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Water induced sediment levitation enhances
downslope transport on Mars
Jan Raack 1, Susan J. Conway 2, Clémence Herny3, Matthew R. Balme1, Sabrina Carpy2

& Manish R. Patel 1,4

On Mars, locally warm surface temperatures (~293 K) occur, leading to the possibility of

(transient) liquid water on the surface. However, water exposed to the martian atmosphere

will boil, and the sediment transport capacity of such unstable water is not well understood.

Here, we present laboratory studies of a newly recognized transport mechanism: “levitation”

of saturated sediment bodies on a cushion of vapor released by boiling. Sediment transport

where this mechanism is active is about nine times greater than without this effect, reducing

the amount of water required to transport comparable sediment volumes by nearly an order

of magnitude. Our calculations show that the effect of levitation could persist up to ~48 times

longer under reduced martian gravity. Sediment levitation must therefore be considered when

evaluating the formation of recent and present-day martian mass wasting features, as much

less water may be required to form such features than previously thought.

DOI: 10.1038/s41467-017-01213-z OPEN

1 School of Physical Sciences, Faculty of Science, Technology, Engineering & Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
2 Laboratoire de Planétologie et Géodynamique—UMR CNRS 6112, Université de Nantes, 2 rue de la Houssinière—BP 92208, 44322 Nantes Cedex 3, France.
3 Physikalisches Institut, Universität Bern, Sidlerstrasse 5, 3012 Bern, Switzerland. 4 Space Science and Technology Department, STFC Rutherford Appleton
Laboratory, Harwell Campus, Didcot OX11 0QX, UK. Correspondence and requests for materials should be addressed to J.R. (email: jan.raack@open.ac.uk)

NATURE COMMUNICATIONS |8:  1151 |DOI: 10.1038/s41467-017-01213-z |www.nature.com/naturecommunications 1

12
34

56
78

9
0

http://orcid.org/0000-0002-0264-0728
http://orcid.org/0000-0002-0264-0728
http://orcid.org/0000-0002-0264-0728
http://orcid.org/0000-0002-0264-0728
http://orcid.org/0000-0002-0264-0728
http://orcid.org/0000-0002-0577-2312
http://orcid.org/0000-0002-0577-2312
http://orcid.org/0000-0002-0577-2312
http://orcid.org/0000-0002-0577-2312
http://orcid.org/0000-0002-0577-2312
http://orcid.org/0000-0002-8223-3566
http://orcid.org/0000-0002-8223-3566
http://orcid.org/0000-0002-8223-3566
http://orcid.org/0000-0002-8223-3566
http://orcid.org/0000-0002-8223-3566
mailto:jan.raack@open.ac.uk
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Downslope sediment transport can occur by dry granular
flow, or alternatively can be supported by a fluid, e.g., a
gas and/or a liquid. The physical properties of the inter-

stitial fluid determines the flow behavior, which in turn influences
the transport capacity of the flow1, 2 and its final morphology. In
planetary science it is extremely rare to catch sediment transport
“in action” and therefore the final morphology and morphometry
of the flow, often in conjunction with terrestrial analogs, are used
to infer the process and the supporting fluid. On Mars, this line of
reasoning has been used to infer that gullies are created by the
action of liquid water3–7 acting over timescales of potentially
millions of years4, 8–10. One of the proposed sources of water to
form these gullies comprises shallow11 or deep aquifers12.
Aquifer-based hypotheses have not been favored because gullies
have been identified on isolated highs where groundwater is less
likely to occur3, 13–17. Another proposed source is the melting of
snow or ice under current climatic conditions18 or in the recent
past3, 10, 19. Non-water hypotheses include: CO2-sublimation gas
supported flows20 and dry granular flows21. Due to their occur-
rence in different climatic regions (from polar regions to mid-
latitudes), their different morphologies, and their different ages
gullies could be formed by a variety and/or combinations of
different mechanisms and no above-mentioned proposed process
has yet been completely ruled out.

The present-day activity of gullies was first detected in the form
of appearance of low relief, digitate, light toned deposits22. More
recent observations include: incision of channels, formation of
deposits with meter-scale relief23–25, and dark sediment deposits
within existing gullies24, 26. On sand dunes ongoing formation
and growth of both classic and linear gullies17, 27 as well as the
seasonal occurrence of dark flows28, 29 have been
observed27, 30, 31. Often, but not always, found in association with
gullies are dark recurring slope lineae (RSL)32, which are char-
acterized by their annual (re)appearance, seasonal growth during
peak annual temperatures, and fading in the colder months32–34.
These present-day surface activities have been linked to several
different formation mechanisms, including liquid water (e.g.,
overland flow or debris flow)17, 22, 34, 35, CO2 frost sublimation
and sediment fluidization23, 26, 30, 31, liquid “cryobrines”, acting in
a similar way to liquid water32, 36, or dry avalanches37, 38.
However, we can only distinguish between these different
hypotheses if we understand their associated sediment transport
processes, and so we need to understand whether flows animated
by liquid water behave in a similar fashion on Mars as they do on
Earth. This may not be the case, because liquid water is unstable34

under modern martian conditions.
Previous experimental work has shown that transient water

under freezing conditions behaves slightly differently to stable
water on Earth39, 40, and under warmer conditions this difference
is exaggerated further41. Remote sensing and climate models have
shown that maximum surface temperatures on Mars up to
~300 K can occur during summer on Mars at equatorial- and
southern mid-latitudes32, 42, and even in the south polar regions
maximum surface temperatures up to ~280 K are possible26

meaning that transient liquid water is a possibility. As an
example, detailed surface temperature analysis show that RSL
only lengthen when temperatures exceed 273 K34. Ojha et al.33

reported mid-afternoon maximum surface temperatures between
252 and 290 K from the Thermal Emission Imaging System at
active RSL sites. Investigations with the Thermal Emission
Spectrometer on RSL sites during same solar longitudes have
shown maximum surface temperatures of ~296–298 K35. Based
on these data sets, we chose two surface temperatures to inves-
tigate the contribution of transient water to downslope transport
under martian environmental conditions: flows onto “cold”
sediment (~278 K), and flows onto “warm” sediment (~297 K).

Our experiments reveal for the first time a transport
mechanism of wet sediment levitation that occurs under low
atmospheric pressures but not at terrestrial pressures. This sedi-
ment levitation effect is caused by boiling of transient water,
comparable to the Leidenfrost effect, and itself triggers further
sediment movement by grain avalanches. These transportation
mechanisms enhance the volume of transported sediment by up
to nine times and therefore reduce the required amount of liquid
water to ~11% of that needed to transport the same volume of
sediment without the levitation effect. Numerical scaling for
gravity suggests this effect is greater for lower gravity, leading to
an even greater sediment transport potential on Mars. Hence, the
effect of levitation can have a direct influence on the estimated
water budget for recent and present-day mass wasting processes
on Mars in that the amount of water needed to transport sedi-
ment could be much smaller than previously thought.

Results
Experimental setup. The experimental apparatus comprises a
0.9 × 0.4 m test-section containing a 5 cm deep sediment bed. The
test section is inclined at 25° and located inside the Open Uni-
versity’s Mars simulation chamber40, 41 maintained at an average
pressure of ~9 mbar. For each experiment, pure water was
introduced near the top of the slope at 1.5 cm above the sediment
bed and the resulting flow behavior was observed. The water was
pumped into the chamber from an external reservoir allowing the
temperature to be maintained at ~278 K and the flow rate at
~11 ml s−1 (see Table 1). The sediment consisted of sand
(~63–200 μm grain diameter). Each run was performed in tri-
plicate, and all experiments were recorded with three cameras.
Digital elevation models (DEMs) of the bed were created both
before and after each run using multiview digital photo-
grammetry. Table 1 provides full details of the experimental
conditions.

Water flow experiments. During the “cold” experiments water
flowed over the surface of the sediment and also infiltrated into
the sediment. Entrained sediment was transported downslope,
depositing a series of lobes that migrated laterally over time,
comparable to flows under terrestrial conditions40. The majority
of the sediment was transported by overland flow of water (~98%;
Fig. 1a–c, Supplementary Movies 1, 2). Boiling of the water was
identified by the observation of bubbles at the surface. Occasional
millimeter-sized, damp “pellets” of sediment were ejected by the
boiling water as it infiltrated the bed. These ejected pellets
transported negligible volumes of sediment (~2%). The majority
of the sediment transported in the “cold” experiments was by
overland flow, confined to a zone with maximum average width
of ~9.2 cm and a downslope length of ~36.5 cm (Fig. 1b).

The volume of sediment transported during the “warm”
experiments was nearly nine times greater than that during the
cold experiments, and thus an increase in the sediment transport
rate of the flow from ~0.13 cm3 ml−1 for "cold" experiments to
~1.18 cm3 ml−1 for “warm” experiments (Table 1, Fig. 2). Thus to
transport the same volume of sediment in the “warm” experiment
as the “cold”, only ~11% of the volume of water is required. The
increase in the volume transported for a given water volume in
the “warm” experiments is caused by three processes: (1)
transport of sediment by ballistic ejection of sediment and
millimeter-sized sediment pellets, (2) transport of sediment by
“levitation” of millimeter-sized to centimeter-sized sediment
pellets with very rapid downslope transport, and (3) dry
avalanches of sediment triggered by the ejected grains and
levitating pellets. The combined effect of these processes
accounted for about 96% of the total sediment transport, with
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overland flow being only a minor component, in contrast to the
“cold” experiments.

Saltation and levitation processes. The following sequence of
events were reconstructed from the video footage: in the “warm”
experiments, when the water came into contact with the sedi-
ment, boiling-induced saltation of the sediment created a con-
tinuous fountain of ejected grains until the sediment became
saturated (after about 30 s; Fig. 3a–e, k, l; Supplementary
Movies 3–5). In the very first seconds of the experiment,
numerous saturated sediment pellets detached from the source
area and rolled/slide quickly down the test bed (often to the end)
with very little direct surface contact (Supplementary Movies 3, 4,
6). These pellets ranged in size from 0.5 to ~50 mm and were
observed to travel at average speeds of ~46 cm s−1. This is more
than twice the speed of pellets under “cold” experiments (~19 cm
s−1; Table 1). We conclude that the pellets in the “warm”
experiments partially levitate on a cushion of gas produced by
boiling via a mechanism comparable to the Leidenfrost effect
(Fig. 3a), which enhances their downslope velocity. The gas
released at the base of these pellets causes erosion of loose dry
sediment, as shown by tracks leading to isolated pellets, and by
the formation of a short-lived transportation channel carved by a
rapid series of levitating pellets in the first seconds of the
experiment (Fig. 3b–d, i, j; Supplementary Movies 3, 6). The
transient channel was approximately 5-cm wide and had a cur-
vilinear shape. Due to the short length of the test bed and the fast
material transport, this transient channel was backfilled within
the first seven seconds (Supplementary Movies 3, 6).

Grain avalanches. In the “warm” experiments, the saltating
sediment and levitating pellets triggered grain avalanches that
propagated downslope (Fig. 1d–f, Supplementary Movies 3, 4).
Grain avalanches and grain ejections occurred over the same time
period (up to ~138 s), with some very late grain avalanches
observed after 528 s for run 6. During the “cold” experiments no
such movements were detectable. About 56% of all transported
sediment was by these dry avalanches (Table 1, Fig. 2). The
effect of sand saltation and grain flows caused by boiling liquid
water was first reported by Massé et al.41, who used a melting ice
block as a water source, giving a very low water flow rate of
1–5 ml min−1. They observed the formation of arcuate ridges
caused by intergranular wet flow and the ejection of sand grains
at the contact of the wet and dry sediment: these phenomena
(but not the ridges) were also observed in our experiments.
Saltation and flow arrested in their experiments once the water
supply was removed41. In our “warm” experiments, though,
saltation from the saturated sediment body continued for a mean

of ~78 s after the water was stopped. This implies that the sedi-
ment in our experiments was supersaturated, and percolation
continued after removal of the water source. Supersaturation
requires the water release rate to be faster than the infiltration rate
(hence flow rates higher than those in Massé et al.41), suggesting
this may be a limiting condition for sediment levitation.

Liquid overland flow. Liquid overland flow occurred in both
“warm” and “cold” experiments, but only began in the “warm”
runs at a mean of ~20 s into the experiments. The total down-
slope extension of the overland flow in the “warm” runs was
~76% (~8.4 cm shorter, Table 1) and the average width ~80%
(~1.8 cm narrower, Table 1) of the “cold” experiments (Fig. 1,
Supplementary Movies 2, 4). The average propagation rates were
very similar (~0.74 cm s−1 for the “warm” experiments, ~0.61 cm
s−1 for the “cold” experiments). The average volume of sediment
mobilized by overland flow in the “warm” experiments was about
half that in the “cold” experiments due to the shorter time for
which this process was active.

Scaling to martian gravity. In our laboratory experiments we
were unable to simulate the effect of martian gravity on these
processes. Massé et al.41 found that saltation induced by boiling is
more effective under martian gravity than terrestrial gravity,
resulting in three times more sediment transport. We do not
repeat their calculations, but instead focus our attention on the
effect of gravity of the levitation of pellets, in order to assess if
sediment transport via this mechanism would be more or less
efficient than observed in our experiments for otherwise similar
conditions. Below we derive equations to describe the levitation
force produced by the boiling gas, and then we apply these
equations to understand the effect of gravitational acceleration on
the levitation duration and the size of objects levitated.

We follow the reasoning and calculations of Diniega et al.43

who considered the levitation of a sublimating CO2 ice block on
Earth and on Mars. We assume that the wet sand pellet can also
be treated as a block with a width D = 2 R (m), a thickness H (m),
and an aspect ratio of D/H lying on the dry sand test bed (Fig. 4).
The temperature at the surface of the wet sand pellet is set at the
temperature of evaporation of the liquid water Te for the relevant
atmospheric pressure p. We assume that the temperature of the
test bed T0 exceeds the evaporation temperature. We assume that
the gas escapes uniformly from the bottom of the object,
perpendicular to the surface of the test bed. The object
experiences two opposing forces (Fig. 4). The force W due to
weight of the object

W ¼ gρwsHA; ð1Þ

Table 1 Summary of measured and controlled variables

RUN Mean values Flow
rate
(ml s−1)

Transported volume Transport rate
(cm3 ml−1)

Overland flow Pellet speed
(mean values)
(cm s−1)

Pressure
(mbar)

Water temp.
(K)

Surface
temp. (K)

Overland
flow (cm3)

Percolation
(cm3)

Pellets
(cm3)

Dry avalanches/
saltation (cm3)

Total (cm3) Max.
length
(cm)

Max.
width
(cm)

“Cold”
experiments

1 8.2± 0.5 278.9± 0.05 278.5± 0.05 10.4 75.0± 7.6 10.6± 18.4 0.6± 1.0 0.0 86.2 ± 27.1 0.14± 0.04 38.1 7.6 11.3

2 8.4± 0.8 278.5± 0.04 278.5± 0.12 11.2 71.1± 6.6 13.7± 12.8 0.7± 0.9 0.0 85.5± 20.3 0.13± 0.03 33.9 9.2 21.1
3 8.8± 0.7 278.7± 0.02 278.4± 0.12 11.1 72.7± 3.2 6.8 ± 3.7 0.4± 0.2 0.0 79.9 ± 7.1 0.12± 0.01 37.6 10.6 25.4
Mean 8.5± 0.4 278.7± 0.02 278.5± 0.06 10.9 72.9± 10.6 10.4 ± 22.7 0.6± 1.4 0.0 83.9 ± 34.6 0.13± 0.05 36.5 9.1 19.3

“Warm”
experiments

4 9.8± 1.1 278.5± 0.02 296.5± 0.12 10.3 25.8± 3.4 225.9± 8.4 22.1± 15.2 292.4± 15.2 566.2 ± 25.5 0.91± 0.04 26.1 7.8 44.0

5 8.7± 2.0 278.7± 0.04 297.4± 0.05 10.5 27.1± 3.1 222.2± 2.1 96.3± 14.4 461.0± 14.4 806.6 ± 9.0 1.28± 0.01 26.4 6.9 45.6
6 10.5± 1.5 278.4± 0.04 296.4± 0.04 10.4 39.7± 3.2 220.7± 5.4 86.8± 14.0 499.7± 14.0 846.9± 21.7 1.36± 0.03 32 7.5 46.9
Mean 9.7± 0.9 278.5± 0.02 296.8± 0.05 10.4 30.9± 5.6 222.9± 10.2 68.4± 25.2 417.7± 25.2 739.9± 34.7 1.18± 0.06 28.2 7.4 45.5

Pressure, water temperature, and surface temperature were averaged over the 60 s duration of water flow and presented with standard deviations (±values). Transported volume of sediment per unit
defined by mapping (Fig. 1) and transport rate with error values (±values). See “Methods” for detailed description of error calculations

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01213-z ARTICLE

NATURE COMMUNICATIONS |8:  1151 |DOI: 10.1038/s41467-017-01213-z |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


where g is the local gravity, ρws is the wet sand density, H is the
height of sand pellets, and A is the area in contact with the test
bed. As in Diniega et al.43 we consider two shapes: (I) rectangular,
if R<<L (length in m), then the problem can be solved in 2D and
A= 2RL or (II) cylindrical, the problem is solved in 3D and A=
πR2. The contact between the block and the sand bed results in
frictional forces that prevent the block from falling. The friction
force FT is proportional to the normal force Nz

FT ¼ μNz; ð2Þ

where the coefficient of proportionality μ is the Coulomb friction
coefficient. Moreover, there is no motion of the pellet if

FT>W sin θ. To determine if motion can start, we need to
consider the normal force Nz, which is the resulting force between
the weight W and the levitation force Fe, defined in the normal
direction z as follows:

Nz ¼ W cos θ � Fe; ð3Þ

where θ is the slope angle and Fe is the force due to the gas escape
by evaporation of liquid water during boiling43 and defined as:

Fe ¼ CfA
Ru0 v
k

: ð4Þ

0.2 m

Height change (mm)
> 20

10 – 20

5 – 10

0 – 5

−5 – 0

−10 – −5

−20 – −10

−25 – −20

< −25

a b c

d e f

Fig. 1 Image, map, and elevation data at the end-state of experiments. a, d Orthophotographs (0.2 mm pix−1) of “cold” (a) and “warm” (d) experiments. b, e
Hillshaded relief from DEM (1 mm pix−1) overlain by process-zone maps giving the spatial extent of the different transport types (blue= overland flow,
green= percolation, red= pellets, yellow= dry avalanches/saltation) for “cold” (b) and “warm” (e) experiments, and c, f elevation difference between start
and end of “cold” (c) and “warm” (f) experiments. Flow direction is from top to bottom and the same scale is used for all images
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The levitation force Fe is therefore proportional to the dynamic
pressure Ru0ν=k (described below), the surface area A, and an
aerodynamic coefficient Cf. The aerodynamic coefficient is
complex to evaluate because it depends on both the shape of
the object (rectangular, spherical, oval, etc.), its roughness and the
slope angle. By making some simplifying assumptions, Diniega
et al.43 have shown that this coefficient can be deduced from the
calculation of the total force of the fluid exerted on the
sublimating CO2 block placed on a flat floor. Thus, for a
rectangle (A= 2LR), their calculation of the force after integration
gives Fe ¼ 2 LR: π

4

� �
: Ru0 v

k

� �
, which makes it possible to deduce that

Cf ¼ π=4 for a rectangular object and Fe ¼ 2LR: 4π
3

� �
: R u0 v

k

� �
is

Cf ¼ 4= 3πð Þ for a cylindrical object.
In our case the determination of Cf is non-trivial. The pellets

consist irregular objects of cohesive sand supersaturated with
water. The surface of the pellets is not smooth as could be
reasonably assumed for a block of CO2 ice. Moreover, the shape
of our objects depends on the experiment considered and can be
very variable according to the temperature conditions of the
experiment. Finally, we must consider the slope that will favor the
levitation effect and will tend to increase this coefficient, but
increasing roughness will decrease this coefficient.

For these reasons we have chosen to estimate the value of the
aerodynamic coefficient Cf using our experimental results. We
estimated the size and shape of the pellets from the videos and
orthophotos of the experiments at 297 and 278 K. The pellet sizes

range from 0.5 to 50 mm. They have irregular shapes and are
often flattened with an aspect ratio H/D= ~0.75.

Therefore we know that for experiments at a sediment
temperature of 297 K, the boiling effect is strong enough to
move centimeter-sized pellets for the duration of several seconds.
At 278 K, centimeter-sized pellets are not levitated while
millimeter-sized pellets are observed to levitate for a few seconds.
We tuned the aerodynamic coefficient to match these experi-
mental observations. We find that Cf ranges from approximately
1.45 to 7.3. We then used the corresponding value of the
aerodynamic coefficient Cf in our calculations for Mars to
evaluate the influence of Mars’ reduced gravity on pellet
levitation.

The dynamic pressure Ru0ν=k is dependent of the length R, the
sand permeability k, the gas viscosity v, and the mean gas velocity
u0 escaping from the surface A of the block, which is defined as
follows:

u0 ¼ q
Ev ρg

; ð5Þ

where q (Wm−2) is the heat flux by thermal conduction, Ev is the
enthalpy of evaporation for water, and ρg is the volatile gas
density. The heat flow is obtained by solving the heat equation44.
The integration of the solution gives us the heat flux q from the
sand bed to the block by conduction

q tð Þ ¼ λ
∂T
∂z

����

z ¼ 0

¼ T0 � Teð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
λCpρs
πt

r

; ð6Þ

where λ is the thermal conductivity of the sand, Cp is the heat
capacity of the sand, ρs is the sand density, and t is the time (s).

Along a slope, a block will move if the friction force is
overcome by the weight force in the x-direction (Fig. 4):

μ W cos θ � Feð Þ<W sin θ ! tan θ> μ� μFe
W cos θ

: ð7Þ

Determination of the Coulomb friction coefficient μ is non-
trivial. There is no empirical method to determine this coefficient
and we have no experimental measurements that allow us to
calculate it directly. As μ is a coefficient, its sign is imposed, so the
sense of the inequality depends only on the sign of 1� Fe

W cos θ

� �

and therefore on the ratio Fe=W cos θ. Under the angle of repose
of the sediment, if Fe>W cos θ then the pellets will move.
Increasing slope will tend to reduce the threshold value FT
required to start movement.

We calculated the evolution of the ratio of the levitation force
Fe to the weight force W cos θ of a block over a slope of 25° with
time for both the low pressure environment of our chamber
experiments at different temperatures and for equivalent condi-
tions, but using martian gravity. The parameters used for these
calculations are presented in the Supplementary Table 1. We
assume that not all the heat flux due to conduction is used for the
change of state of the water contains in pellets. Figure 5 shows
that the levitation force produced by boiling is about 4.6 higher at
297 K than 278 K, which is consistent with our experimental
results. For pellets with an aspect ratio of 0.75, circular basal area
(results are similar for a rectangular base), and a sand
temperature of 278 K, our calculations predict that levitation
should not occur for pellets of R= 1 cm and should persist for
about 2 s for R = 0.1 cm, and these predictions are consistent with
our experimental observations (Supplementary Movies 1, 2). For
the same aspect ratio, at sediment temperature of 297 K, our
calculations predict that levitation should persist 5 s for R = 1 cm,
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Fig. 2 Mean volumes of transported sediment. a Mean volumes are divided
into “warm” experiments (left bar) and “cold” experiments (right bar), and
subdivided into different transport types (blue= overland flow, green=
percolation, red= pellets, yellow= dry avalanches/saltation) (see also
Fig. 1). The mean of total error (Measurement Error) are presented on top
of the bars, errors at the side of the bars represent the mean of total errors
(Measurement Error) for each individual transport type. More information
on the error calculations can be found in Table 1, the methods section, and
in Supplementary Table 3. b Re-scaled “cold” experiments
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which is of the same order of magnitude as the levitation duration
observed in our experiments (Supplementary Movies 3, 4, 6). For
R= 0.1 cm, we predict that levitation can last for 51.5 s, but many
pellets of this size hit the end of the tray, therefore this prediction
cannot be validated by our experimental data.

In our calculations we found that the levitation force produced
by boiling is about 6.8 times stronger on Mars than it is in our
simulation experiments (Fig. 5b). This results in an increased
duration of the levitation and the possibility for larger pellets to
be transported than under terrestrial gravity, even at a relatively

low surface temperature of 278 K. Therefore, the reduction of
gravitational acceleration acts in favor of the levitation of pellets
as well as any mass wasting triggered by the boiling of transient
water41. Similar equations applied to levitating of CO2 blocks over
sand have also shown that the levitation processes is less intense
on Earth than on Mars and further that a denser atmosphere also
tends to inhibit levitation43. The temperature of the sediment
plays an important role in the physics of boiling because it sets
the temperature gradient between the surface and the object,
which drives the heat flux powering the levitation45.

a b c d

e f

i j

g h

k l

i

j

k

l

Fig. 3 Example of transport processes. Frames from video of a “warm” temperature experiment (Run 5). Images after a 1 s, b 3 s, c 4 s, d 10 s, e 44 s, f 60 s,
g 122 s, and h 303 s after the start of the experiment. White arrows point to sand saltation plumes, black arrows point to levitated pellets of wet sediment
(a, i), to dry material superposing the channel (d), and to the last observed dry avalanche (h). i–l Show detailed excerpts of b–e, respectively. Contrast and
brightness was adjusted on all images individually for clarity. Note for scale that the metallic tray is 0.9-m long and 0.4-m wide
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Discussion
Scaling to the lower martian gravity has revealed several impor-
tant differences with respect to our experimental results: (1) for
any given temperature condition larger sediment pellets should be
levitated, (2) pellets should levitate for longer, (3) pellets should
displace more sediment and create larger “channels”, and (4)
significant pellet-levitation should occur even under our “cold”
experiment conditions.

The combination of larger pellets and the longer duration of
levitation would result in a significantly larger spatial area being
affected by the flow than under terrestrial gravitational accelera-
tion. The trajectory of the majority of pellets in our “warm”
experiments is interrupted by collision with the end of the test-
section. A detailed reconstruction of their trajectory is beyond the
scope of this work, but given the relatively high speeds of the
pellets we can conservatively estimate a 2 m runout for our
“warm” experiments. As the speed of the pellets is partly driven
by gravitational acceleration we would expect equivalent pellets
on Mars to travel more slowly (at worst at ~1/3 the speed
observed in our experiments), hence their runout would likely be
contained within our test-section at around 60–70 cm. Our sim-
ple calculations predict up to 48 times longer levitation of pellets
considering martian gravity, which is likely to be an

overestimation, but even a levitation of 10 times longer would
result in a decameter-extent of sediment disturbance, which
should be visible in remote sensing images. We do not anticipate
that sediment pellets themselves could reach a size readily visible
in remote sensing images.

The sediment transport directly engendered by pellet levitation
(excluding the secondary dry granular avalanches) is defined by
the number and size of pellets that are released. The maximum
size of pellets that can be levitated is defined by the levitation-
force generated by boiling, yet it is likely the combination of flow-
rate and infiltration rate also influences the actual sizes and
numbers of pellets that are released. Because infiltration is driven
by gravity, for the same quantity of water the infiltration would be
1/3 slower; however, further experiments would need to be per-
formed to understand the exact relation between pellet size/
number flow rate and infiltration rate.

To conclude, our calculations show that the levitation force is
about 6.8 times stronger on Mars (Fig. 5b), resulting in levitation
lasting up to 48 times longer. This would allow levitating sedi-
ments to travel decameters downslope, even with the relatively
small amounts of water used in our experiments. Such dis-
turbances could be detectable in remote sensing data, although
the detailed morphologies would be unresolvable. Importantly,
the calculations show that sediment levitation would be viable on
Mars even under conditions similar to our “cold” experiments, so
this process could be widely applicable on Mars today and in the
recent past.

The driver for the enhanced transport in the “warm” runs is
the combination of a rapid delivery of water to the surface and the
relatively warm sediment temperature. Our experimental results
do not assume a particular source of this water and below we
discuss how our results might apply to the various source
mechanisms already proposed. Mechanisms that deliver water
rapidly to the martian surface are summarized in the context of
gullies by Heldmann and Mellon5 and Heldmann et al.6 For
example, aquifer-release4, 6, 12, 22 is one possibility for rapid water
release, but is unlikely to explain mass wasting occurring near the
top of isolated dunes and massifs or crater rims3, 15, 17, 18,
although this mechanism cannot be ruled out for every gully on
the surface on Mars and has recently been invoked to explain
RSL34, 46. Our experimental results are consistent with the large
range of proposed aquifer discharge rates in terms of flow rate
and also the requirement of relatively warm surface temperature
to melt the confining plug47.

In the recent past in about 20% of the spin/orbital conditions
(high eccentricity, high obliquity, perihelion close to the solstice)
between 5 and 10Ma ago48, 49, the climatic conditions favor the
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Fig. 4 Schematic representation of a block over an inclined plain. The block
represents a wet sand pellet in contact to dry sand with T0> Te. The block
is subject to three forces in competition: the weightW, the friction force FT,
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Fig. 5 Evolution in the ratio of the levitation force to the weight force. The ratio of the levitation force Fe to the weight force W cos θ of a block over a slope
of 25° with time is calculated for the physical parameters of the martian surface and of our experiments in the Mars simulation chamber (Supplementary
Table 1) and use a cylindrical geometry. The levitation of the block occurs when the ratio is greater than 1 (dashed black line). a Ratio calculated for
different sand temperatures Ts and sizes of block for parameters of the Mars simulation chamber and H/D= 0.75. b Ratio calculated for different
temperatures Ts for parameters of martian surface and of the Mars simulation chamber and H/D= 0.75 with R= 0.01 m
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formation of a near-surface ice-bearing layer that freezes and
thaws regularly (e.g., daily) due to small surface temperature
variations around the freezing point50, leading to a possible
availability of transient liquid water51. This transient liquid water
could be a possible source for our observed transportation
mechanism, if the parameters are correct (e.g., flow rate high
enough to overcome infiltration, low pressure).

Water trapped as ice is common today as inferred from a
variety of remote sensing data and modeling both within and on
the martian surface52, 53, and across a wide latitudinal range from
polar54–56 to low latitudes around ~25°57. For example, ice is
thought to be a primary component of the mid-latitude atmo-
spherically derived dust-ice mantle58, as well as of mid-latitude
glaciers (e.g., rock glaciers59). Under current climatic conditions
melting would have to occur within or below isolating layers such
as dust, regolith, or ice15, 18, 60 to mitigate the effects of sub-
limation. Even today, locally warm surface temperatures above
the frost point are possible on Mars26, 32, 33, 35, 42. In order for our
results to be relevant such melting would have to be rapid enough
to reach the flow rates in our experiments, or more likely, melt
could accumulate beneath or within a protective layer before
being released to the surface suddenly.

The main argument against water-based hypotheses for
presently active features is they all require significant volumes
of liquid water and/or brines3, 4, 17, 22, 34–36, 46, 61. Our newly
identified process opens up the possibility that the amount of
liquid water needed for present-day and geologically recent
downslope transportation on Mars has been overestimated.

Furthermore, our experiments could help to answer still open
questions about the formation of RSL. Although comparison with
them show that their general growth-speed is relatively low
(0.25–1.86 cm sol−1)46 compared to the sediment transportation
processes observed in our experiments, there is the possibility that
RSL could propagate rapidly, but episodically (e.g., only during
the high peak temperatures at noon34), in which case their flow
rates should be comparable to those used in our experiments
(approximately 7 ml s−1 as calculated from values presented by
Stillman et al.46). The processes revealed by our experiments
could also help to address the problem that RSL require a high
water budget if they propagate by infiltration alone (about
1.5–5.6 m3 m−1 as calculated by Stillman et al.46). The length of
RSL could be achieved with ~10 times less water (value is not
scaled to martian gravity, which would make it even larger based
on our calculations) if boiling is causing saltation, pellet levita-
tion, and granular avalanches. However, our experiments concern
the transport mechanisms by unstable water at the martian sur-
face and do not inform the contentious debate about how this
water was produced or brought to the surface, which is discussed
in other papers5, 6, 34, 46, 60.

The sediment transport processes we describe here are
applicable anywhere in the solar system where a liquid would be
unstable, and where temperature differences between the liquid
and substrate could occur. Our experiments have the potential to
help us understand mass wasting on bodies such as Titan62 and
Vesta63. However, Mars has the ideal combination of environ-
mental parameters for this process to operate with water, as well
as possessing many well-documented mass-wasting landforms
that it might help explain.

The amount of water required to move sediment on martian
hillslopes may have been overestimated due to the absence of the
relevant sediment transport processes on Earth whose
landscape is used as the basis of planetary comparison. This
conclusion demonstrates the unique capability of laboratory
experiments for exploring and understanding planetary surface
processes, and shows how, on Mars, even a little water can go a
long way.

Methods
Detailed experimental setup and parameter justification. The experiments were
performed in a 2-m length and 1-m wide Mars simulation chamber located at
Open University. Two vacuum pumps were used to reduce the pressure at 7 mbar
at which pressure all experiments were started. Due to rapid release of water vapor,
average pressures for the 60 s of water flow have values around 9mbar for each
experiment. The pressure within the chamber was measured with a Pirani gauge
and logged every second.

The sediment used was a natural eolian fine silica sand, with D50= 230.1 µm
and minor components of clay and silt, previously used in similar experiments at
the Mars simulation chamber at the Open University40, 41, 64. We chose this
sediment, because it is broadly consistent with sediments that are found on
Mars41, 65 and its unimodal nature aids the development of physical models. A ~5-
cm depth sand bed was placed in a rectangular metallic tray (0.9-m long, 0.4-m
wide, and 0.1-m deep). This thickness was chosen to avoid spill over of sediment at
the end and sides of the test bed during “warm” experiments (which would
influence our transport volume measurements), and to have sufficient material to
avoid exposing the underlying tray upon erosion of the substrate. The angle was set
to 25°, which is within the range of slope angles reported for gullies on Mars5, 7, 16

and a compromise between the different slope angles observed at contemporary
active mass wasting sites, e.g., dark flows within polar gullies (~15°)26, linear dune
gullies (~10°–20°)17, 61, and RSL (~28°–35°)32, 33, 35, 46. Our chosen angle is below
the angle of repose for martian and terrestrial sand dunes (between 30° and 35°
based on remote sensing studies66, and at ~30° based on experiments67) and hence
the movements we measure are not related to dry granular flows (slip face
avalanches). The water outlet was placed 1.5 cm above the sediment surface, 8 cm
from the top wall of the tray. The height of the water outlet was chosen to be as
close to the surface as possible, yet high enough so as not to interfere with the
subsequent sediment ejection. The temperature of the sediment was monitored
every second using four thermocouples placed 8 cm from the edges and 20 cm from
the top/bottom at a height of ~2 cm within the sediment. Two thermocouples were
used to monitor the water temperature inside the water reservoir located outside
the chamber. All experiments were recorded with three different cameras, two
webcams in the interior of the chamber, and one video camera outside the
chamber. Each experiment was defined as a 60 s flow of water on the sediment with
a water volume between 620 and 670 ml, resulting in flow rates between 10.3 and
11.2 ml s−1. This flow rate is intermediate between Conway et al.40 (~80 ml s−1) and
Massé et al.41 (~1–5 ml s−1) in order to both (a) obtain erosion by overland flow
under terrestrial (or non-boiling) conditions, and (b) under boiling conditions
minimize the boundary effects (i.e., contact with the tray edges), but also (c) obtain
a steady and reproducible flow rate. The instruments were left recording and the
chamber was kept at low pressure for at least a further 10 min after the end of water
flow. Averaged values and standard deviation values for pressure, water
temperature, and surface temperature were calculated during the 60 s of the water
flow and are presented in Table 1. Our experimental installation is somewhat
comparable to that of Coleman et al.68 with the main difference being that their
experiments were performed under terrestrial pressures and not under low martian
pressures, which are fundamental to observe the transport mechanism investigated
in this work.

Production of DEMs. Before and after each experiment the sediment test bed was
photographed ~40 times from a down-looking (nadir) viewpoint to construct a 3D
model using “Structure-from-Motion”69 software Agisoft PhotoScan. Twelve fixed
targets of 2.67-cm diameter were positioned within the models and marked by
standard black-on-white printed target markers. These targets allowed the resulting
3D models to be scaled and coregistered. Root mean square errors and reprojection
errors can be found in the Supplementary Table 2. DEMs at 1 mm pix−1 and
orthophotos at 0.2 mm pix−1 were exported to ESRI ArcGIS. The values for the
volume of erosion and deposition were calculated by differencing the before and
after DEMs. In order to estimate the volume transported we summed the erosion
and deposition volumes and divided this number by two.

Mapping of transport mechanisms. In ArcGIS, all surface changes were manually
mapped using the orthophotos from before and after the experiments and a hill-
shaded visualization of the DEM from after the experiments. Videos were also used
for additional identification of different transportation mechanisms to improve
mapping. As seen in the map of Fig. 1, we used four different units for transport
types: (1) overland flow (blue unit), characterized by a visible erosion and
deposition of sediment via liquid water flows on top of the surface identifiable by
comparing the before and after photos, inspection of the hillshade, and video
observation; (2) percolation (green unit), regions where liquid water infiltrated and
wetted the sediment (wetted sediment bodies) identified by the darker color in the
after images, yet lack of visible transport by entrainment; (3) dry avalanches/
saltation (yellow unit), characterized by the movement of dry sand (dry landslides)
with no visible influence of wet sediment (no change in color); and (4) pellets (red
unit), wetted sediment bodies that were ejected or detached from the source area
and levitated/roll over the surface, identified by a color and elevation change, and
by video observation. We used the mapped outlines to partition the volumes of
sediment eroded and deposited to these different processes. This method of
mapping surface changes in planview only provides a crude estimate of the
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partitioning. For example, pellets deposited early in the experiments can be sub-
sequently buried by dry flows, hence using our mapping scheme these pellets would
be included in the volume assigned to the “dry avalanches/saltation” category.
Therefore, we performed additional manipulations (including error calculations,
described below) to improve this partitioning (Supplementary Table 3).

Error calculations. “Interpolation” for the overland flow in “warm” experiments.
Here, we adjusted the volumes of the overland flow category calculated in planview
to account for the fact that the surface was lowered by other processes. Video
observations show that the area that was mapped as overland flow on the basis of
the “after” DEM was heavily eroded at the beginning of the experiment by pellet
ejection and dry avalanches/saltation (Supplementary Movies 3, 4). These effects
are not taken into account when simply calculating volumes based on our planview
mapping. Hence, we performed an adjustment by assuming the initial surface for
the overland flow could be adequately approximated by an interpolated “natural
neighbor” surface fitted to elevations extracted from the “after” DEM within a 2-
mm buffer outside the digitized boundary (instead of using the “before” DEM as
the initial surface). To quantitatively assess the uncertainty of this assumption we
calculated the mean volume attributed to overland flows for “cold” experiments
using the interpolation method, as described above, and compared it to the mean
volume derived using the original method using the “before” DEM. We then scaled
this uncertainty for the smaller area covered by the overland flow in the “warm”
experiments. The “Interpolation Error” ranged between ~3.1 and ~3.4 cm3 for the
three “warm” experiments.

Application of the interpolation method, described above, leaves a certain
volume of material unaccounted for. This volume was arbitrarily partitioned
50–50% to pellets and dry avalanches/saltation, because we do not know the exact
partitioning. We consider that this 50–50 partitioning as the maximum uncertainty
on the volume partitioning. The “Superposition Error” ranged from 14 to ~15 cm3

for the three performed “warm” experiments.
In order to assess the “Measurement Error” associated with our volume

calculations we performed test measurements on surfaces undisturbed by the flows
within a fixed rectangular area (~46 cm2). We made one test measurement per
experiment. The resulting transport volumes were then scaled to the areas covered
by particular transport types (Fig. 1b, e) to obtain the errors in their total volumes
(Supplementary Table 3). If our volume calculations were perfect, the test areas
should give zero-volume changes. We took this approach because uncertainty on
volume calculations performed by differencing DEMs arises from a number of
sources (photo quality, target misplacement, blunders in point matching,
differences in lighting and texture, etc.), which are difficult to assess individually.
The “Measurement Error” varied between ~1 and ~31% error for the whole area of
the flows (Supplementary Table 3). For calculation of the “Total error of Runs” we
scaled the “Measurement Error” to the total area. “Interpolation Error” and
“Superposition Error” have no influence on the total error and only apply to the
subdivision of the total volume into the different transport types (Fig. 2, Table 1,
Supplementary Table 3). Mean errors for each transport type and for the “Total
error of Runs” were calculated using the method of error propagation.

Definition of overland flow. The overland flow runoff length and width maxima
were measured in ArcGIS. The runoff length is defined as the maximum linear
distance between the most upslope sediment disturbance (uppermost sediment
erosion via liquid water) and the lowermost sediment disturbance (lowermost
sediment deposition via liquid water). The runoff width of the overland flow is
defined as the maximum linear distance between the rims of the overland flow
perpendicular to the runoff length. Also these values are presented in Table 1.

Data availability. All relevant data are available in the article and Supplementary
Information files, or are available from the corresponding authors upon reasonable
request.
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