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Abstract: Advances in knowledge resulting from the sequencing of the human genome, coupled with
technological developments and a deeper understanding of disease mechanisms of pathogenesis
are paving the way for a growing role of precision medicine in the treatment of a number of human
conditions. The goal of precision medicine is to identify and deliver effective therapeutic approaches
based on patients’ genetic, environmental, and lifestyle factors. With the exception of cancer,
neurological diseases provide the most promising opportunity to achieve treatment personalisation,
mainly because of accelerated progress in gene discovery, deep clinical phenotyping, and biomarker
availability. Developing reproducible, predictable and reliable disease models will be key to the
rapid delivery of the anticipated benefits of precision medicine. Here we summarize the current state
of the art of preclinical models for neuromuscular diseases, with particular focus on their use and
limitations to predict safety and efficacy treatment outcomes in clinical trials.
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1. Introduction

Neuromuscular diseases are a broad and heterogeneous group of conditions characterized by
an impairment in one or more components of the motor unit, defined as the motor neuron and the
muscle fibres it innervates. Whilst most are individually rare, collectively neuromuscular diseases
are significantly prevalent, with a cumulative prevalence of approximately 100-200 cases per 100,000
individuals worldwide [1], accounting for a substantial proportion of population-wide health care
costs [2]. Very few treatments currently exist to treat these diseases. Nevertheless, as research
progressively disentangles their pathogenic mechanisms, many opportunities are finally starting to
land in the clinic.

Precision medicine refers to a treatment approach wherein the most appropriate treatment for an
individual is chosen based on their specific disease manifestation, alongside their genetic/epigenetic
information and other features such as their microbiome, age, nutrition, and lifestyle. The clinical
and genetic heterogeneity of neuromuscular diseases make them ideal candidates for personalized
therapeutic approaches, with many individuals suffering from rare or ultrarare diseases that cannot
be treated by conventional blanket approach treatment. One example is Duchenne muscular
dystrophy (DMD), the most prevalent childhood-onset muscular dystrophy, where progressive
muscle degeneration and weakness is caused by mutations in the DMD gene, leading to loss of
dystrophin protein production [3]. The vast majority of DMD patients carry an exon deletion (~65%)
or a duplication (~10%) of one or multiple exons and these mutations tend to manifest in regions of
vulnerability between exons 2 and 20 and exons 45 and 55 [4-6]. In addition, small mutations (insertions,
deletions, nonsense mutations and splice site mutations) account for the remaining ~25% mutations
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and occur throughout the length of the gene [4]. Excision of specific exons, or exon skipping, by use of
antisense oligonucleotides (AON) to allow restoration of the disrupted reading frame and therefore
production of a shortened but functional dystrophin protein, has surfaced as a promising therapy
for DMD [7]. Therefore, diagnosis by genetic sequencing has become a crucial tool in determining
eligibility for these treatments, as multiple AON products need to address the large series of mutations
carried by DMD subjects.

While presenting new challenges for researchers, precision medicine is rapidly taking the lead
in the pursuit of radically transforming health care. Choosing the appropriate disease model that
recapitulates the complexity and heterogeneity of patients is therefore paramount to understand
disease mechanisms and increase the chances of success of translating a treatment opportunity into a
safe and effective marketed drug.

In this review, we aim to discuss the currently available tools used to model neuromuscular diseases and to
evaluate their utility and applicability to personalized medical research and therapeutic development (Table 1).

2. Cellular Models

2.1. Myoblasts

Primary myoblasts (activated satellite cells) obtained from human subjects or animal models
typically go through multiple rounds of cell division until reaching confluence in growth media,
followed by iterations of cellular fusions to form multinuclear myotubes and eventually terminal
differentiation [8]. Due to several inherent traits of human-derived muscle cells, including the slower
growth rate as well as the flattened morphology, primary human myotubes typically exhibit poorer
contractile activity than their mouse counterparts in response to electric stimulation [9]. Obtaining a
substantial number of satellite cells from skeletal muscle biopsies of patients is markedly limited
by the restricted proliferative capability of activated satellite cells in culture. In order to overcome
this limitation, myogenic conversion of non-muscle primary cells, such as primary human and
murine fibroblasts from skin, has been widely employed, mainly using transduction of MyoD gene
(myogenic differentiation), a master regulator of skeletal muscle differentiation [10]. In order to
increase proliferative capacity, transduction with both telomerase-expressing and cyclin-dependent
kinase 4-expressing vectors has been used to produce immortalized human muscle stem-cell lines
from patients with different muscle diseases such as DMD, limb-girdle muscular dystrophy type
2B, facioscapulohumeral muscular dystrophy, oculopharyngeal muscular dystrophy and congenital
muscular dystrophy [11]. These immortalized cultures have been extensively used both to study
disease mechanism and to test treatment strategies.

2.2. Induced Pluripotent Stem Cells (iPSCs)

The development of induced pluripotent stem cell (iPSC) technology has brought a great paradigm
shift in the field of precision medicine [12] and now they have a prominent role as a tool for disease
modelling and drug screening. Moreover, they are highly expandable, are free from the ethical issues
linked to the use of embryonic stem cells (ESCs), and their source of cells easily accessible.

Two major strategies have been recently developed to differentiate PSCs into satellite-like cells.
The first involved overexpressing PAX7, the master transcription factor for satellite cells, in an inducible
fashion [13]. After being generated from human embryonic stem cells and iPSCs, these cells showed
capability for in vitro expansion and differentiation, as well as engraftment and myofibre formation in
immunodeficient mice [13,14]. The second strategy involved the use of a small molecule, and consists
of glycogen synthase kinase 3 beta (GSK3beta) inhibition, in order to activate the Wnt pathway, as well
as treatment with fibroblast growth factor 2 (FGF2) in a minimal medium [15-20]. Alternative protocols
have used bone morphogenic protein 4 (BMP4) inhibition to promote differentiation into the myogenic
lineage [21-23], or Notch signalling inhibitor DAPT [24]. Purified by fluorescence-activated cell sorting
(FACS) [15,19,24], partially purified, or unpurified [16,17,20,21,23], cell mixtures are then plated.
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Table 1. Key features of the various models used for neuromuscular diseases.
Stem Cells . . Other Animal Computational
Models. Myoblasts Derived Cultures Organoids Muscle-on-a-Chip Mouse Models Models Models
oY T - - -
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Production Medium, depends . . High, requires . . . . .
complexity Low on protocol Mediumy/High engineered chambers High High/Medium Medium/High
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readouts, individual individual cell . function analyses contributions only
assay . . possible at the - both at cellular both at cellular .
cell analyses possible  analyses possible . possible . . of known variables
tissue level and tissue levels and tissue levels
Duration of Days to weeks,
. Minutes to days Days to weeks Days to weeks depends on platform  Weeks to months Days to weeks Days
experiments .
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Low variabilit Low variability
Variability and Low variability and High variability High variability Low variability, Low variability, moderate Y but requires
clinical relevance relevance and relevance and relevance high relevance high relevance relevance in vivo
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Level of control . . . . . . . .
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Useful for initial Useful for
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feasibility High Medium/High depends on tissues platform design Low High High
. Medium/High, .
Precision Low, easy to High, takes into ng.h’ depend§ on High, allows high . easy to manipulate ngh wh?n qsed
. . . Lo tissues and is High, depends on in combination
medicine manipulate but account individual . level of control and s but low . .
. L subject to model o model availability - with in vitro/vivo
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By generating an in vitro DMD model from patient-derived iPS cells, Shoji et al. noted excess Ca**
influx in DMD myocytes when compared to control myocytes in response to stimulation via electricity.
This was alleviated by restoring dystrophin expression via exon skipping, therefore establishing a
model that recapitulates early DMD pathogenesis and is appropriate for assessing the efficacy of
exon-skipping drugs by phenotypic assay [25]. IPSC models of several other neuromuscular diseases
are currently available, including Miyoshi myopathy, a muscle disease caused by the mutation in
dysferlin [26], Pompe disease, a paediatric disease caused by lysosomal glycogen accumulation in
skeletal muscle that leads to muscle weakness [27], and myotonic dystrophy type 1, a multisystem
disorder that affects skeletal and smooth muscle caused by a CTG trinucleotide repeat expansion in the
non-coding region of the DMPK gene [28]. Overall, the introduction of iPSC technology has allowed
scientists to model diseases directly from patients” cells, this being a cornerstone for personalized
medicine. However, if they are planned to be used for personalized cell therapy, several issues remain
to be addressed, including alterations in the differentiation efficiency, line-to-line variability, and risk
of tumorigenicity.

2.3. Urine-Derived Stem Cells

In addition to representing an ideal source of cells for generating iPSCs, with a reprogramming
efficiency approximately 100-fold higher than that of fibroblasts [29], urine stem cells (USCs) can also
be induced into myogenic lineage by direct MyoD1 reprogramming [30]. Muscle differentiation can be
further enhanced by adding 3-deazaneplanocin A hydrochloride [31]. These cells carry pluripotency
markers such as CD29, CD105, CD166, CD90, and CD13 [32], and are able to self-renew and differentiate
into the mesodermal, endodermal and ectodermal lineage [33]. Direct reprogramming of these cells,
which can be easily isolated by centrifugation method and standard cell culture, has been recently
shown to efficiently and reproducibly establish human myogenic cells from patients with DMD
and limb-girdle muscular dystrophy (LGMD) type 2 [30]. Upon further molecular characterisation,
this cost-effective and efficient in vitro model system shows great potential for more efficient drug
development and targeted therapies development for neuromuscular diseases.

2.4. Skeletal Muscle Organoids

As the use of human iPSCs for tissue engineering and disease modelling expands, iPSC-derived
organoids are rapidly becoming a powerful tool for modelling human organogenesis, homeostasis,
injury repair and disease aetiology [34]. These miniature 3D tissues are generated using a combination
of signposted differentiation, morphogenetic processes, and the embryonic organogenesis mimicking
intrinsically driven self-assembly of cells, resulting in architecture and function remarkably similar
to their in vivo counterparts. By using natural or synthetic scaffolds to create the artificial tissue [35],
these models account for the cell-cell and cell-extracellular matrix interactions as well as the mechanical
and/or chemical cues [36,37]. The development of physiologically relevant 3D in vitro models holds
great promise to provide more economic, scalable and reproducible means of testing drugs and
therapies for successful clinical translation. Few studies have reported methods to engineer human
skeletal muscle tissue [38—43]. Induced myogenic progenitor cells derived from multiple human iPSC
lines have been shown to form functional skeletal muscle tissues and are able to survive, progressively
vascularize, and maintain functionality when implanted into the hindlimb muscle or dorsal window
chamber in immunocompromised mice [44]. Isogenic human iPSC-derived 3D artificial muscles from
patients affected by DMD, limb-girdle type 2D, and lamin A/C (LMNA)-related muscular dystrophies
have been recently generated, recapitulating several pathogenic hallmarks in these diseases and
also showing potential for muscle engraftment [45]. These studies have indicated that generation of
fully functional artificial muscles require the contribution from other cellular lineages, for example
vascular cells and motor neurons [45-49]. The major challenges the field is currently facing are mainly
related to improving organoids’ scalability as well as their complexity and maturity. Recent success in
growing brain organoids using multiwell spinning bioreactors represents a significant step towards



J. Pers. Med. 2020, 10, 178 50f 15

high-throughput drug screening via large-scale organoid generation [50]. These models resemble more
closely foetal than adult tissue, therefore optimisation of protocols is essential before being able to
advance these tissues into replacement therapy. Bearing in mind the speed at which the field has
advanced over the past few years, the range of possible future applications of this platform in the
study of human diseases and in regenerative medicine is expected to rapidly expand.

2.5. Muscle on Chip

Advancement in culturing models with mixed culture capabilities, together with the latest
developments in 3D printing, microfluidics and microfabrication engineering, has led to the rapid
expansion of organ-on-chip technologies. These platforms have recently attracted substantial interest
due to their potential to be informative at multiple stages of the drug discovery process, while offering
new ways to model disease states and perform mechanistic investigations in vitro. The critical
and defining features of these platforms are the 3D structure, the possibility of integration of
multiple cell types to reflect tissue physiology, and the presence of relevant biomechanical forces [51].
Organ on chips have been adapted for the human gut [52], heart [53], blood-brain barrier [54],
and kidney [55]. Human primary myogenic cells have been engineered to form 3D myobundles, which
respond to electrical stimuli and undergo dose-dependent hypertrophy or myopathy in response to
pharmacological stimulation [40]. The decreased muscle regeneration capacity and weakness observed
in DMD patients have been recapitulated in a human dystrophic skeletal muscle on a chip [56]. Using a
3D photo-patterning approach, other researchers have developed a skeletal muscle platform by confining
a cell-laden gelatin network around two hydrogel pillars, which serve as anchoring sites for the cells, as the
muscle tissues form and mature [57]. In other instances, neurons and rhabdomyocytes, both originating
from mouse embryonic cells, have been differentiated in a 3D hydrogel culture, to effectively constitute a
neuromuscular unit on a chip [58].

Tissue engineering requires a deep understanding of the functional interplay of cell types and
the effect of the scaffold on cellular architecture, as well as careful characterising and validation of
the model for the purpose of study. Additionally, due to safety concerns around the potential for
unexpected toxic side effects, the biocompatibility of the materials to be used must be well profiled [51].

As iPSCs or adult stem cells taken from mass production of tissue organoids are increasingly
employed as a source of cells for these platforms, organ on a chip represents an ideal tool for
precision medicine.

2.6. Other

Sources in addition to the muscle-derived cells or reprogrammed cells can be employed to model
muscle diseases. For example, melanocytes from DMD patients show the same morphological alterations
as DMD muscle-derived cells [59]. Cultured melanocytes from skin biopsies have been shown to
be a useful alternative to muscle biopsies for the mRNA-based molecular diagnosis of DMD [60].
Additionally, in the case of Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM),
diseases caused by mutations in collagen VI genes [61], patients” derived melanocytes recapitulated the
mitochondrial dysfunction and ultrastructural alterations that are found in patient myoblasts [62].

3. Animal Models

3.1. Mouse Models

A large fraction of currently available therapies have been developed with the help of animal
models, especially mice, mainly due to the high similarity in sequence homology and organ physiology
to humans, as well as cost-effective husbandry. Additionally, the external environment in mice studies
can be well controlled and monitored and studies using inbred mice allow resampling isogenic
individuals, therefore minimising variability.
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Nevertheless, many differences remain: mice are smaller in size, have a markedly reduced lifespan
and an increased heart rate, just to name a few. Approximately 1% of human genes are not present in
the mouse genome [63], while the differences in the promoter regions, non-coding sequences, and RNA
splicing might be even more marked, accounting for species-specific disparities in gene expression that
in some cases can affect disease phenotype [64,65]. Overall these considerations, together with the
realisation that treatments in mice have frequently resulted in disappointing outcomes in clinical trials,
have recently called into question the translational potential of findings in mouse models [66].

One way of making mouse models for studying human diseases more suitable is to follow
approaches pioneered over 30 years ago, which comprise incorporating human DNA into the
mouse genome (genetic humanisation) and/or engrafting human cells and tissue into mouse tissues
(cellular humanisation) [67-70]. Genetic humanisation can be achieved through a variety of methods,
most commonly by injection of plasmids or artificial chromosome vectors into the mouse zygotes.
Transgenic models have substantially contributed to advancing the understanding of human disease
and have helped develop treatment strategies. One notorious major breakthrough in biomedical
research using transgenic mice carrying the human SMN2 gene led to the recent clinical approval
of an AON, able to block an intronic splicing silencer in human SMN2 [71], increasing full-length
SMN?2 isoform expression, which compensates for the loss of SMIN1 that causes spinal muscular
atrophy [72-75].

However, some key features must be considered: the cDNA or genomic DNA used to generate
the transgenic mice tend to integrate randomly in multiple copies and thus overexpress the protein of
interest. Overexpression of wild-type proteins may give a dose-dependent phenotype not related to
the disease mutation, like in the case of the androgen receptor [76], and RNA binding proteins, such as
TAR DNA-binding protein 43 [77]. The rise of genome engineering technology has revolutionized
the field of molecular biology by allowing the generation of physiological, humanized knock-in mice
models by precise editing [78,79]. Most DMD preclinical studies have been carried out in the mdx
mouse that carries a nonsense point mutation in DMD exon 23 [80], which is only one out of the
thousands of possible variations in this gene present in DMD patients. Despite a lack of dystrophin
expression, these mice do not exhibit dilated cardiomyopathy or a shortened lifespan. To improve upon
this model, a number of double knock-out mouse models have been created, such as mice deficient in
both dystrophin and its homolog utrophin, which show decreased cardiac function and survival [81].
In recent years by using clustered regularly interspaced short palindromic repeat (CRISPR)-based
editing, many new DMD mouse models carrying deletions, frameshifting mutations, a point mutation,
and a mutant version of the human DMD gene have been generated [82-88], making testing of exon
skipping strategies targeting different parts of the DMD transcript possible. It is worth considering that
recent studies to assess the effects of disease-causing mutations or environmental stimuli in different
mouse strains found a strong influence of the genetic background on phenotypic responses [89],
highlighting the importance of genetic diversity of animal models in biomedical research.

It is becoming more and more evident that choosing the right model is critical. Depending on the
specific research question, often combining different strains is the most appropriate way to minimize
the risks of a lack of reproducibility of translational research. Despite the obvious differences between
mice and humans, genetic mouse models have allowed us to look at the effects of a mutation at a system
level. Combining genetic engineering, which has made genetic modifications of endogenous targets
possible, with the use of genetic with cellular humanisation, we now have powerful tools to study
human pathophysiology in vivo, in cell-autonomous and non-cell-autonomous contexts [90], as well as
excellent preclinical models to identify and test the pharmacodynamic and pharmacokinetic properties
of a treatment strategy, from gene therapy to small-molecule and cell replacement [91]. Overall,
these considerations further support the use of ‘mouse precision medicine’ as a better prototype for
future mouse studies.
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3.2. Drosophila Melanogaster

Drosophila melanogaster can serve as a useful model of human neuromuscular disease, since flies
have a neural circuitry, albeit much simpler than in humans, as well as multinucleated muscle cells
and neuromuscular junctions (NMJ). The mechanisms of synaptic transmission seen at the NMJ in
humans are conserved in Drosophila, with a key difference being that Drosophila uses glutamate,
not acetylcholine, as the neurotransmitter. The ability to genetically manipulate Drosophila is useful
when trying to better understand how certain myopathies occur. Moreover, their short life span and
large progeny make flies a good system for carrying out large-scale genetic screens. Drosophila has
helped us understand more about the NM]J, and in particular, the role that the dystrophin—glycoprotein
complex plays (DGC). Like in mammals, the Drosophila gene of dystrophin also encodes multiple
isoforms, which contain highly conserved domains and are mainly expressed in the muscle and the
nervous system [92-94]. Studies into DGC function at the NM]J of Drosophila have shown that it
plays an important role in the retrograde control of neurotransmitter release, neuronal migration and
muscle stability and thus may help explain how neuromuscular pathology can occur. Removal of a
dystrophin isoform (DLP2) in Drosophila, which is normally located at the post-synapse, has been
shown to lead to an increase in presynaptic neurotransmitter release, causing increased muscle
depolarisation, thus indicating a role of dystrophin in regulating presynaptic neurotransmitter
release [95]. Previous work has shown that by studying sensory neurons (photoreceptor cells) in
Drosophila [96], a lot can be learnt about axon guidance and target recognition. Perturbation of
dystrophin and dystroglycan in photoreceptor cells led to disrupted axon guidance, similar to neuronal
defects seen in human muscular dystrophy patients. Drosophila not only aids us in understanding
the role that certain proteins play at the synapse of the NM]J, but also serves as a good model for
studying age-dependent progression of muscular dystrophy. The reduction in levels of expression of
dystrophin isoforms in Drosophila using RNAi led to muscle degeneration in larval and adult flies [95],
thus potentially providing a useful model to help us understand Duchenne muscular dystrophy
pathogenesis in humans.

3.3. Zebrafish

The zebrafish (Danio rerio) has become a useful organism for studying neuromuscular genetic
disorders [97]. Comparison to the human reference genome has shown that approximately 70% of
human genes have at least one zebrafish orthologue [98], and dozens of mutant zebrafish lines have
already been generated to model the most common human myopathies [99-101]. As vertebrates,
they possess desirable attributes, including small size, rapid development, and genetic tractability [97].
Zebrafish embryos are transparent, develop externally and can be easily genetically manipulated [102],
making this model ideal for phenotypic high-throughput screening platform to investigate drug
efficacy in a whole-organism context. The most commonly adopted screening criteria for assessing
neuromuscular phenotype are spontaneous coiling, ability to hatch on time, swimming behaviour,
and birefringence assay [103]. Compared to target-based drug discovery, a phenotype-driven approach
offers several key advantages [104], such as rapid identification of compounds that have poor
bioavailability, exhibit toxicity or off-target effects. By screening small-molecule libraries in the
dystrophin-null zebrafish (sapje model), aminophylline, a non-selective phosphodiesterase inhibitor,
was found to improve survival rate in animals, restore normal muscle structure and up-regulate the
cAMP-dependent PKA pathway without affecting dystrophin expression [105]. In the sapje model,
the mitochondrial defects present in DMD patients were recapitulated, making it an optimal model
for the disease, and it was used to assess the effect of the cyclophilin inhibitor alisporivir treatment
in vivo, resulting in an improvement in the morphology of mitochondria and myofibrils, and in
mitochondrial respiration [106]. A zebrafish model showing severe myopathy has also been generated
for UCMD via a deletion in the col6al gene through the injection of an antisense morpholino [107]. Here,
defects in the mitochondria permeability transition pore (mPTP) were corrected with the cyclophilin
inhibitor NIM811 treatment [108]. In another study, the zebrafish model was used to test mitochondrial
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respiratory capacity after treatment with stable analogues of mPTP inhibitors [109]. Additionally,
the zebrafish model has also provided insight into functional aspects of disease pathogenesis for
several muscle conditions: for example, studies in zebrafish relatively relaxed (ryr) mutant, a model
of RYR1-related myopathies [110], have contributed to identifying oxidative stress as an important
disease mechanism in RYR1-related myopathies [111].

3.4. Caenorhabditis Elegans

With 40% of human disease genes having a nematode ortholog [112], and a fully sequenced
genome [113], C. elegans is a valuable model to investigate several human physiological and pathological
mechanisms. Studies of sarcomere maintenance and function in striated muscle led to the first
identification of many conserved proteins, including twitchin, unc-89 (obscurin), unc-112 (kindlin),
unc-45 (myosin chaperone) and unc-78 (AIP1) [114]. Using a large-scale screens in a C. elegans model
of muscular dystrophy, carrying mutations in the dys-1 and the hlh-1 genes, which are respectively the
homolog for the mammalian dystrophin and MyoD gene [115], compounds such as prednisone and
serotonin have been shown to be effective in reducing muscle degeneration [116,117]. The obvious
advantages of using this scalable and high-throughput model are counterbalanced by the limited
phenotypic analyses, such as counting the number of times a worm bends in a C-shaped fashion
in liquid in one minute, although new automated methods of quantifying muscle contraction and
relaxation kinetics are emerging [118].

4. Computational Models

In silico models are becoming an increasingly useful tool for investigating muscle function and in
helping us to understand which key players cause muscle pathology. These models integrate published
experimental data, thus allowing us to encompass the many variables linked to pathology in a single
model, enabling the study of multifaceted diseases. In doing these studies, one may understand better
the underlying interactions between different disease mechanisms that lead to pathology, which may
prove harder to do in live experiments. Over the last twenty years, big steps have been made in the
computational modelling of muscle. A recent development has been the creation of agent-based models
(ABMs), which allow us to assess what roles different biological agents play in muscle pathology,
both at cellular and systems levels. For example, the use of ABMs for DMD has indicated a link
between low satellite stem cell counts and impaired muscle regeneration symptom [119]. ABMs can
also be used to predict the outcomes of given scenarios based on the rules derived from the literature,
as well as having certain parameters that cannot be measured experimentally. This system can even
add software agents that mimic certain biological cells into the simulation, with the aim of helping
us to better understand their cellular interactions. This has been carried out in studies showing that
fibroblasts can affect a muscle’s susceptibility to disuse-induced atrophy [120].

However, these models do have their limitations: the simulated model is not a full replicate of
the muscle cell and its microenvironment, as it only accounts for the contribution of known variables,
which renders this model system not fully translatable to the in vivo situation.

5. Conclusions

The increasing availability of genetic and phenotypic information on patients with neuromuscular
diseases, coupled with the unprecedented opportunity to manipulate eukaryotic genomes to generate
disease models to study these diseases, has the potential to accelerate the translation of new therapeutic
opportunities from preclinical settings into medical practice. Among the models available to researchers,
3D cultures and muscle on chips are best suited for precision medicine applications, due to their
structural complexity and opportunity for genetic and environmental manipulation. However, as it
becomes increasingly evident that we need to abandon the concept of ‘one drug fits all’, modelling every
disease-associated variant for preclinical applications is likely to be unattainable and in many cases
unnecessary. Achieving model precision is critical in translational research as long as it provides
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predictive validity, which is the ultimate goal of preclinical work, and may further be enhanced by
using multiple models to capture the spectrum of mechanisms and testing therapies in diverse genetic
backgrounds that more closely reflect the human population as a whole. This may be particularly true
in complex diseases, where multiple risk loci concur to the development of a specific condition or to
the treatment response.
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