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Summary
Background Air pollution has been associated with gestational diabetes mellitus (GDM). We aim to investigate
susceptible windows of air pollution exposure and factors determining population vulnerability.

Methods We ascertained GDM status in the prospective Maternal and Developmental Risks from Environmental and
Social Stressors (MADRES) pregnancy cohort from Los Angeles, California, USA. We calculated the relative risk of
GDM by exposure to ambient particulate matter (PM10; PM2.5), nitrogen dioxide (NO2), and ozone (O3) in each week
from 12 weeks before to 24 weeks after conception, adjusting for potential confounders, with distributed lag models
to identify susceptible exposure windows. We examined effect modification by prenatal depression, median-split pre-
pregnancy BMI (ppBMI) and age.

Findings Sixty (9.7%) participants were diagnosed with GDM among 617 participants (mean age: 28.2 years, SD: 5.9;
78.6% Hispanic, 11.8% non-Hispanic Black). GDM risk increased with exposure to PM2.5, PM10, and NO2 in a
periconceptional window ranging from 5 weeks before to 5 weeks after conception: interquartile-range increases
in PM2.5, PM10, and NO2 during this window were associated with increased GDM risk by 5.7% (95% CI:
4.6–6.8), 8.9% (8.1–9.6), and 15.0% (13.9–16.2), respectively. These sensitive windows generally widened, with
greater effects, among those with prenatal depression, with age ≥28 years, or with ppBMI ≥27.5 kg/m2, than
their counterparts.

Interpretation Preconception and early-pregnancy are susceptible windows of air pollutants exposure that increased
GDM risk. Prenatal depression, higher age, or higher ppBMI may increase one’s vulnerability to air pollution-
associated GDM risk.
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Introduction
High blood glucose during pregnancy, or gestational
diabetes mellitus (GDM), is one of the most common
complications in pregnancy, affecting more than one in
twelve pregnancies in the US.1 GDM increases a
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mother’s lifetime risk of type 2 diabetes and predisposes
the offspring to increased risks of macrosomia, obesity,
and diabetes.2,3 The past decade witnessed an increasing
trend in the prevalence of GDM, possibly due to a high
prevalence of obesity and advanced age at pregnancy.4
opulation and Public Health Sciences, Keck School of Medicine of USC,
USA.
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Research in context

Evidence before this study
We searched PubMed to identify relevant articles published up
to June 30, 2022 using (“particulate matter” OR “PM” OR
“nitrogen dioxide” OR “NO2” OR “Ozone” OR “O3” OR “air
pollution”) AND (“gestational diabetes” OR “GDM”) without
restriction on language. Synthesized evidence from meta-
analyses indicates increased risk of GDM with exposure to
PM2.5, PM10, NO2, or O3. Most studies investigated air
pollution exposure in the first trimester, the second trimester,
or throughout the whole pregnancy, while only a few studies
included exposures before conception. Susceptible exposure
windows have not been well defined because little research
has examined air pollution at weekly or finer scales. Few
studies investigated effect modification by population
characteristics.

Added value of this study
Using distributed lag models, we identified a preconceptional
to early-pregnancy period (5 weeks before to 5 weeks after
conception) as a susceptible window during which exposures
to ambient PM2.5, PM10, and NO2 were associated with
increased risk of GDM. Importantly, individuals with prenatal
depression, higher age, or higher pre-pregnancy BMI had
wider periconceptional susceptible window and more
pronounced association with GDM risk.

Implications of all the available evidence
Whereas air pollution is an established environmental risk
factor, evidence from previous studies and ours emphasizes
that air pollution exposure during pregnancy, or even before
conception, could increase the risk of developing gestational
diabetes. Evidence further suggested individuals with prenatal
depression or other risk factors for gestational diabetes maybe
particularly vulnerable to air pollution exposure.
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Recently, GDM risk has also been associated with
exposure to environmental pollution, most notably
ambient air pollution,5 thus opening novel avenues for
GDM prevention.

Various ambient air pollutants have been associated
with increased GDM risk, including particulate matter
with aerodynamic diameter <2.5 μm (PM2.5),6–10 and
<10 μm (PM10),8 sulfur dioxide (SO2),11,12 and nitrogen
dioxide (NO2).8 However, not all studies have found
such associations,13 and some have reported decreased
GDM risk in association with exposure to PM10 and
NO2.

14 Such inconsistencies are likely driven by popu-
lation characteristics that determine baseline GDM
risk.5 For example, numerous studies have reported that
the association of air pollution exposure with GDM risk
is stronger among populations with overweight or obese
pre-pregnancy body mass index (ppBMI) compared to
normal ppBMI.15–17 In addition to obesity and other
established physiological risk factors of GDM, such as
advanced age,3 recent studies also found psychological
and mental health factors, such as prenatal depression,
are associated with GDM risk, as well as modifying the
adverse effect of air pollution.18 A better understanding
of how these physiological and psychological character-
istics modify the association of air pollution exposure
with GDM risk could help identify populations who are
more vulnerable to air pollution exposure effect, and
thus provide more tailored public health prevention and
clinical practices with increased effectiveness.

Timing of exposure during pregnancy is critical
because throughout a normal pregnancy, physiological
changes, such as decreased insulin sensitivity and
pancreatic beta-cell hyperplasia, are precisely regulated
to support fetal growth. This dynamic period of meta-
bolic adaptation may increase the mother’s
susceptibility to environmental insults,19 especially dur-
ing specific time windows. Moreover, exposure during a
pre-conceptional window may also be relevant to GDM,
given the dynamic regulation of metabolism and hor-
mones by ovulation.20 Previous studies have examined
ambient air pollution exposure during various time
windows in relation to GDM risk and found potentially
sensitive exposure windows, including the three months
before conception,8,9,12 the first trimester,7,10 the second
trimester,6,7,21 or the whole pregnancy period.7 However,
because air pollution exposures in adjacent time periods
are usually correlated, such identified sensitive windows
could be biased by confounding effects from exposure
in other time windows.22 In addition, a true sensitive
window could be shorter than a month or a trimester.22

Therefore, studies with more finely resolved exposure
windows (e.g., in each week or day), which account for
the confounding effect of exposure in other periods, are
needed to address these questions about timing of
exposure. Recent advances in statistics, such as the
distributed lag model (DLM),23 has be used to identi-
fying such sensitive exposure windows and thus, could
improve our understanding of complex environmental
exposure, such as air pollution and effect on GDM risk.

We aim to investigate the susceptible windows of air
pollution exposure and factors that determine popula-
tion vulnerability. We hypothesized that GDM risk
could be increased by exposure to air pollution during
periconceptional and gestational exposure periods,
particularly surrounding conception when hormonal
signaling changes dramatically. In addition, we hy-
pothesized a greater vulnerability among pregnant par-
ticipants with physiological and psychological risk
factors, such as higher ppBMI, advanced age, or pre-
natal depression. We tested these hypotheses using
www.thelancet.com Vol 25 September, 2023
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DLMs to identify susceptible exposure windows, and
used stratification analysis to identify vulnerable sub-
groups, in a predominantly low-income, Hispanic pro-
spective pregnancy cohort in Los Angeles, California.
Methods
Study population
Participants were from the Maternal and Developmental
Risks from Environmental and Social Stressors
(MADRES) study, an ongoing prospective pregnancy
cohort study established in 2015.24 We recruited partic-
ipants from clinical sites that serve low-income pop-
ulations in Los Angeles, California, if they met the
following eligibility criteria: 18 years or older, within 30
weeks of gestation, singleton pregnancy, and speaking
English or Spanish fluently. Participants with human
immunodeficiency virus, having physical, mental, or
cognitive disabilities that would prevent participation, or
current incarceration were excluded. All consents were
obtained at recruitment. The Institutional Review Board
at the University of Southern California approved all
aspects of this study. This analysis is reported in
accordance with the Strengthening the Reporting of
Observational studies in Epidemiology (STROBE)
guideline.25

A total of 703 MADRES participants had reached
delivery and had high-quality pregnancy outcome data
abstracted from the electronic medical records (EMR)
until September 1st, 2021. Thirty-four participants who
had type I or II diabetes diagnosed before pregnancy
were excluded. Twelve participants who reported
smoking during pregnancy and forty participants with
missing information on key covariates, e.g., race/
ethnicity were also excluded. No meaningful difference
in the prevalence of GDM (the outcome), air pollution
levels (the exposure), age, pre-pregnancy BMI, and
depression (the effect modifiers) were observed before
and after exclusion (Supplementary Table S1). A flow
chart describing the final sample size of 617 is provided
in Supplementary Fig. S1.

Estimation of ambient air pollution exposure
Details on ambient air pollution exposure estimation
have been reported.24,26 Briefly, prior to the third-
trimester study visit, participants provided their
residential address history starting from 1 year pre-
conception, which was further reviewed with study
staff to ensure data accuracy. Subsequent residential
addresses were prospectively collected at all study
timepoints. Addresses were geocoded, and daily resi-
dential histories were assembled for each participant
with the date of conception estimated based on an ul-
trasound measurement in the first trimester (<14
gestational weeks, 382/617 [61.9%]) or in the second
trimester (14–28 gestational weeks, 159/617 [25.7%]),
medical records consensus (71/617 [11.5%]), or last
www.thelancet.com Vol 25 September, 2023
menstrual period (5/617 [0.9%]). We used inverse-
distance-squared weighted spatial interpolation to
assign daily concentrations of 24-h average PM2.5, PM10,
and NO2, and 8-h maximum ground-level ozone (O3),
from ambient air quality monitoring data (U.S. EPA Air
Quality System), to each participant’s residential loca-
tion with an average of 4 monitoring stations with
nearest monitor within 8–14 km to each residential
address (Supplementary Table S2). We calculated one-
year pre-conception average levels of air pollution to
indicate long-term exposure. We calculated weekly
average concentrations from 12 week before to 24 weeks
after conception to identify sensitive exposures windows
closer to pregnancy, considering 12 weeks before
conception as a plausible biologically relevant window of
exposure that may affect menstrual cycles and ovulation
prior conception.20 We truncated the exposure period at
24 weeks 6 days gestation, because GDM is typically
screened between 24 and 28 weeks in the US.27 In
addition, we calculated one-year preconception average
and weekly temperature using daily temperatures
extracted from a gridded surface meteorological dataset
with a resolution of 4 km.28

Gestational diabetes mellitus ascertainment
Most GDM cases (55/60 [92%]) were ascertained using
physician diagnosis abstracted from maternal EMR.
Secondarily, GDM cases (4/60 [7%]) were identified by
reviewing EMR results from glucose challenge test
(GCT) and oral glucose tolerance test (OGTT), following
the American College of Obstetricians and Gynecolo-
gists guidelines 229: if the GCT glucose level was
≥200 mg/dL 1 h after drinking a 50 g glucose solution,
or if the GCT was 140–200 mg/dL but the following
OGTT had two or more high glucose levels, defined as
≥95 mg/dL at baseline, ≥180 mg/dL at 1 h, ≥155 mg/dL
at 2 h, or ≥140 mg/dL at 3 h after drinking a standard
100 g glucose solution. One GDM case was self-
reported.

Covariates
We a priori selected potential confounders, based on
literature review and causal diagram analyses (directed
acyclic graph, Supplementary Fig. S2).30 These variables
include: year of conception, season of conception,
weekly ambient temperature, annual household income,
age, ppBMI, ethnicity by nativity (US-born non-
Hispanic, US-born Hispanic, foreign-born Hispanic),
parity, and enrollment timepoint. Participants self-
reported pre-pregnancy weight, race/ethnicity (Amer-
ican Indian or Alaska Native, Asian, Black or African
American, Native Hawaiian or Other Pacific Islander,
more than one race, and White), birth country, marital
status (living together, single-never married, divorced or
separated, widowed, decline to answer), and annual
household income (US dollar) in their preferred lan-
guage (English or Spanish). Ethnicity and nativity were
3
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adjusted as high-level proxy measures of socioeconomic
status and lifestyle factors. We recoded enrollment
timepoint as early enrollment if the gestational week of
initial consent was before 20 weeks and others (20–30
weeks) as late enrollment. Staff measured participants
standing height twice by a stadiometer (Perspectives
Enterprises Model PE-AIM-101), from which ppBMI
(kg/m2) was calculated with self-reported pre-pregnancy
weight. We coded marital status to cohabitation status
(cohabitate, do not cohabitate, and decline to respond).
Parity was determined by the index fetus’ birth order
with three categories: first, second, and third or more.

We a priori selected prenatal depression, age, and
ppBMI as potential effect modifiers to assess population
vulnerability of GDM in association with air pollution
exposure.15,17,18 Depressive symptoms were measured in
each pregnancy trimester using the Center for Epide-
miological Studies Depression (CES-D) Scale, a vali-
dated, widely-used instrument to screen depression
symptoms.31 Each participant had an average of 2.24
measurements of CES-D over pregnancy. We defined
probable prenatal depression if any of the CES-D scores
measured over the pregnancy was ≥16, which is the
cutoff point representing clinically significant symp-
toms suggested by the CES-D scale.31 To maximize
subgroup sample size, we dichotomized ppBMI (<27.5
vs. ≥27.5 kg/m2) and age (<28 vs. ≥28 years) by their
respective medians.

Statistical analysis
We calculated the cumulative incidence of GDM over
pregnancy in the overall cohort and in the defined sub-
groups. We used the Chi-squared test to compare the
difference in GDM risk by categorical variables. We
described the distribution of continuous variables by
GDM status. We first examined the log-linearity of the
relationship between air pollution exposure and GDM
risk using a 4-df cubic spline of each air pollutant in a
generalized additive model. All models showed
non-significance for the spline term, suggesting a log-
linear dose–response relationship between air pollution
exposure and GDM risk. Then we used robust Poisson
Regression to analyze the association of each long-term
(1-year average) air pollutant and effect modifiers with
GDM risk. The use of robust Poisson Regression
enabled us to estimate a risk ratio (RR), rather than an
odds ratio, since RR is often the preferred metric for
interpretation in prospective studies. We used distrib-
uted lag models (DLM)23 with robust Poisson Regression
to examine the association of weekly exposure to each of
the air pollutants (i.e., PM2.5, PM10, NO2, and O3) with
GDM risk. Specifically, we fit a model log(πi) =
β0+∑n

j=1[αjAPij]+β1x1i+…+βpxpi, where πi is the
probability of GDM for subject i, APij is the estimated air
pollutant level for week j from 12 weeks before to 24
weeks after pregnancy, and x1i,…, xpi are confounders,
including year of conception, season of conception,
weekly ambient temperature as a cross-basis function,
annual household income, age, ppBMI, ethnicity and
nativity, parity, and enrollment timepoint. The DLM
uses “cross-basis” to combine a log-linear dose-response
function with a nonlinear lag-response function that
simultaneously included all weekly levels of each air
pollutants from 12 weeks before conception to 24
gestational weeks, assuming their effects αj are a smooth
function, αj = h(j), which was a 5-df (3 evenly placed
knots) natural cubic spline to constrain correlated weekly
exposures.23 The shape of the spline (number and loca-
tion of knots) was determined with extensive compari-
sons, including with various numbers of knots (from
0 to 5 knots, shown in Supplementary Fig. S3), with
flexibility of knots location (Supplementary Fig. S4), and
further using penalization of the spline (Supplementary
Fig. S5). The final spline shape was determined by the
minimalization of a quasi-information criterion (QIC).23

The DLM also included weekly temperature of a cross-
basis function with a 4-df natural cubic spline for the
dose-response function and a 5-df natural cubic spline
for the lag-response function. Final estimates were pre-
sented as RR for GDM by each interquartile range (IQR)
increase in weekly air pollutant concentrations (i.e.,
5 μg/m3 for PM2.5,12 μg/m3 for PM10, 11 ppb for NO2,
and 15 ppb for O3). Sensitive windows were identified as
the weeks during which the RR’s 95% confidence in-
terval did not include 1. We used Bayesian distributed
lag interaction models32 to assess the heterogeneity by
potential effect modifiers, including ppBMI (<27.5 vs.
≥27.5 kg/m2), age (<28 vs. ≥28 years), and probable
prenatal depression status (yes vs. no). Given the pres-
ence of heterogeneity (Supplementary Table S7), we
conducted stratified analysis. We conducted sensitivity
analyses to additionally adjust for respective one-year
pre-conception averaged air pollutant levels, year of
birth, and gestational week of enrollment, and to remove
participants with a history of prior GDM or GDM cases
that were not diagnosed by a physician. Because prenatal
depression was measured after pre-conceptional expo-
sure, we conducted sensitivity analyses to further adjust
for prenatal depression to assess its potential role as a
mediator but found little such evidence (Supplementary
Fig. S12).

Role of the funding source
Funders, including National Institutes of Health and
United States Environmental Protection Agency, had no
role in study design, data collection, data analysis,
interpretation, or writing of this report.
Results
Among 617 participants (mean age: 28.2 years, SD: 5.9;
78.6% Hispanic, 11.8% non-Hispanic Black), GDM was
diagnosed in 60 (9.7%) participants. As shown in
Table 1, participants generally were from low-income
www.thelancet.com Vol 25 September, 2023
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households, with 276 (45%) reporting annual household
income <$30,000, and 343 (55%) having high school
education or lower. Over 399 (67%) of participants were
overweight or obese prior to pregnancy, and 179 (29%)
of participants had probable prenatal depression (CES-D
score ≥ 16). Only 19 (3%) of participants reported GDM
in a previous pregnancy. Through pregnancy, averaged
levels of PM2.5, PM10, NO2, and O3 were 12.05 (SD:
1.16) μg/m3, 29.1 (4.9) μg/m3, 16.69 (2.94) ppb, and 42.4
(3.8) ppb, respectively. Average levels in narrower win-
dows (preconception and trimesters) are shown in
Supplementary Table S3. A correlation matrix of air
pollutants in various time windows are shown in
Supplementary Fig. S6. Ambient air pollutant levels
averaged over 1 year pre-conception were comparable
between those with and without GDM after adjusting
for potential confounders (Supplementary Table S4). In
adjusted models (Supplementary Table S4), effect
modifiers maternal age (adjusted RR per one additional
year of age: 1.06, 95% CI: 1.02–1.11) and ppBMI (≥27.5
vs. <27.5 kg/m2, adjusted RR: 2.56, 95% CI: 1.44–4.55)
were both significantly associated with increased risk of
GDM, while probable prenatal depression was not
(adjusted RR: 0.93, 95% CI: 0.52–1.66). Distribution of
covariates, GDM risk, and air pollution by prenatal
depression is provided in Supplementary Table S5.

From DLM models (Fig. 1 and Supplementary
Table S6), we found increased risk of GDM was asso-
ciated with exposures to PM2.5, PM10, and NO2 in a
similar susceptible window, spanning from 5 weeks
before conception to 5 weeks after conception. Specif-
ically, each IQR increase in PM2.5 exposure from 3
weeks before conception to 2 weeks after conception,
PM10 exposure from 4 weeks before conception to 4
weeks after conception, and NO2 exposure from 5 weeks
before conception to 5 weeks after conception were each
significantly associated with greater GDM risk, with a
weekly average RR of 1.06 (95% CI: 1.05–1.07) for
PM2.5, 1.09 (95% CI: 1.08–1.10) for PM10 and 1.15 (95%
CI: 1.14–1.16) for NO2. Weekly exposure to O3 was not
associated with GDM risk. In a sensitivity analysis,
adjusting these models for 1-year pre-conception
average air pollutants did not meaningfully change the
results (Supplementary Fig. S7). The results also did not
meaningfully change in additional sensitivity analyses,
including excluding participants with history of GDM
(Supplementary Fig. S8), excluding non-physician
diagnosed GDM (Supplementary Fig. S9), further
adjusting for year of birth (Supplementary Fig. S10), or
adjusting for gestational weeks at enrollment
(Supplementary Fig. S11).

In analyses stratified by probable prenatal depression
(Fig. 2 and Supplementary Table S6), we generally
found more pronounced associations and wider sus-
ceptible periconceptional windows among individuals
with depression, and much attenuated or null associa-
tions among individuals without depression.
www.thelancet.com Vol 25 September, 2023
Specifically, among individuals with depression,
increased risk of GDM was associated with exposure to
PM2.5 during 1 week before to 8 weeks after conception
(RR, 95% CI: 1.30, 1.27–1.33), PM10 during 4 week
before to 7 weeks after conception (1.48, 1.44–1.52), and
NO2 during 2 week before to 13 weeks after conception
(1.31, 1.29–1.33). Interestingly, early pre-conceptional
exposures to PM2.5 during 12 to 11 weeks before
conception and PM10 during 12 to 8 weeks before
conception was associated with decreased risk of GDM
(0.70, 0.59–0.82 for PM2.5; 0.39, 0.33–0.46 for PM10).
Among individuals without probable depression, rela-
tively smaller increased risk of GDM was associated
with exposure to PM10 (1.09, 1.08–1.11) during 2 weeks
before to 3 weeks after conception and NO2 (1.14,
1.12–1.17) during 2–5 weeks after conception.

In analyses stratified by age (Fig. 3 and
Supplementary Table S6), we similarly found more
pronounced effects and wider periconceptional suscep-
tible windows for PM2.5 and PM10 exposure with risk of
GDM among the older age group (≥28 years) and
attenuated to null associations among the younger age
group (<28 years). However, a different pattern was
observed for NO2 between the older and the younger
group. Specifically, NO2 had pronounced effects in the
younger group with two susceptible windows: during 5
weeks before to 8 weeks after conception (1.82,
1.77–1.86) and during 17–24 weeks after conception
(2.21, 2.06–2.36). In the older group, GDM risk was
increased with NO2 exposure during the periconcep-
tional period from 3 weeks before to 10 weeks after
conception (1.12, 1.11–1.13), but GDM risk was
decreased with NO2 exposure in mid-pregnancy (0.80,
0.79–0.82). No other air pollutant was associated with
GDM in this subgroup.

In analyses stratified by ppBMI (Fig. 4 and
Supplementary Table S6), we found association and
periconceptional susceptible windows in the higher
ppBMI group (≥27.5 kg/m2), although only PM10

exposure during 4 weeks before to 3 weeks after
conception was significantly associated with increased
risk of GDM (RR:1.11, 1.10–1.12). Similar to the strati-
fication by age, more pronounced effects of NO2 expo-
sure during 2 weeks before to 11 weeks after conception
(RR: 1.24, 1.22–1.25) were observed in the relatively
lower ppBMI group (<27.5 kg/m2), and null associations
in the higher ppBMI group. No other air pollutant was
associated with GDM risk in ppBMI stratified analyses.
Discussion
GDM risk (9.7%) was higher in the MADRES cohort as
compared to the prevalence in 2020 in the US (7.8%),
California (8.1%), or US Hispanics (8.5%).1 By applying
DLM to temporally fine measures of air pollution, we
identified a susceptible exposure window from 5 weeks
before to 5 weeks after conception, during which
5
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Population characteristics N (%) n of GDM (risk, %) P value

Overall (denominator) 617 (100) 60 (9.7) –

Maternal age, year, mean (SD) 28.24 (5.9) 31.1 (5.3) 0.93

Enrollment timepoint

Regular entry (<20 weeks) 463 (75.0) 47 (10.2) 0.54

Late entry (20+ weeks) 154 (25.0) 13 (8.4)

Language used during interview

English 415 (67.3) 31 (7.5) 0.02

Spanish 202 (32.7) 29 (14.4)

Maternal country origin

Latin Americaa 229 (37.1) 29 (12.7) 0.13

North Americaa 298 (48.3) 22 (7.4)

Others 90 (14.6) 9 (10.0)

Maternal race/ethnicity

Non-hispanic white 37 (6.0) 2 (5.4) 0.88

Non-hispanic black 73 (11.8) 7 (9.6)

Hispanic 485 (78.6) 49 (10.1)

Non-hispanic multiracial 6 (1.0) 0 (0)

Non-hispanic others 16 (2.6) 2 (12.5)

Cohabitation status

Cohabitate with spouse or partner 392 (63.5) 42 (10.7) 0.55

Non-cohabitate 136 (22.0) 11 (8.1)

Missing/decline to respond 89 (14.4) 7 (7.9)

Annual household income

<$15,000 121 (19.6) 18 (14.9) 0.029

$15,000-$29,000 155 (25.1) 16 (10.3)

≥$30,000 143 (23.2) 16 (11.2)

Unknown 198 (32.1) 10 (5.1)

Education

Below 12th grade 153 (24.8) 21 (13.7) 0.20

Completed 12th grade 190 (30.8) 13 (6.8)

Some college 169 (27.4) 16 (9.5)

College or above 105 (17.0) 10 (9.5)

Pre-pregnancy BMI

Normal/underweight (<25 kg/m2) 205 (33.2) 8 (4.0) <0.001

Overweight (25-29.9 kg/m2) 194 (31.4) 14 (7.2)

Obese (≥30 kg/m2) 218 (35.3) 38 (17.4)

GDM history

No 591 (95.8) 48 (8.1) <0.001

Yes 19 (3.1) 11 (57.9)

Missing 7 (1.1) 1 (14.3)

Prenatal depression

No 385 (62.4) 40 (10.4) 0.75

Yes 179 (29.0) 15 (8.4)

Missing 53 (8.6) 5 (9.4)

Parity

First born 200 (32.4) 15 (7.5) 0.14

Second born 178 (28.9) 15 (8.4)

Third or later born 169 (27.4) 24 (14.2)

Missing 70 (11.4) 6 (8.6)

Newborn sex

Female 316 (51.2) 26 (8.3) 0.41

Male 301 (48.8) 34 (11.3)

Note: P value is for a comparison between GDM cases and non-cases. BMI = body mass index. aLatin America includes participants from Chile, Colombia, El Salvador,
Guatemala, Honduras, Medico, Nicaragua, and Venezuela; North America includes US and Canada.

Table 1: Population characteristics and risk of gestational diabetes mellitus among 617 MADRES participants.
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Fig. 1: Associations of pre-conception and prenatal weekly exposure to PM2.5, PM10, NO2, and O3 with risk of gestational diabetes
among 617 pregnant women in the MADRES cohort. All results were from DLMs adjusted for year, season of conception, weekly tem-
perature, household income, maternal age, pre-pregnancy body mass index, maternal ethnicity and nativity, parity, and enrollment timepoint.
Effect estimation was based on per IQR increases in weekly air pollutant concentrations (i.e., 5 μg/m3, 12 μg/m3, 11 ppb, and 15 ppb for PM2.5,

PM10, NO2, and O3 (8 hr max), respectively). Gray bands indicate 95% CI. Week 0 indicates conception.

Articles
exposures to PM2.5, PM10, and NO2 were associated with
increased risk of GDM. Moreover, we found probable
prenatal depression may heighten the vulnerability of
GDM in relation to air pollution exposure, similar to
established risk factors of GDM, including age (≥28
years) and ppBMI (≥27.5 kg/m2). Taken together, our
findings suggest air quality may be related to the risk of
GDM, with potentially stronger effects among those
with prenatal depression, as well as those with higher
levels of traditional risk factors (i.e., age and BMI) for
GDM.

Whereas the exact susceptible exposure windows
slightly differed by air pollutants and subgroups, we
www.thelancet.com Vol 25 September, 2023
consistently observed an increased risk of GDM for
exposure to PM2.5, PM10, and NO2, all within a period
from five weeks before conception to five weeks after
conception, suggesting the time around last menstrual
period to the first few weeks of pregnancy could be a
susceptible window of air pollution exposure in deter-
mining GDM risk. This time window is in part in line
with previous studies that reported significant associa-
tions of GDM risk with nitrogen oxides and PM2.5

exposure in the 3 months before conception9,12 or PM2.5

exposure in the first trimester.7,10 In a study from
Guangzhou, China (2011–2014) that also used DLM,
sensitive windows in 4–10 gestational weeks were
7
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Fig. 2: Stratified analysis by prenatal depression for pre-conception and prenatal weekly exposure to PM2.5, PM10, NO2, and O3 with risk
of gestational diabetes. Left panels show the associations among 385 participants without prenatal depression; right panels show the as-
sociations among 179 participants with prenatal depression. Associations were adjusted for year, season of conception, weekly temperature,
household income, maternal age, pre-pregnancy body mass index, maternal ethnicity and nativity, parity, and enrollment timepoint. Effect
estimation was based on per IQR increases in each air pollutant (i.e., 5 μg/m3, 12 μg/m3, 11 ppb, and 15 ppb for PM2.5, and PM10, NO2, and O3,
respectively). Gray bands indicate 95% CI. Week 0 indicates conception.

Fig. 3: Stratified analysis by age at gestation for pre-conception and prenatal weekly exposure to PM2.5, PM10, NO2, and O3 with risk of
gestational diabetes. Left panels show the associations among 297 participants aged <28 years; right panels show the associations among 320
participants aged ≥28 years. Associations were adjusted for year, season of conception, weekly temperature, household income, pre-pregnancy
body mass index, maternal ethnicity and nativity, parity, and enrollment timepoint. Effect estimation was based on per IQR increases in each air
pollutant (i.e., 5 μg/m3, 12 μg/m3, 11 ppb, and 15 ppb for PM2.5, and PM10, NO2, and O3, respectively). Gray bands indicate 95% CI. Week
0 indicates conception.
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Fig. 4: Stratified analysis by pre-pregnancy BMI for pre-conception and prenatal weekly exposure to PM2.5, PM10, NO2, and O3 with risk
of gestational diabetes. Left panels show the associations among 306 participants aged <27.5 kg/m2; right panels show the associations
among 312 participants aged ≥27.5 kg/m2. All results were from DLM adjusted for year, season of conception, weekly temperature, household
income, maternal age, maternal ethnicity and nativity, parity, and enrollment timepoint. Effect estimation was based on per IQR increases in
each air pollutant (i.e., 5 μg/m3, 12 μg/m3, 11 ppb, and 15 ppb for PM2.5, PM10, NO2, and O3, respectively). Week 0 indicates conception.
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identified for SO2 exposure with GDM risk, but PM2.5,
PM10, or NO2 were not associated with GDM risk.11

Notably, the average PM2.5 concentration in that study
was three-fold higher than ours (e.g., PM2.5: 53.6 μg/m3

vs. 18.5 μg/m3), although the prevalence of GDM
(11.7%) was similar to ours (9.1%).11 A later study
(2016–2020) in the same region found a significant as-
sociation between PM2.5 exposure at 22 gestational
weeks with GDM risk, but that population had a much
higher GDM prevalence (24.4%) and relatively lower
pregnancy-average PM2.5 exposure (mean 32 μg/m3).33

An US-based DLM analysis of birth records identified
21 to 24 gestational weeks as a sensitive window of
PM2.5 exposure (mean: 8.78 μg/m3) for its association
with GDM risk in Florida (2005–2015),34 while another
study found exposure to PM2.5 and PM10 in the 1–5
weeks prior to the OGTT (typically 19–24 gestational
weeks) were associated with rapid and significant in-
crease in fasting glucose levels.35 Such differences in
these previous and our studies suggest that both the
association and the sensitive windows of air pollution
exposure with GDM risk are likely modified by not only
geographic heterogeneity, possibly due to different
levels and mixtures of air pollution, but also by popu-
lation characteristics that defined population GDM risk
vulnerability, which has been understudied.

We found that the vulnerability to increased GDM
risk from air pollutant exposures (PM2.5, PM10, and
www.thelancet.com Vol 25 September, 2023
NO2) was modified by age, ppBMI, and prenatal
depression. Generally, stronger effects and wider sus-
ceptible periconceptional windows were more pro-
nounced among individuals with higher levels of the
effect modifiers, including ppBMI (≥27.5 kg/m2), age
(≥28 years), and prenatal depression. Our study is the
first to identify the novel role of prenatal depression in
modifying the vulnerability to GDM risk from air
pollution exposure. Interestingly, our results high-
lighted a unique pattern for NO2, where significant as-
sociations were more pronounced in the
periconceptional window in the subgroup with lower
age or lower ppBMI. Such findings may be attributed to
the specific properties of NO2, such as its gaseous form
and predominate source from traffic pollution, but exact
mechanisms remain elusive and warrant further inves-
tigation. However, caution is also needed when inter-
preting such findings because the prevalence of GDM
was much lower in these subgroups (4%), which could
render the effect estimation unstable. Nevertheless,
prevalence of GDM was comparable by prenatal
depression status. Unexpectedly, among those with
prenatal depression, we found a decreased risk of GDM
with PM2.5 and PM10 exposure in 8–12 weeks before
conception, which needs further investigation. Such
seemingly protective effect in earlier preconceptional
exposure could be driven by a special case of selection
bias—the live-birth bias,36 as air pollution may increase
9
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one’s risk of miscarriage,37 so that in studies of live
births only, such as ours, those participants who keep
the pregnancy would have some protective mechanisms
that counteract the harm of air pollution and depression
to keep viable pregnancies,36 and thus generate a
seemingly protective effect of air pollution at an earlier
time. Future pre-conceptional cohort studies with in-
formation on miscarriages are warranted.

The mechanism underlying the association of
ambient air pollution with GDM remains unclear. Pre-
vious studies suggest mechanisms underlying the as-
sociation of air pollution exposure with GDM are
similar to those identified for type 2 diabetes, such as air
pollution exposures triggered oxidative stress in the
respiratory track, subsequent chronic systemic inflam-
mation, and exhausted anti-oxidant defenses over time.38

These systemic effects disrupt insulin signaling path-
ways and limit glucose-consuming cells (e.g., skeletal
muscle and liver) from adequate intake of circulating
glucose.5 Furthermore, systemic effects lead to cellular
apoptosis and dysfunction that diminish insulin pro-
duction, thus also increasing glucose abundance.5,39

Interestingly, we found GDM risk was not associated
with long-term air pollution exposure but was associated
with air pollution exposure in a relatively short peri-
conceptional window, stressing pregnancy as a sensitive
window of air pollution exposure.

Mechanisms underlying the susceptible peri-
conception window and heightened vulnerability by ef-
fect modifiers remain elusive. During pregnancy, the
body undergoes drastic changes in glucose availability
through hormonal regulation by the maternal-placental-
fetal interface, with a stronger maternal influence in
early pregnancy when the placenta and fetus are rela-
tively small.19 Therefore, we suspect air pollution,
particularly for exposure in a defined period of the eight
weeks from last menstrual period through the first few
weeks of pregnancy, could perturb physiological adap-
tations during early pregnancy that may predispose the
pregnant women to an increased risk of GDM. Women
with higher age or ppBMI may be more susceptible to
such effects given their augmented insulin resistance
and glucose insensitivity from aging and excess adipose
tissue. Moreover, these physical changes related to aging
and adiposity could disturb hormonal regulations
throughout pregnancy, thus modifying an individual’s
susceptibility to air pollution exposures. How depres-
sion might increase the susceptibility to GDM in
response to air pollution exposure remains unclear, but
may be due in part to shared mechanisms of impaired
glucose metabolism, inflammation, and hormonal
changes, as well as their interplay.40 Its effect modifica-
tion of the susceptible window for air pollution exposure
on GDM may also involve the dynamic physiological
changes throughout pregnancy (e.g., immune responses
and various hormones), similar to mechanisms under-
lying the effect modification by aging and adiposity.
Future mechanistic studies are warranted to investigate
potentially inter-related pathophysiological changes
induced by air pollution exposure and depression with
physiological and psychological changes during
pregnancy.

Our study is strengthened by a well-characterized
cohort with comprehensive measures of potential
confounders, weekly air pollution estimates generated
from complete maternal residential histories, and the
use of DLM to identify sensitive windows of exposure.
Our study has a few limitations. First, we may have
missed severe GDM cases that could impede one from
participating in our study, although no participants
dropped out due to GDM. Second, our study focused
on examining the individual effect of each air pollutant.
Future studies are warranted to examine the interactive
and overall mixture effect of the air pollutants. Third,
we used the inverse-distance-squared weighted spatial
interpolation to estimate ambient air pollutant levels,
which is well suited for capturing temporal variability
in ambient air pollution levels but may be limited in
terms of spatial resolution. While this could introduce
exposure measurement error, the higher temporal
resolution was chosen to help align exposures more
precisely with gestational windows of time based on
daily residential timelines. In addition, the relatively
high monitoring network density in Southern Califor-
nia compared to other regions in the United States
further provided adequate prediction of regional,
background air pollutant exposures. Fourth, depres-
sion was only measured during the prenatal period and
may not fully capture pre-pregnancy depressive symp-
toms. Future studies that measure and assess the role
of depression in both pre- and post-conception periods
are warranted. Fifth, although DLM is an advanced
approach to constrain multiple exposure modeling
simultaneously that can evaluate correlated exposure
measurements over time, our analyses involve many
statistical tests based on a relatively small sample size.,
thus some of the significant associations, especially
those not consistently seen in subgroup analyses,
might have been identified by chance. The identifica-
tion of susceptible window is also exploratory in nature
and needs future replication with larger sample size.
Like most observational studies, there is always a
chance for our study have residual confounding and
measurement error.
Conclusion
In a cohort of predominantly low-income Hispanic
pregnant women, periconceptional period is a suscep-
tible window of ambient PM2.5, PM10, and NO2 expo-
sures with increased risk of GDM. Vulnerability to air
pollution in relation to GDM risk was higher among
women with probable prenatal depression, higher age or
ppBMI.
www.thelancet.com Vol 25 September, 2023
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