiation activities of testosterone on the C2C12 cells. C2C12 cells were incubated with

or without insulin or testosterone or both and the cell lysates were then probed for IR, p-85

and AKT. No significant change in the IR levels of the unstimulated, both insulin and
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testosterone treated and only testosterone treated cells were found though the only insulin

treated cells showed some increase in IR (Fig 3A). This finding is in contrast to the ex vivo
finding, where the skeletal muscle of testosterone treated animals showed increased IR levels,

indicating increased myogenesis. The 120 min testosterone treatment was not sufficient for

the testosterone to demonstrate myogenic actions and hence, the IR levels showed no signifi-

cant change. There was a significant increase in P-p85 levels in cells treated with insulin com-

pared to the unstimulated controls. The highest level of P-p85 was observed in cells treated

with both testosterone and insulin followed by the cells treated with only testosterone (Fig 3B).

Interestingly a significant increase in p85 level was observed in cells treated with both insulin

and testosterone and only testosterone as compared to the only insulin treated and unstimu-

lated cells. An increase in p85 gene expression in the skeletal muscle of the treated animals was

observed in the microarray analysis of gene expression (S2 Table), consistent with its regula-

tion by an androgen [28].

Correspondingly, cells treated with both testosterone and insulin, showed highest level of

P-AKT (Ser-473), followed by that of only insulin stimulated ones or testosterone treated cells

(Fig 3C). This indicates a combined action of insulin and testosterone on the skeletal muscle

insulin responsiveness and substantiates the findings of in vivo studies.

Next to check whether testosterone mediated activation of AKT is PI3K dependent or not,

we pre-treated cells with PI3K inhibitor LY294002, and then added testosterone. PI3K inhibi-

tion caused marked decrease in P-AKT (Ser-473) levels, irrespective of the presence or absence

of testosterone (Fig 3E). The increase in testosterone concentration could not reverse this

effect. This confirms that the testosterone mediated enhancement in skeletal muscle insulin

sensitivity of the treated animals is dependent on PI3K/AKT pathway.

It was also observed that cells treated with both testosterone and 250 ng/ml insulin for 60

min had the highest level of P-AKT (Ser-473) followed by the cells treated with only 250ng/ml

insulin for 60 min (Fig 3E). The P-AKT (Ser-473) levels of cells treated with testosterone and

10ng/ml insulin for 30 min or testosterone and 10ng/ml insulin for 60 min were significantly

less than that of the cells treated with both testosterone and 250ng/ml insulin for 60 min (Fig

3F). This reinforces above findings about the potentiating effect on insulin signaling the skele-

tal muscle.

Testosterone inactivates GSK3α in C2C12 cells in a PI3K/AKT pathway

dependent manner but does not act in synergy with insulin to inactivate

GSK3β
Further to study the effect of testosterone on GSK3α and GSK3β inactivation in the skeletal

muscle, we treated C2C12 cells with insulin or testosterone or both or nothing. C2C12 cells

treated with both testosterone and insulin had the highest P-GSK3α (Ser-21) levels as com-

pared to the unstimulated or only insulin or testosterone stimulated ones (Fig 4A). The immu-

noblot analysis for P-GSK3β (Ser-9) in C2C12 cells showed significant increase in P-GSK3β
(Ser-9) levels in cells treated with testosterone and both insulin and testosterone as compared

to the unstimulated ones (Fig 4B), while, the levels of P-GSK3β (Ser-9) in cells treated with

only insulin were the highest. We also studied the role of the PI3K/AKT pathway in the testos-

terone mediated GSK3α inactivation. It was observed that upon PI3K inhibition, testosterone

alone is unable to inactivate GSK3α (Fig 4D). Thus, the testosterone mediated GSK3α inactiva-

tion in skeletal muscle is dependent on the activation of PI3K/AKT pathway. Further determi-

nation of glycogen levels in C2C12 cells incubated with or without insulin or testosterone or

both showed that glycogen content was maximum in the cells treated with both insulin and

testosterone (Fig 4E). Testosterone treated cells showed no significant difference in the
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Fig 3. Testosterone potentiates insulin signaling in C2C12 cells. Immunoblot for Insulin Receptor (Fig 3A), P-p85 (Fig 3B) and P-AKT (Ser-473)

(Fig 3C) in C2C12 cell lysate, C = control, I = Insulin (10ng/ml), I+T = Insulin (10ng/ml) +Testosterone (50ng/ml), T = Testosterone (50ng/ml).

Testosterone pre- treatment was given for 60 min and insulin treatment for 60 min without removing testosterone. Fig 3D: Densitometry for Insulin

Receptor, P-p85, p85, P-AKT (Ser-473) in C2C12 cell lysate, C = control, I = Insulin (10ng/ml), I+T = Insulin (10ng/ml) +Testosterone (50ng/ml),

T = Testosterone (50ng/ml). Testosterone pre- treatment was given for 60 min and insulin treatment for 60 min without removing testosterone. The

data were analyzed by two-way repeated measures ANOVA test followed by Bonferroni post hoc analysis; data represents mean ±S.D. of 3 independent

experiments (n = 3), p<0.05, � = no significant change as compared to C; # = no significant change as compared to I+T. Fig 3E: Immunoblot and

densitometry for P-AKT (Ser-473) in C2C12 cells upon testosterone and/ or PI3K inhibitor treatment, T (+) = 50ng/ml Testosterone, T (++) = 100ng/

ml Testosterone, L (+) = 10μM LY294002; LY294002 added 15min prior to testosterone treatment, testosterone treatment was given for 60 min without

removing LY294002; The data were analyzed by two-way repeated measures ANOVA test followed by Bonferroni post hoc analysis; data represents
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mean ±S.D. of 3 independent experiments (n-3), p<0.05, � = no significant change as compared to T(+)L(+); # = no significant change as compared to

T(++)L(+). Fig 3F: Immunoblot and densitometry for P-AKT (Ser-473) in C2C12 cells, I (+) = Insulin (10ng/ml), I(++) = Insulin (250ng/ml), T(+) =

Testosterone (50ng/ml). Testosterone treatment to cells for 120 min and 30min I = insulin treatment for 30min, 60min I = insulin treatment for 60 min,

without removing testosterone; The data were analyzed by two-way repeated measures ANOVA test followed by Bonferroni post hoc analysis; data

represents mean ±S.D. of 3 independent experiments (n-3), p<0.05; # = no significant change as compared to I(+)T(-), 30min I.

https://doi.org/10.1371/journal.pone.0224162.g003

Fig 4. Testosterone inactivates GSK3α in a PI3K/AKT pathway dependent manner but not GSK3β in C2C12 cells. Immunoblot for P- GSK3α (Ser-

21) (Fig 4A) and P- GSK3β (Ser-9) (Fig 4B) in C2C12 cells, C = control, I = Insulin (10ng/ml), I+T = insulin (10ng/ml) +testosterone (50ng/ml),

testosterone (50ng/ml). Testosterone pre- treatment was given for 60 min and insulin treatment for 60 min, without removing testosterone. Fig 4C:

Densitometry for P- GSK3α (Ser-21) and P- GSK3β (Ser-9) in C2C12 cells, C = control, I = Insulin (10ng/ml), I+T = insulin (10ng/ml) +testosterone

(50ng/ml), testosterone (50ng/ml). Testosterone pre- treatment was given for 60 min and insulin treatment for 60 min, without removing testosterone.

The data were analyzed by two-way repeated measures ANOVA test followed by Bonferroni post hoc analysis; data represents mean ±S.D. of 3

independent experiments (n-3), p<0.05. Fig 4D: Immunoblot and densitometry for P- GSK3α (Ser-21) in C2C12 cells upon testosterone and/ or PI3K

inhibitor treatment, T (+) = 50ng/ml testosterone, T (++) = 100ng/ml testosterone, L (+) = 10μM LY294002; LY294002 added 15min prior to

testosterone treatment, testosterone treatment was given for 60 min without removing LY294002; The data were analyzed by two-way repeated

measures ANOVA test followed by Bonferroni post hoc analysis; data represents mean ±S.D. of 3 independent experiments (n-3), p<0.05, � = no

significant change as compared to T(+)L(+)# = no significant change as compared to T(++)L(+). Fig 3E: Glycogen content assay in C2C12 cells.

C = control, I = insulin (10ng/ml), I+T = insulin (10ng/ml) +testosterone (50ng/ml), T = testosterone (50ng/ml). Testosterone pre-treatment was given

for 60 min and insulin treatment for 60 min, without removing testosterone. The data were analyzed by two-way repeated measures ANOVA test

followed by Bonferroni post hoc analysis; data represents mean ±S.D. of 5 independent experiments (n = 5), p<0.05, # = no significant change as

compared to I+T.

https://doi.org/10.1371/journal.pone.0224162.g004
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glycogen content as compared to the both insulin and testosterone treated ones. This could

possibly be due to the reduced levels of GSK3β in cells treated with testosterone.

However, on the other hand the GSK3β expression is regulated by testosterone as depicted

by immunoblot analysis for GSK3β and microarray analysis (Fig 5) of the skeletal muscle, insu-

lin inactivates GSK3β in a potent manner.

Differential expression analysis of genes involved in insulin responsiveness

or related pathways in skeletal muscle of the treated and the control

animals in comparison to normal chow fed age matched male C57BL6J

mice

Heinlein and Chang, 2002, summarized the genomic and non-genomic mode of action of AR.

The genomic mode of action directly affects the expression of androgen responsive genes

while the non-genomic AR action can activate Protein Kinase A, Protein Kinase C and MAPK,

without affecting the gene expression [29]. In our previous study [9], we reported that

AR-FOXO1 interaction led to the degradation of FOXO1 to a non-functional product that

resulted in reduced hepatic glucose output in the treated mice.

Microarray analysis was done for the differential expression of genes involved in insulin

responsiveness and other related pathways in the skeletal muscle of treated and control ani-

mals in comparison to normal chow fed age matched male C57BL6J mice (S2 and S3 Tables).

The histogram in Fig 5 represents the genes which have been deduced to play a role in the tes-

tosterone mediated alteration of glucose homeostasis in the skeletal muscle of the treated ani-

mals. Bolton et al., 2007, used RNA expression profiling to identify Androgen Regulated

Genes (ARGs) and like us, they reported the positive induction of IRS2 and NFKBIA in

response to androgen action [30]. In another study, it was reported that skeletal muscle AR

deficiency in males, resulted in reduced PGC-1α levels [5]. The transcriptome analysis in male

mice with AR deficient β-islet, by Xu et al., 2017, revealed that AR action influenced JAK-

STAT, Insulin signaling and MAPK pathways in these cells [31].

From our experiments involving immunoblot analysis of isolated tissue and cultured cell

lysate, we found that testosterone acted in insulin dependent manner to activate AKT and

Fig 5. Microarray analysis of differential expression of genes in skeletal muscle of treated and control animals, with respect to age matched,

normal chow fed male C57BL6J mice. Microarray analysis showing differences in the expression levels of various genes involved in glycemic control in

the skeletal muscle of the treated and control animals after 32 weeks of treatment, with respect to age matched, normal chow fed male C57BL6J mice.

https://doi.org/10.1371/journal.pone.0224162.g005
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inactivate GSK3α in the skeletal muscle. The microarray data analysis showed no significant

change in AKT or GSK3α gene expression in the skeletal muscle upon testosterone supple-

mentation. The changes in the phosphorylation level and not in the expression level for AKT

or GSK3α lead to an enhanced glycemic control in the skeletal muscle in the treated animals.

On the contrary, we found an increase in p85 subunit of PI3K and a decrease in GSK3β gene

expression upon testosterone administration, which was also validated in the immunoblot

analysis, in the skeletal muscle of the treated animals. The microarray analysis also revealed an

increase in expression of IRS2 in the testosterone treated skeletal muscles. Thus, testosterone

regulates the expression of p85, GSK3β and IRS2 in the skeletal muscle to improve insulin

responsiveness.

In summary

Testosterone supplementation improved glycemic control in male HFD fed T2DM animals.

The increased myogenesis in the treated animals due to the anabolic steroid, testosterone, indi-

cated by the increased IR levels, resulted in enhanced glucose uptake and utilization by them,

accounting for the improved overall glycemic control in the treated animals. A detailed investi-

gation showed that testosterone potentiates insulin signaling the skeletal muscle by positively

regulating p85 gene expression. In our previous study [9], we showed that testosterone supple-

mentation reduced hepatic glucose output despite increasing hepatic insulin resistance. The IR

level in the liver of treated and control animals showed no significant change (p>0.05) (S15

Fig) despite the development of hepatic insulin resistance and this is in contrast to the

increased IR level in the skeletal muscle of the treated animals as compared to the control. The

diminished hepatic gluconeogenesis is demonstrated to emanate from a reduced level of

PEPCK. We also compared the insulin responsiveness of the treated and the control animals,

after 32 weeks of treatment, with age matched normal chow fed male C57BL6J mice. We

found that the treated animals were more responsive to the administered insulin as compared

to the age matched normal chow fed male C57BL6J mice (S16 Fig). The reduced hepatic glu-

cose output due to testosterone supplementation to the HFD fed males caused hypoglycaemia

in the treated animals in response to the extrinsic insulin.

Thus, the two key organs involved in glucose homeostasis, skeletal muscle and liver,

respond in different ways to the same stimulus, testosterone. The skeletal muscle and the liver

showed striking difference in the regulation of GSK3α, which is an important component in

the glucose homeostatic pathway in both the tissues as the testosterone mediated GSK3α inhi-

bition in the skeletal muscle is dependent on the PI3K/AKT pathway, whereas in the liver it is

PI3K/AKT independent.

Conclusion

Overall testosterone treatment in HFD fed T2DM male animals improves glycemic control,

but the outcomes at tissue level are strikingly different. While testosterone stimulates the skele-

tal muscle insulin signaling pathway to improve glucose homeostasis, in the liver it acts inde-

pendent of the insulin signaling pathway to reduce hepatic glucose output, both of which co-

operate together to improve the overall glycemic control. Yu et. al., 2014, discussed the effects

of Androgen Deprivation Therapy (ADT) in patients with Prostate cancer (PC), which

resulted in severe testosterone deficiency in these patients. These patients developed different

components of metabolic syndrome including, insulin resistance, diabetes, obesity and cardio-

vascular complications. They also mention that the molecular mechanisms involving the

androgen mediated regulation of energy metabolism in men, possibly involves multiple factors

along with tissue cross-talk among insulin responsive tissues [32].
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Though our study and other reports demonstrate that testosterone positively regulates gly-

caemic control in males, one needs to tread cautiously about the use of testosterone in a thera-

peutic regime to treat T2DM [33].
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S1 Fig. Full blot images for Fig 2A.
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S2 Fig. Full blot images for Fig 2B.
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S7 Fig. Full blot images for Fig 3A.
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S9 Fig. Full blot images for Fig 3C.
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S11 Fig. Full blot images for Fig 3F.
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S12 Fig. Full blot images for Fig 4A.

(TIF)

S13 Fig. Full blot images for Fig 4B.

(TIF)

S14 Fig. Full blot images for Fig 4D.

(TIF)

S15 Fig. Immuno blot and densitometry for Insulin Receptor (IR) in liver of control

(C) and treated (T) animals. The data were analyzed by t-test, data represents mean ±S.D. of

3 independent experiments (n = 3), � = p>0.05.

(TIF)

S16 Fig. ITT of the treated (T2DM Treated), control (T2DM Control) and age matched

normal chow fed male C57BL6J (Normal C57BL6J) mice after 32 weeks of treatment. The

data were analysed by two-way repeated measures ANOVA test followed by Bonferroni post
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hoc analysis; data represents mean ±S.D. n = 8, N = 2, p< 0.05, � = no significant difference

between the groups.

(TIF)

S1 Table. Serum levels of hormones and analytes involved in glycemic control. N = Normal

Chow fed 46 weeks old C57BL6J male mice; C = HFD fed age matched C57BL6J male mice;

T = HFD fed age matched C57BL6J male mice supplemented with testosterone. n = 10,

p<0.005. # = p>0.1 as compared to C.

(DOCX)

S2 Table. Microarray analysis showing difference in expression level of different kinases in

the skeletal muscle of the treated (T) and control (C) animals after 32 weeks of treatment,

with respect to age matched, normal chow fed male C57BL6J mice (N). Blank boxes in table

indicate no change in expression level as compared to N; F.C. = Fold Change.

(DOCX)

S3 Table. Microarray analysis showing difference in the expression level of different

genes in the skeletal muscle of the treated (T) and control (C) animals after 32 weeks

of treatment, with respect to age matched, normal chow fed male C57BL6J mice (N).

Blank boxes in table indicate no change in expression level as compared to N; F.C. = Fold

Change.

(DOCX)
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