



# Effectiveness of Suprascapular Nerve Block in the Treatment of Hemiplegic Shoulder Pain: A Systematic Review and Meta-Analysis

#### Yajing Hou<sup>1,2</sup>, Yong Wang<sup>2</sup>, Xiaojing Sun<sup>3</sup>, Yake Lou<sup>4</sup>, Ying Yu<sup>5</sup> and Tong Zhang<sup>1\*</sup>

<sup>1</sup> School of Rehabilitation Medicine, Capital Medical University, Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Lab of Brain Injury Repair and Rehabilitation, China Rehabilitation Science Institute, Beijing, China, <sup>2</sup> Rehabilitation Medicine Center, Fuxing Hospital, Capital Medical University, Beijing, China, <sup>3</sup> Capital Medical University, Beijing Rehabilitation Hospital, Shijingshan, Beijing, China, <sup>4</sup> Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Beijing, China, <sup>5</sup> Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

**Purpose:** We aimed to investigate the effectiveness of suprascapular nerve block (SSNB) in patients with hemiplegic shoulder pain (HSP).

**Background:** SSNB is widely used in various shoulder pains, but whether it is effective in HSP remains unknown.

#### **OPEN ACCESS**

#### Edited by:

Giorgio Scivoletto, Santa Lucia Foundation (IRCCS), Italy

#### Reviewed by:

Murat Mert, Yeni Yüzyil University, Turkey Marcello Romano, Azienda Ospedaliera Ospedali Riuniti Villa Sofia Cervello, Italy

> \*Correspondence: Tong Zhang tom611@126.com

#### Specialty section:

This article was submitted to Neurorehabilitation, a section of the journal Frontiers in Neurology

Received: 11 June 2021 Accepted: 01 September 2021 Published: 05 October 2021

#### Citation:

Hou Y, Wang Y, Sun X, Lou Y, Yu Y and Zhang T (2021) Effectiveness of Suprascapular Nerve Block in the Treatment of Hemiplegic Shoulder Pain: A Systematic Review and Meta-Analysis. Front. Neurol. 12:723664. doi: 10.3389/fneur.2021.723664 **Methods:** PubMed, Cochrane Library, and Embase databases were searched to identify potential citations. Randomized controlled trials meeting the eligible criteria were included in our analysis. The primary endpoint was Visual Analog Scale (VAS) with a maximum value of 100 and a minimum value of 0. Secondary endpoints were passive range of motion (PROM) that pain starts, and the PROM mainly included abduction, flexion, and external rotation. In addition, the upper extremity Fugl-Meyer assessment (FMA) was also included in our secondary endpoints.

**Results:** Eight studies with 281 patients were included in our analysis. For VAS, there was no obvious difference between SSNB group and control group regardless of the follow-up period (<4 weeks or  $\geq$ 4 weeks), which were -6.62 (-15.76, 2.53; p = 0.16) and 1.78 (-16.18, 19.74; p = 0.85). For shoulder function, the PROM of abduction, flexion, and external rotation was similar between groups. However, motor function indicator FMA is lower in SSNB control than that in control group, with a mean difference (and 95% CI) of -2.59 (-4.52, -0.66; p = 0.008).

Conclusion: SSNB is an effective way for HSP patients.

Systematic Review Registration: Registration ID: CRD42021252429.

Keywords: suprascapular nerve block, hemiplegic shoulder pain, meta-analysis, nerve block, shoulder pain, systematic review

## INTRODUCTION

Hemiplegic shoulder pain (HSP), as a very common poststroke complication, often occurs within a week after stroke (1). According to different studies, the incidence of HSP ranges from 16% to 84% in poststroke patients (2, 3). HSP patients may have nocturnal pain, but the most obvious pain is during passive external rotation and shoulder abduction (4), which limits the motion of the

1

shoulder. In turn, the limited shoulder aggravates the HSP (5). As far as we know, the etiology of HSP is complex and varied, mainly including soft tissue lesions, muscle tone changes, and altered central nervous system phenomena (6). Currently, suprascapular nerve block (SSNB), botulinum toxin A, and intraarticular steroid injection are used in clinical practice, the optimal treatment for HSP still unknown (5).

About 70% of the shoulder joint sensorial fibers run through the suprascapular nerve (SSN) (7), so the blockage or damage of SSN may contribute to alleviating HSP. In

recent years, some studies found that SSNB can reduce the pain intensity of HSP, thus improving the motion of shoulder joint (8, 9), but some other studies drew a negative conclusion that there is no difference in pain relief in a 6week follow-up of SSNB for HSP (10); a study even found that SSNB is inferior to other treatments (11). Given the controversial effect of SSNB on HSP and the small samples in each study, it is important for us to perform a metaanalysis to investigate the real effects of SSNB in the treatment of HSP.

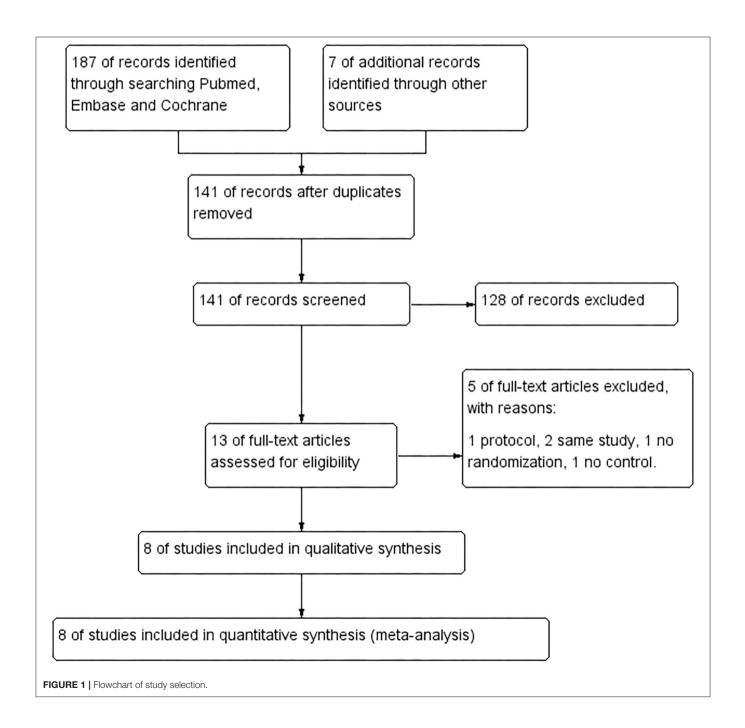



TABLE 1 | Baseline characteristics of included studies.

| Study name                     | Journal                                              | Total | SSNB | Control | Interventio | on Way of control                               | Agents of SSNB                                      | Agents of control                    |
|--------------------------------|------------------------------------------------------|-------|------|---------|-------------|-------------------------------------------------|-----------------------------------------------------|--------------------------------------|
| Boonsong et al.<br>(16)        | J Med Assoc Thai                                     | 10    | 5    | 5       | SSNB        | Ultrasound<br>Treatment                         | Lidocaine                                           | Ultrasound Power                     |
| Adey-Wakeling et<br>al. (8)    | Stroke                                               | 64    | 32   | 32      | SSNB        | Placebo                                         | Methylprednisolone<br>+Bupivacaine<br>Hydrochloride | Normal Saline                        |
| Kim and Kim (15)               | Brain Neurorehabil                                   | 24    | 12   | 12      | SSNB        | Intra-Articular<br>Hyaluronic Acid<br>Injection | Lidocaine                                           | Hyaluronic Acid                      |
| Sencan et al. (9)              | Neurological<br>Sciences                             | 30    | 20   | 10      | SSNB        | Intraarticular<br>Shoulder Injection            | Bupivacaine                                         | Methylprednisolone<br>Acetate        |
| Alanbay et al. (11)            | Pain Physician                                       | 30    | 15   | 15      | SSNB        | Suprascapular<br>nerve pulsed<br>radiofrequency | Lidocaine                                           | Pulsed Radiofrequency                |
| Kasapoglu-Aksoy<br>et al. (10) | Neurological<br>Sciences                             | 57    | 27   | 30      | SSNB        | Botulinum<br>Toxin-A Injection                  | Lidocaine+Triamcinolone<br>Hexacetonide             | Botulinum Toxin-A                    |
| Terleme, et al. (14)           | Neurological<br>Sciences                             | 30    | 20   | 10      | SSNB        | Placebo                                         | Lidocaine                                           | Lidocaine                            |
| Tubay et al. (13)              | Turkiye Fiziksel Tip<br>ve Rehabilitasyon<br>Dergisi | 36    | 18   | 18      | SSNB        | Glenohumeral<br>Joint Injection                 | Prilocaine+Triamcinolone<br>Acetonide               | Prilocaine+Triamcinolon<br>Acetonide |

## **METHODS**

#### Search Strategy

The keywords "hemiplegia," "monoplegia," "paresis," "spastic paresis," "cerebrovascular accident," "stroke," "basal ganglia hemorrhage," "brain ischemia," "brain infarction," "intracranial hemorrhage," "subarachnoid hemorrhage," "post-stroke," "shoulder pain," "suprascapular nerve block," "blockade," and "suprascapular fossa" were used to search Pubmed, Embase, and Cochrane database to identify potential randomized controlled trials (RCTs) until May 2, 2021 (further details are available in the **Supplementary Material**). Only citations whose titles and abstracts are published in English are potential for eligibility.

#### **Eligibility Criteria**

Studies with the following criteria could be eligible for inclusion:

- 1: RCTs.
- 2: The intervention group is conducted with SSNB and the control group with placebo or active control.
- 3: At least one interesting outcome reported.
- 4: Sample size is not less than 10.

## **Exclusion Criteria**

- 1: Animal experiments.
- 2: Retrospective studies.
- 3: Cohort studies.
- 4: Studies with no randomization.

## **Data Extraction and Quality Assessment**

Two authors (YH and YW) independently screened the searched citations to find out eligible citations. Disagreement between YH and YW was resolved by another author (TZ). Any potential citations that were uncertain to meet the inclusion

criteria would be evaluated further by reading the full text. After screening, YH and YW continued to extract data in the inclusion reference. Baseline characteristics, inclusion criteria, exclusion criteria, intervention measure, outcome measure, and results would be extracted independently by YH and YW. Quality assessment of included references was performed by YL and YY according to the Cochrane Handbook for Systematic Reviews of Interventions (version 5.1.0), and the main evaluation criteria included random sequence generation (selection bias), allocation concealment (selection bias), blinding of participants and personnel (performance bias), blinding of outcome assessment (detection bias), incomplete outcome data (attrition bias), selective reporting (reporting bias), and other biases.

#### Outcomes

The primary endpoint for the present meta-analysis was Visual Analog Scale (VAS) with a maximum value of 100 and a minimum value of 0. Secondary endpoints were passive range of motion (PROM) that pain starts, and the PROM mainly included abduction, flexion, and external rotation. In addition, the upper extremity Fugl-Meyer assessment (FMA) was also included in our secondary endpoints.

#### **Statistical Analysis**

All the statistical analyses were conducted using Review Manager (RevMan) version 5.3 (The Cochrane Collaboration, Copenhagen, Denmark) and Stata 15.1 (StataCorp, College Station, TX, USA) software. The study was performed in reference to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement and was registered in the PROSPERO database (No.: CRD42021252429) (12). The mean difference and 95% confidence interval (CI) were calculated by inverse variance analysis. Considering the different control

|                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                      | SSNB                                                                                                                              |                                                                                                         | С                                                                                      | ontrol                                                                                              |                                                                                 |                                                                                        | Mean Difference                                                                                                                                                                                                                            | Mean Difference                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                     | Mean                                                                                                                   | SD                                                                                                                                | Total                                                                                                   | Mean                                                                                   | SD                                                                                                  | Total                                                                           | Weight                                                                                 | IV, Random, 95% Cl                                                                                                                                                                                                                         | IV, Random, 95% Cl                                    |
| 1.1.1 Active control                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                        |                                                                                                                                   |                                                                                                         |                                                                                        |                                                                                                     |                                                                                 |                                                                                        |                                                                                                                                                                                                                                            |                                                       |
| Boonsong,2009                                                                                                                                                                                                                                                                                                                                                                                                         | 30.2                                                                                                                   | 19.3                                                                                                                              | 5                                                                                                       | 59.4                                                                                   | 7.5                                                                                                 | 5                                                                               | 11.5%                                                                                  | -29.20 [-47.35, -11.05]                                                                                                                                                                                                                    |                                                       |
| Kasapoglu-Aksoy,2020                                                                                                                                                                                                                                                                                                                                                                                                  | 41.3                                                                                                                   | 12.5                                                                                                                              | 27                                                                                                      | 40                                                                                     | 9.8                                                                                                 | 30                                                                              | 19.4%                                                                                  | 1.30 [-4.58, 7.18]                                                                                                                                                                                                                         | +                                                     |
| Kim,2014                                                                                                                                                                                                                                                                                                                                                                                                              | 47.5                                                                                                                   | 13.6                                                                                                                              | 12                                                                                                      | 41.7                                                                                   | 15.9                                                                                                | 12                                                                              | 15.6%                                                                                  | 5.80 [-6.04, 17.64]                                                                                                                                                                                                                        |                                                       |
| Sencan,2019                                                                                                                                                                                                                                                                                                                                                                                                           | 30                                                                                                                     | 16.8                                                                                                                              | 20                                                                                                      | 26.3                                                                                   | 25.8                                                                                                | 10                                                                              | 11.8%                                                                                  | 3.70 [-13.90, 21.30]                                                                                                                                                                                                                       |                                                       |
| Tubay,2012                                                                                                                                                                                                                                                                                                                                                                                                            | 36.7                                                                                                                   | 18.5                                                                                                                              | 18                                                                                                      | 35                                                                                     | 18.6                                                                                                | 18                                                                              | 15.4%                                                                                  | 1.70 [-10.42, 13.82]                                                                                                                                                                                                                       |                                                       |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                        |                                                                                                                                   | 82                                                                                                      |                                                                                        |                                                                                                     | 75                                                                              | 73.8%                                                                                  | -1.64 [-10.67, 7.39]                                                                                                                                                                                                                       | <b>+</b>                                              |
| Heterogeneity: Tau <sup>2</sup> = 63                                                                                                                                                                                                                                                                                                                                                                                  | .77; Chi <sup>2</sup>                                                                                                  | = 11.2                                                                                                                            | 8, df =                                                                                                 | 4 (P = 0                                                                               | .02); I <sup>2</sup>                                                                                | = 65%                                                                           |                                                                                        |                                                                                                                                                                                                                                            |                                                       |
| Test for overall effect: Z =                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                        |                                                                                                                                   |                                                                                                         |                                                                                        |                                                                                                     |                                                                                 |                                                                                        |                                                                                                                                                                                                                                            |                                                       |
| 1.1.2 Placebo control                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                        |                                                                                                                                   |                                                                                                         |                                                                                        |                                                                                                     |                                                                                 |                                                                                        |                                                                                                                                                                                                                                            |                                                       |
| Terlemez,2020                                                                                                                                                                                                                                                                                                                                                                                                         | 34                                                                                                                     | 15.4                                                                                                                              | 20                                                                                                      | 55                                                                                     | 24                                                                                                  | 10                                                                              | 12.6%                                                                                  | -21.00 [-37.33, -4.67]                                                                                                                                                                                                                     |                                                       |
| Wakeling,2013                                                                                                                                                                                                                                                                                                                                                                                                         | 29.8                                                                                                                   | 29                                                                                                                                | 32                                                                                                      | 47.9                                                                                   | 31.4                                                                                                | 32                                                                              | 13.6%                                                                                  | -18.10 [-32.91, -3.29]                                                                                                                                                                                                                     |                                                       |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                        |                                                                                                                                   | 52                                                                                                      |                                                                                        |                                                                                                     | 42                                                                              | 26.2%                                                                                  | -19.41 [-30.38, -8.44]                                                                                                                                                                                                                     | ◆                                                     |
| Heterogeneity: Tau <sup>2</sup> = 0.0                                                                                                                                                                                                                                                                                                                                                                                 | )0; Chi <sup>2</sup> =                                                                                                 | 0.07,                                                                                                                             | df = 1 (                                                                                                | P = 0.80                                                                               | ));  ² =                                                                                            | 0%                                                                              |                                                                                        |                                                                                                                                                                                                                                            |                                                       |
| Test for overall effect: Z =                                                                                                                                                                                                                                                                                                                                                                                          | 3.47 (P                                                                                                                | = 0.00                                                                                                                            | 05)                                                                                                     |                                                                                        |                                                                                                     |                                                                                 |                                                                                        |                                                                                                                                                                                                                                            |                                                       |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                        |                                                                                                                                   | 134                                                                                                     |                                                                                        |                                                                                                     | 117                                                                             | 100.0%                                                                                 | -6.62 [-15.76, 2.53]                                                                                                                                                                                                                       | •                                                     |
| Heterogeneity: Tau <sup>2</sup> = 10                                                                                                                                                                                                                                                                                                                                                                                  | 3.08; Ch                                                                                                               | i² = 21                                                                                                                           | 94, df=                                                                                                 | = 6 (P =                                                                               | 0.001)                                                                                              | ; l² = 73                                                                       | 3%                                                                                     |                                                                                                                                                                                                                                            | -100 -50 0 50 100                                     |
| Test for overall effect: Z =                                                                                                                                                                                                                                                                                                                                                                                          | : 1.42 (P                                                                                                              | = 0.16                                                                                                                            | )                                                                                                       |                                                                                        |                                                                                                     |                                                                                 |                                                                                        |                                                                                                                                                                                                                                            | Favours [SSNB] Favours [Control]                      |
| Test for subaroup differe<br>VAS ≥4 week                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                        | ni² = 6.1                                                                                                                         | 01. df=                                                                                                 | 1 (P = (                                                                               | ).01). P                                                                                            | ²= 83.4                                                                         | 1%                                                                                     |                                                                                                                                                                                                                                            |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                      | SSNB                                                                                                                              | Total                                                                                                   |                                                                                        | ontrol                                                                                              | Tetal                                                                           | Mainht                                                                                 | Mean Difference                                                                                                                                                                                                                            | Mean Difference                                       |
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                     | Mean                                                                                                                   | 50                                                                                                                                | Total                                                                                                   | Mean                                                                                   | 50                                                                                                  | Total                                                                           | Weight                                                                                 | IV, Random, 95% Cl                                                                                                                                                                                                                         | IV, Random, 95% Cl                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        |                                                                                                                                   |                                                                                                         |                                                                                        |                                                                                                     |                                                                                 |                                                                                        |                                                                                                                                                                                                                                            |                                                       |
| 1.2.1 Active control                                                                                                                                                                                                                                                                                                                                                                                                  | 60                                                                                                                     | 10                                                                                                                                | 15                                                                                                      | 20                                                                                     | 20                                                                                                  | 15                                                                              | 10.60                                                                                  | 24 00 (22 20 45 00)                                                                                                                                                                                                                        |                                                       |
| Alanbay,2020                                                                                                                                                                                                                                                                                                                                                                                                          | 62<br>10 9                                                                                                             | 12                                                                                                                                | 15                                                                                                      | 28                                                                                     | 20                                                                                                  |                                                                                 | 12.6%                                                                                  | 34.00 [22.20, 45.80]                                                                                                                                                                                                                       |                                                       |
| Alanbay,2020<br>Boonsong,2009                                                                                                                                                                                                                                                                                                                                                                                         | 19.8                                                                                                                   | 15.4                                                                                                                              | 5                                                                                                       | 50                                                                                     | 2.6                                                                                                 | 5                                                                               | 12.4%                                                                                  | -30.20 [-43.89, -16.51]                                                                                                                                                                                                                    |                                                       |
| Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020                                                                                                                                                                                                                                                                                                                                                                 | 19.8<br>67.5                                                                                                           | 15.4<br>10                                                                                                                        | 5<br>27                                                                                                 | 50<br>33.6                                                                             | 2.6<br>12.3                                                                                         | 5<br>30                                                                         | 12.4%<br>13.2%                                                                         | -30.20 [-43.89, -16.51]<br>33.90 [28.10, 39.70]                                                                                                                                                                                            | <br>                                                  |
| Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014                                                                                                                                                                                                                                                                                                                                                     | 19.8<br>67.5<br>31.7                                                                                                   | 15.4<br>10<br>15.9                                                                                                                | 5<br>27<br>12                                                                                           | 50<br>33.6<br>30                                                                       | 2.6<br>12.3<br>10.4                                                                                 | 5<br>30<br>12                                                                   | 12.4%<br>13.2%<br>12.8%                                                                | -30.20 [-43.89, -16.51]<br>33.90 [28.10, 39.70]<br>1.70 [-9.05, 12.45]                                                                                                                                                                     |                                                       |
| Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019                                                                                                                                                                                                                                                                                                                                      | 19.8<br>67.5<br>31.7<br>43                                                                                             | 15.4<br>10<br>15.9<br>33.8                                                                                                        | 5<br>27<br>12<br>20                                                                                     | 50<br>33.6<br>30<br>38.7                                                               | 2.6<br>12.3<br>10.4<br>17.2                                                                         | 5<br>30<br>12<br>10                                                             | 12.4%<br>13.2%<br>12.8%<br>11.8%                                                       | -30.20 [-43.89, -16.51]<br>33.90 [28.10, 39.70]<br>1.70 [-9.05, 12.45]<br>4.30 [-13.95, 22.55]                                                                                                                                             |                                                       |
| Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012                                                                                                                                                                                                                                                                                                                        | 19.8<br>67.5<br>31.7<br>43                                                                                             | 15.4<br>10<br>15.9                                                                                                                | 5<br>27<br>12<br>20<br>18                                                                               | 50<br>33.6<br>30<br>38.7                                                               | 2.6<br>12.3<br>10.4                                                                                 | 5<br>30<br>12<br>10<br>18                                                       | 12.4%<br>13.2%<br>12.8%<br>11.8%<br>12.8%                                              | -30.20 [-43.89, -16.51]<br>33.90 [28.10, 39.70]<br>1.70 [-9.05, 12.45]<br>4.30 [-13.95, 22.55]<br>1.60 [-9.00, 12.20]                                                                                                                      |                                                       |
| Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br><b>Subtotal (95% CI)</b>                                                                                                                                                                                                                                                                                            | 19.8<br>67.5<br>31.7<br>43<br>41.9                                                                                     | 15.4<br>10<br>15.9<br>33.8<br>15.3                                                                                                | 5<br>27<br>12<br>20<br>18<br><b>97</b>                                                                  | 50<br>33.6<br>30<br>38.7<br>40.3                                                       | 2.6<br>12.3<br>10.4<br>17.2<br>17.1                                                                 | 5<br>30<br>12<br>10<br>18<br><b>90</b>                                          | 12.4%<br>13.2%<br>12.8%<br>11.8%<br>12.8%<br><b>75.5</b> %                             | -30.20 [-43.89, -16.51]<br>33.90 [28.10, 39.70]<br>1.70 [-9.05, 12.45]<br>4.30 [-13.95, 22.55]                                                                                                                                             |                                                       |
| Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012                                                                                                                                                                                                                                                                                                                        | 19.8<br>67.5<br>31.7<br>43<br>41.9<br>'3.13; Chi                                                                       | 15.4<br>10<br>15.9<br>33.8<br>15.3<br>i <sup>2</sup> = 10                                                                         | 5<br>27<br>12<br>20<br>18<br><b>97</b><br>3.78, dt                                                      | 50<br>33.6<br>30<br>38.7<br>40.3                                                       | 2.6<br>12.3<br>10.4<br>17.2<br>17.1                                                                 | 5<br>30<br>12<br>10<br>18<br><b>90</b>                                          | 12.4%<br>13.2%<br>12.8%<br>11.8%<br>12.8%<br><b>75.5</b> %                             | -30.20 [-43.89, -16.51]<br>33.90 [28.10, 39.70]<br>1.70 [-9.05, 12.45]<br>4.30 [-13.95, 22.55]<br>1.60 [-9.00, 12.20]                                                                                                                      |                                                       |
| Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 57                                                                                                                                                                                                                                                           | 19.8<br>67.5<br>31.7<br>43<br>41.9<br>'3.13; Chi                                                                       | 15.4<br>10<br>15.9<br>33.8<br>15.3<br>i <sup>2</sup> = 10                                                                         | 5<br>27<br>12<br>20<br>18<br><b>97</b><br>3.78, dt                                                      | 50<br>33.6<br>30<br>38.7<br>40.3                                                       | 2.6<br>12.3<br>10.4<br>17.2<br>17.1                                                                 | 5<br>30<br>12<br>10<br>18<br><b>90</b>                                          | 12.4%<br>13.2%<br>12.8%<br>11.8%<br>12.8%<br><b>75.5</b> %                             | -30.20 [-43.89, -16.51]<br>33.90 [28.10, 39.70]<br>1.70 [-9.05, 12.45]<br>4.30 [-13.95, 22.55]<br>1.60 [-9.00, 12.20]                                                                                                                      |                                                       |
| Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 57<br>Test for overall effect: Z =<br>1.2.2 Placebo control                                                                                                                                                                                                  | 19.8<br>67.5<br>31.7<br>43<br>41.9<br>3.13; Chi<br>- 0.78 (P =                                                         | 15.4<br>10<br>15.9<br>33.8<br>15.3<br>i <sup>2</sup> = 10<br>= 0.43                                                               | 5<br>27<br>12<br>20<br>18<br>97<br>3.78, dt                                                             | 50<br>33.6<br>30<br>38.7<br>40.3                                                       | 2.6<br>12.3<br>10.4<br>17.2<br>17.1                                                                 | 5<br>30<br>12<br>10<br>18<br><b>90</b><br>001); F                               | 12.4%<br>13.2%<br>12.8%<br>11.8%<br>12.8%<br><b>75.5</b> %<br>= 95%                    | -30.20 [-43.89, -16.51]<br>33.90 [28.10, 39.70]<br>1.70 [-9.05, 12.45]<br>4.30 [-13.95, 22.55]<br>1.60 [-9.00, 12.20]<br><b>7.91 [-11.89, 27.70]</b>                                                                                       |                                                       |
| Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 57<br>Test for overall effect: Z =<br>1.2.2 Placebo control<br>Terlemez,2020                                                                                                                                                                                 | 19.8<br>67.5<br>31.7<br>43<br>41.9<br>3.13; Chi<br>0.78 (P =<br>39                                                     | 15.4<br>10<br>15.9<br>33.8<br>15.3<br>i <sup>2</sup> = 10<br>= 0.43                                                               | 5<br>27<br>12<br>20<br>18<br>97<br>3.78, df                                                             | 50<br>33.6<br>30<br>38.7<br>40.3<br>f= 5 (P                                            | 2.6<br>12.3<br>10.4<br>17.2<br>17.1<br>< 0.000                                                      | 5<br>30<br>12<br>10<br>18<br><b>90</b><br>001); F                               | 12.4%<br>13.2%<br>12.8%<br>12.8%<br>75.5%<br>= 95%                                     | -30.20 [-43.89, -16.51]<br>33.90 [28.10, 39.70]<br>1.70 [-9.05, 12.45]<br>4.30 [-13.95, 22.55]<br>1.60 [-9.00, 12.20]<br><b>7.91 [-11.89, 27.70]</b>                                                                                       |                                                       |
| Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 57<br>Test for overall effect: Z =<br>1.2.2 Placebo control                                                                                                                                                                                                  | 19.8<br>67.5<br>31.7<br>43<br>41.9<br>3.13; Chi<br>0.78 (P =<br>39                                                     | 15.4<br>10<br>15.9<br>33.8<br>15.3<br>i <sup>2</sup> = 10<br>= 0.43                                                               | 5<br>27<br>12<br>20<br>18<br>97<br>3.78, dt                                                             | 50<br>33.6<br>30<br>38.7<br>40.3<br>f= 5 (P                                            | 2.6<br>12.3<br>10.4<br>17.2<br>17.1                                                                 | 5<br>30<br>12<br>10<br>18<br><b>90</b><br>001); F                               | 12.4%<br>13.2%<br>12.8%<br>11.8%<br>12.8%<br><b>75.5</b> %<br>= 95%<br>12.2%           | -30.20 [-43.89, -16.51]<br>33.90 [28.10, 39.70]<br>1.70 [-9.05, 12.45]<br>4.30 [-13.95, 22.55]<br>1.60 [-9.00, 12.20]<br><b>7.91 [-11.89, 27.70]</b>                                                                                       |                                                       |
| Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 57<br>Test for overall effect: Z =<br><b>1.2.2 Placebo control</b><br>Terlemez,2020<br>Wakeling,2013<br>Subtotal (95% CI)                                                                                                                                    | 19.8<br>67.5<br>31.7<br>43<br>41.9<br>3.13; Chi<br>= 0.78 (P<br>39<br>28.1                                             | 15.4<br>10<br>15.9<br>33.8<br>15.3<br>i <sup>2</sup> = 10<br>= 0.43<br>18<br>28.6                                                 | 5<br>27<br>12<br>20<br>18<br>97<br>3.78, dt<br>)<br>20<br>32<br>32<br>52                                | 50<br>33.6<br>30<br>38.7<br>40.3<br>7= 5 (P<br>55<br>46.2                              | 2.6<br>12.3<br>10.4<br>17.2<br>17.1<br>< 0.000<br>20.9<br>32.1                                      | 5<br>30<br>12<br>10<br>18<br><b>90</b><br>001); F<br>10<br>32<br>42             | 12.4%<br>13.2%<br>12.8%<br>11.8%<br>12.8%<br><b>75.5</b> %<br>= 95%<br>12.2%           | -30.20 [-43.89, -16.51]<br>33.90 [28.10, 39.70]<br>1.70 [-9.05, 12.45]<br>4.30 [-13.95, 22.55]<br>1.60 [-9.00, 12.20]<br><b>7.91 [-11.89, 27.70]</b><br>-16.00 [-31.17, -0.83]<br>-18.10 [-33.00, -3.20]                                   |                                                       |
| Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 57<br>Test for overall effect: Z =<br>1.2.2 Placebo control<br>Terlemez,2020<br>Wakeling,2013                                                                                                                                                                | 19.8<br>67.5<br>31.7<br>43<br>41.9<br>3.13; Chi<br>5.0.78 (P<br>39<br>28.1<br>00; Chi <sup>z</sup> =                   | 15.4<br>10<br>15.9<br>33.8<br>15.3<br>i <sup>2</sup> = 10<br>= 0.43<br>18<br>28.6<br>: 0.04,                                      | 5<br>27<br>12<br>20<br>18<br>97<br>3.78, dt<br>)<br>20<br>32<br>52<br>52<br>df = 1 (                    | 50<br>33.6<br>30<br>38.7<br>40.3<br>7= 5 (P<br>55<br>46.2                              | 2.6<br>12.3<br>10.4<br>17.2<br>17.1<br>< 0.000<br>20.9<br>32.1                                      | 5<br>30<br>12<br>10<br>18<br><b>90</b><br>001); F<br>10<br>32<br>42             | 12.4%<br>13.2%<br>12.8%<br>11.8%<br>12.8%<br><b>75.5</b> %<br>= 95%<br>12.2%           | -30.20 [-43.89, -16.51]<br>33.90 [28.10, 39.70]<br>1.70 [-9.05, 12.45]<br>4.30 [-13.95, 22.55]<br>1.60 [-9.00, 12.20]<br><b>7.91 [-11.89, 27.70]</b><br>-16.00 [-31.17, -0.83]<br>-18.10 [-33.00, -3.20]                                   |                                                       |
| Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 57<br>Test for overall effect: Z =<br><b>1.2.2 Placebo control</b><br>Terlemez,2020<br>Wakeling,2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.0                                                                                           | 19.8<br>67.5<br>31.7<br>43<br>41.9<br>3.13; Chi<br>5.0.78 (P<br>39<br>28.1<br>00; Chi <sup>z</sup> =                   | 15.4<br>10<br>15.9<br>33.8<br>15.3<br>i <sup>2</sup> = 10<br>= 0.43<br>18<br>28.6<br>: 0.04,                                      | 5<br>27<br>12<br>20<br>18<br>97<br>3.78, dt<br>)<br>20<br>32<br>52<br>52<br>df = 1 (                    | 50<br>33.6<br>30<br>38.7<br>40.3<br>7= 5 (P<br>55<br>46.2                              | 2.6<br>12.3<br>10.4<br>17.2<br>17.1<br>< 0.000<br>20.9<br>32.1                                      | 5<br>30<br>12<br>10<br>18<br>90<br>001); ₣<br>10<br>32<br>42<br>0%              | 12.4%<br>13.2%<br>12.8%<br>11.8%<br>12.8%<br><b>75.5</b> %<br>= 95%<br>12.2%           | -30.20 [-43.89, -16.51]<br>33.90 [28.10, 39.70]<br>1.70 [-9.05, 12.45]<br>4.30 [-13.95, 22.55]<br>1.60 [-9.00, 12.20]<br><b>7.91 [-11.89, 27.70]</b><br>-16.00 [-31.17, -0.83]<br>-18.10 [-33.00, -3.20]                                   |                                                       |
| Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 57<br>Test for overall effect: Z =<br><b>1.2.2 Placebo control</b><br>Terlemez,2020<br>Wakeling,2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.0<br>Test for overall effect: Z =                                                           | 19.8<br>67.5<br>31.7<br>43<br>41.9<br>'3.13; Chi<br>= 0.78 (P =<br>39<br>28.1<br>00; Chi <sup>2</sup> =<br>= 3.15 (P = | 15.4<br>10<br>15.9<br>33.8<br>15.3<br>i <sup>2</sup> = 10<br>= 0.43<br>18<br>28.6<br>: 0.04,<br>= 0.00                            | 5<br>27<br>12<br>20<br>18<br>97<br>3.78, dt<br>)<br>20<br>32<br>52<br>df = 1 (<br>2)<br>149             | 50<br>33.6<br>30<br>38.7<br>40.3<br>(= 5 (P<br>55<br>46.2<br>P = 0.88                  | 2.6<br>12.3<br>10.4<br>17.2<br>17.1<br>< 0.000<br>20.9<br>32.1<br>5);   <sup>2</sup> = 1            | 5<br>30<br>12<br>10<br>18<br>90<br>001); F<br>10<br>32<br>42<br>0%<br>132       | 12.4%<br>13.2%<br>12.8%<br>11.8%<br>12.8%<br>75.5%<br>= 95%<br>12.2%<br>24.5%          | -30.20 [-43.89, -16.51]<br>33.90 [28.10, 39.70]<br>1.70 [-8.05, 12.45]<br>4.30 [-13.95, 22.55]<br>1.60 [-9.00, 12.20]<br><b>7.91 [-11.89, 27.70]</b><br>-16.00 [-31.17, -0.83]<br>-18.10 [-33.00, -3.20]<br>- <b>17.07 [-27.70, -6.44]</b> |                                                       |
| Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 57<br>Test for overall effect: Z =<br>1.2.2 Placebo control<br>Terlemez,2020<br>Wakeling,2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.0<br>Test for overall effect: Z =<br>Total (95% CI)                                                | 19.8<br>67.5<br>31.7<br>43<br>41.9<br>3.13; Chi<br>= 0.78 (P =<br>39<br>28.1<br>00; Chi <sup>2</sup> =<br>= 3.15 (P =  | 15.4<br>10<br>15.9<br>33.8<br>15.3<br>$i^{2} = 10$<br>= 0.43<br>18<br>28.6<br>: 0.04,<br>= 0.00<br>$i^{2} = 14$                   | 5<br>27<br>12<br>20<br>18<br>97<br>3.78, dt<br>)<br>20<br>32<br>52<br>df = 1 (<br>2)<br>149<br>0.57, dt | 50<br>33.6<br>30<br>38.7<br>40.3<br>(= 5 (P<br>55<br>46.2<br>P = 0.88                  | 2.6<br>12.3<br>10.4<br>17.2<br>17.1<br>< 0.000<br>20.9<br>32.1<br>5);   <sup>2</sup> = 1            | 5<br>30<br>12<br>10<br>18<br>90<br>001); F<br>10<br>32<br>42<br>0%<br>132       | 12.4%<br>13.2%<br>12.8%<br>11.8%<br>12.8%<br>75.5%<br>= 95%<br>12.2%<br>24.5%          | -30.20 [-43.89, -16.51]<br>33.90 [28.10, 39.70]<br>1.70 [-8.05, 12.45]<br>4.30 [-13.95, 22.55]<br>1.60 [-9.00, 12.20]<br><b>7.91 [-11.89, 27.70]</b><br>-16.00 [-31.17, -0.83]<br>-18.10 [-33.00, -3.20]<br>- <b>17.07 [-27.70, -6.44]</b> |                                                       |
| Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 57<br>Test for overall effect: Z =<br><b>1.2.2 Placebo control</b><br>Terlemez,2020<br>Wakeling,2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.0<br>Test for overall effect: Z =<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 62 | 19.8<br>67.5<br>31.7<br>43<br>41.9<br>3.13; Chi<br>= 0.78 (P =<br>                                                     | 15.4<br>10<br>15.9<br>33.8<br>15.3<br>1 <sup>2</sup> = 10<br>= 0.43<br>28.6<br>: 0.04,<br>= 0.00<br>i <sup>2</sup> = 14<br>= 0.85 | 5<br>27<br>12<br>20<br>18<br>97<br>3.78, dt<br>)<br>20<br>32<br>52<br>df = 1 (<br>2)<br>149<br>0.57, dt | 50<br>33.6<br>30<br>38.7<br>40.3<br>7 = 5 (P -<br>55<br>46.2<br>P = 0.85<br>7 = 7 (P - | 2.6<br>12.3<br>10.4<br>17.2<br>17.1<br>< 0.000<br>20.9<br>32.1<br>5); I <sup>2</sup> = 1<br>< 0.000 | 5<br>30<br>12<br>10<br>18<br>90<br>001); F<br>10<br>32<br>42<br>0%<br>132<br>0% | 12.4%<br>13.2%<br>12.8%<br>12.8%<br>75.5%<br>= 95%<br>12.2%<br>12.2%<br>24.5%<br>= 95% | -30.20 [-43.89, -16.51]<br>33.90 [28.10, 39.70]<br>1.70 [-8.05, 12.45]<br>4.30 [-13.95, 22.55]<br>1.60 [-9.00, 12.20]<br><b>7.91 [-11.89, 27.70]</b><br>-16.00 [-31.17, -0.83]<br>-18.10 [-33.00, -3.20]<br>- <b>17.07 [-27.70, -6.44]</b> | -100 -50 0 50 100<br>Favours [SSNB] Favours [Control] |

groups, we used the random-effects model to deal with possible heterogeneity. Sensitivity analysis was performed by sequentially omitting one trial, and publication bias was evaluated by the visual funnel plot. Subgroup analyses based on different controls were performed to detect the real effects of SSNB.

## RESULTS

#### **Study Selection**

We identified 194 citations in total by searching PubMed, Embase, and Cochrane database using our keywords. After removing 53 duplicates, we further excluded 128 citations by browsing titles and abstracts, and then we evaluated the remaining 13 citations with full text. Of the 13 fulltext articles, five articles are excluded because of protocol, same study, no randomization, and no control. Finally, eight studies with 281 patients were included in our meta-analysis (flowchart in **Figure 1** and search strategy details in the **Supplementary Material**) (8–11, 13–16).

#### **Characteristics of Eligible Studies**

Of the included 281 patients, 149 (53.0%) were assigned to the SSNB group, and 135 (47.0%) were assigned to the control group. The follow-up period ranged from 4 to 12 wk. The largest RCT owns a sample number of 60 and the smallest of 10. The treatment for control group consists of two placebo

|                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SSNB                                                                                                            |                                                                                 | С                                                                    | ontrol                                                     |                                                                     |                                                              | Mean Difference                                                                                                                                                                                                | Mean Difference                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                              | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SD                                                                                                              | Total                                                                           | Mean                                                                 | SD                                                         | Total                                                               | Weight                                                       | IV, Random, 95% Cl                                                                                                                                                                                             | IV, Random, 95% Cl                    |
| 2.1.1 Active control                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                                                                 |                                                                      |                                                            |                                                                     |                                                              |                                                                                                                                                                                                                |                                       |
| Boonsong,2009                                                                                                                                                                                                                                                                                                                                                                  | 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32.3                                                                                                            | 5                                                                               | 101                                                                  | 12.5                                                       | 5                                                                   | 5.4%                                                         | 32.00 [1.64, 62.36]                                                                                                                                                                                            |                                       |
| Kasapoglu-Aksoy,2020                                                                                                                                                                                                                                                                                                                                                           | 78.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.5                                                                                                            | 27                                                                              | 77.4                                                                 | 12.3                                                       | 30                                                                  | 45.8%                                                        | 1.30 [-6.63, 9.23]                                                                                                                                                                                             | -                                     |
| Kim,2014                                                                                                                                                                                                                                                                                                                                                                       | 157.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.3                                                                                                            | 12                                                                              | 151.3                                                                | 26.7                                                       | 12                                                                  | 13.6%                                                        | 6.20 [-12.11, 24.51]                                                                                                                                                                                           |                                       |
| Sencan,2019                                                                                                                                                                                                                                                                                                                                                                    | 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.3                                                                                                            | 20                                                                              | 135                                                                  | 25                                                         | 10                                                                  | 13.0%                                                        | -6.00 [-24.80, 12.80]                                                                                                                                                                                          |                                       |
| Tubay,2012                                                                                                                                                                                                                                                                                                                                                                     | 124.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.9                                                                                                            | 18                                                                              | 125.8                                                                | 19.6                                                       | 18                                                                  | 22.3%                                                        | -1.40 [-14.98, 12.18]                                                                                                                                                                                          |                                       |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | 82                                                                              |                                                                      |                                                            | 75                                                                  | 100.0%                                                       | 2.08 [-5.18, 9.33]                                                                                                                                                                                             | <b>*</b>                              |
| Heterogeneity: Tau <sup>2</sup> = 13                                                                                                                                                                                                                                                                                                                                           | .52: Chi <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 4.91                                                                                                          | df = 4                                                                          | (P = 0.3)                                                            | 30); l <sup>z</sup> =                                      | 19%                                                                 |                                                              |                                                                                                                                                                                                                |                                       |
| Test for overall effect: Z =                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |                                                                                 |                                                                      | /1 -                                                       |                                                                     |                                                              |                                                                                                                                                                                                                |                                       |
| 2.1.2 Placebo control                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                                                                 |                                                                      |                                                            |                                                                     |                                                              |                                                                                                                                                                                                                |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | 0                                                                               |                                                                      |                                                            | 0                                                                   |                                                              | Not estimable                                                                                                                                                                                                  |                                       |
| Subtotal (95% Cl)                                                                                                                                                                                                                                                                                                                                                              | aabla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | 0                                                                               |                                                                      |                                                            | 0                                                                   |                                                              | Notestinable                                                                                                                                                                                                   |                                       |
| Heterogeneity: Not appli                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | blo                                                                                                             |                                                                                 |                                                                      |                                                            |                                                                     |                                                              |                                                                                                                                                                                                                |                                       |
| Test for overall effect: No                                                                                                                                                                                                                                                                                                                                                    | it applica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | bie                                                                                                             |                                                                                 |                                                                      |                                                            |                                                                     |                                                              |                                                                                                                                                                                                                |                                       |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | 82                                                                              |                                                                      |                                                            | 75                                                                  | 100.0%                                                       | 2.08 [-5.18, 9.33]                                                                                                                                                                                             | <b>+</b>                              |
| Heterogeneity: Tau <sup>2</sup> = 13                                                                                                                                                                                                                                                                                                                                           | .52: Chi <sup>≥</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 4.91                                                                                                          | . df = 4                                                                        | (P = 0.3)                                                            | 30): l² =                                                  | 19%                                                                 |                                                              | •                                                                                                                                                                                                              |                                       |
| Test for overall effect: Z =                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                                                                 |                                                                      | // -                                                       |                                                                     |                                                              |                                                                                                                                                                                                                | -100 -50 0 50 100                     |
| Test for subaroup differe                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                                                                 |                                                                      |                                                            |                                                                     |                                                              |                                                                                                                                                                                                                | Hazards [SSNB] Hazards [Control]      |
| Abduction H                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                                                                 | eks                                                                  |                                                            |                                                                     |                                                              |                                                                                                                                                                                                                |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                                                                 |                                                                      |                                                            |                                                                     |                                                              |                                                                                                                                                                                                                |                                       |
| noude eron i                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | "0                                                                              |                                                                      |                                                            |                                                                     |                                                              |                                                                                                                                                                                                                |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SSNB                                                                                                            |                                                                                 | с                                                                    | ontrol                                                     |                                                                     |                                                              | Mean Difference                                                                                                                                                                                                | Mean Difference                       |
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                              | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SSNB                                                                                                            |                                                                                 | с                                                                    |                                                            | Total                                                               | Weight                                                       | Mean Difference<br>IV, Random, 95% Cl                                                                                                                                                                          | Mean Difference<br>IV, Random, 95% Cl |
| Study or Subgroup<br>2.2.1 Active control                                                                                                                                                                                                                                                                                                                                      | S<br>Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SSNB<br>SD                                                                                                      | Total                                                                           | C<br>Mean                                                            | SD                                                         |                                                                     |                                                              | IV, Random, 95% Cl                                                                                                                                                                                             |                                       |
| Study or Subgroup<br>2.2.1 Active control<br>Alanbay,2020                                                                                                                                                                                                                                                                                                                      | S<br><u>Mean</u><br>110.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SSNB<br>SD<br>35.5                                                                                              | <u>Total</u><br>15                                                              | C<br><u>Mean</u><br>127.3                                            | SD<br>35.1                                                 | 15                                                                  | 12.7%                                                        | IV, Random, 95% CI<br>-16.70 [-41.96, 8.56]                                                                                                                                                                    | IV, Random, 95% Cl                    |
| Study or Subgroup<br>2.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009                                                                                                                                                                                                                                                                                                     | S<br><u>Mean</u><br>110.6<br>140.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SSNB<br>SD<br>35.5<br>25.9                                                                                      | <u>Total</u><br>15<br>5                                                         | C<br><u>Mean</u><br>127.3<br>111                                     | SD<br>35.1<br>16.6                                         | 15<br>5                                                             | 12.7%<br>11.9%                                               | V, Random, 95% Cl<br>-16.70 [-41.96, 8.56]<br>29.40 [2.44, 56.36]                                                                                                                                              | IV, Random, 95% Cl                    |
| Study or Subgroup<br>2.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020                                                                                                                                                                                                                                                                             | Mean<br>110.6<br>140.4<br>62.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35.5<br>25.9<br>15                                                                                              | <u>Total</u><br>15<br>5<br>27                                                   | C<br><u>Mean</u><br>127.3<br>111<br>77.4                             | SD<br>35.1<br>16.6<br>12.3                                 | 15<br>5<br>30                                                       | 12.7%<br>11.9%<br>22.7%                                      | V, Random, 95% Cl<br>-16.70 [-41.96, 8.56]<br>29.40 [2.44, 56.36]<br>-14.90 [-22.07, -7.73]                                                                                                                    | IV, Random, 95% Cl                    |
| Study or Subgroup<br>2.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014                                                                                                                                                                                                                                                                 | <u>Mean</u><br>110.6<br>140.4<br>62.5<br>171.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35.5<br>25.9<br>15<br>13.6                                                                                      | Total<br>15<br>5<br>27<br>12                                                    | C<br><u>Mean</u><br>127.3<br>111<br>77.4<br>159.6                    | SD<br>35.1<br>16.6<br>12.3<br>24.2                         | 15<br>5<br>30<br>12                                                 | 12.7%<br>11.9%<br>22.7%<br>18.0%                             | V, Random, 95% Cl<br>-16.70 [-41.96, 8.56]<br>29.40 [2.44, 56.36]<br>-14.90 [-22.07, -7.73]<br>11.70 [-4.01, 27.41]                                                                                            | IV, Random, 95% Cl                    |
| Study or Subgroup<br>2.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019                                                                                                                                                                                                                                                  | 5<br>Mean<br>110.6<br>140.4<br>62.5<br>171.3<br>118.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.5<br>25.9<br>15<br>13.6<br>25.1                                                                              | Total<br>15<br>5<br>27<br>12<br>20                                              | C<br><u>Mean</u><br>127.3<br>111<br>77.4<br>159.6<br>131             | SD<br>35.1<br>16.6<br>12.3<br>24.2<br>28                   | 15<br>5<br>30<br>12<br>10                                           | 12.7%<br>11.9%<br>22.7%<br>18.0%<br>15.2%                    | V, Random, 95% Cl<br>-16.70 [-41.96, 8.56]<br>29.40 [2.44, 56.36]<br>-14.90 [-22.07, -7.73]<br>11.70 [-4.01, 27.41]<br>-12.50 [-33.05, 8.05]                                                                   | IV, Random, 95% Cl                    |
| Study or Subgroup<br>2.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012                                                                                                                                                                                                                                    | <u>Mean</u><br>110.6<br>140.4<br>62.5<br>171.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35.5<br>25.9<br>15<br>13.6<br>25.1                                                                              | Total<br>15<br>5<br>27<br>12<br>20<br>18                                        | C<br><u>Mean</u><br>127.3<br>111<br>77.4<br>159.6                    | SD<br>35.1<br>16.6<br>12.3<br>24.2<br>28                   | 15<br>5<br>30<br>12<br>10<br>18                                     | 12.7%<br>11.9%<br>22.7%<br>18.0%<br>15.2%<br>19.4%           | V, Random, 95% Cl<br>-16.70 [-41.96, 8.56]<br>29.40 [2.44, 56.36]<br>-14.90 [-22.07, -7.73]<br>11.70 [-4.01, 27.41]<br>-12.50 [-33.05, 8.05]<br>3.10 [-10.24, 16.44]                                           | IV, Random, 95% Cl                    |
| Study or Subgroup<br>2.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019                                                                                                                                                                                                                                                  | 5<br>Mean<br>110.6<br>140.4<br>62.5<br>171.3<br>118.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.5<br>25.9<br>15<br>13.6<br>25.1                                                                              | Total<br>15<br>5<br>27<br>12<br>20                                              | C<br><u>Mean</u><br>127.3<br>111<br>77.4<br>159.6<br>131             | SD<br>35.1<br>16.6<br>12.3<br>24.2<br>28                   | 15<br>5<br>30<br>12<br>10<br>18                                     | 12.7%<br>11.9%<br>22.7%<br>18.0%<br>15.2%<br>19.4%           | V, Random, 95% Cl<br>-16.70 [-41.96, 8.56]<br>29.40 [2.44, 56.36]<br>-14.90 [-22.07, -7.73]<br>11.70 [-4.01, 27.41]<br>-12.50 [-33.05, 8.05]                                                                   | IV, Random, 95% Cl                    |
| Study or Subgroup<br>2.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012                                                                                                                                                                                                                                    | S<br>Mean<br>110.6<br>140.4<br>62.5<br>171.3<br>118.5<br>128.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35.5<br>25.9<br>15<br>13.6<br>25.1<br>22.9                                                                      | Total<br>15<br>5<br>27<br>12<br>20<br>18<br>97                                  | C<br><u>Mean</u><br>127.3<br>111<br>77.4<br>159.6<br>131<br>125.8    | SD<br>35.1<br>16.6<br>12.3<br>24.2<br>28<br>17.6           | 15<br>5<br>30<br>12<br>10<br>18<br>90                               | 12.7%<br>11.9%<br>22.7%<br>18.0%<br>15.2%<br>19.4%<br>100.0% | V, Random, 95% Cl<br>-16.70 [-41.96, 8.56]<br>29.40 [2.44, 56.36]<br>-14.90 [-22.07, -7.73]<br>11.70 [-4.01, 27.41]<br>-12.50 [-33.05, 8.05]<br>3.10 [-10.24, 16.44]                                           | IV, Random, 95% Cl                    |
| Study or Subgroup<br>2.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 18                                                                                                                                                                                               | S<br>Mean<br>110.6<br>140.4<br>62.5<br>171.3<br>118.5<br>128.9<br>1.25; Chi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35.5<br>25.9<br>15<br>13.6<br>25.1<br>22.9<br>i <sup>2</sup> = 20.                                              | <u>Total</u><br>15<br>5<br>27<br>12<br>20<br>18<br>97<br>15, df=                | C<br><u>Mean</u><br>127.3<br>111<br>77.4<br>159.6<br>131<br>125.8    | SD<br>35.1<br>16.6<br>12.3<br>24.2<br>28<br>17.6           | 15<br>5<br>30<br>12<br>10<br>18<br>90                               | 12.7%<br>11.9%<br>22.7%<br>18.0%<br>15.2%<br>19.4%<br>100.0% | V, Random, 95% Cl<br>-16.70 [-41.96, 8.56]<br>29.40 [2.44, 56.36]<br>-14.90 [-22.07, -7.73]<br>11.70 [-4.01, 27.41]<br>-12.50 [-33.05, 8.05]<br>3.10 [-10.24, 16.44]                                           | N, Random, 95% Cl                     |
| Study or Subgroup<br>2.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)                                                                                                                                                                                                               | S<br>Mean<br>110.6<br>140.4<br>62.5<br>171.3<br>118.5<br>128.9<br>1.25; Chi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35.5<br>25.9<br>15<br>13.6<br>25.1<br>22.9<br>i <sup>2</sup> = 20.                                              | <u>Total</u><br>15<br>5<br>27<br>12<br>20<br>18<br>97<br>15, df=                | C<br><u>Mean</u><br>127.3<br>111<br>77.4<br>159.6<br>131<br>125.8    | SD<br>35.1<br>16.6<br>12.3<br>24.2<br>28<br>17.6           | 15<br>5<br>30<br>12<br>10<br>18<br>90                               | 12.7%<br>11.9%<br>22.7%<br>18.0%<br>15.2%<br>19.4%<br>100.0% | V, Random, 95% Cl<br>-16.70 [-41.96, 8.56]<br>29.40 [2.44, 56.36]<br>-14.90 [-22.07, -7.73]<br>11.70 [-4.01, 27.41]<br>-12.50 [-33.05, 8.05]<br>3.10 [-10.24, 16.44]                                           | IV, Random, 95% Cl                    |
| Study or Subgroup<br>2.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 18<br>Test for overall effect: Z =<br>2.2.2 Placebo control                                                                                                              | S<br>Mean<br>110.6<br>140.4<br>62.5<br>171.3<br>118.5<br>128.9<br>1.25; Chi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35.5<br>25.9<br>15<br>13.6<br>25.1<br>22.9<br>i <sup>2</sup> = 20.                                              | <u>Total</u><br>15<br>5<br>27<br>12<br>20<br>18<br>97<br>15, df=                | C<br><u>Mean</u><br>127.3<br>111<br>77.4<br>159.6<br>131<br>125.8    | SD<br>35.1<br>16.6<br>12.3<br>24.2<br>28<br>17.6           | 15<br>5<br>30<br>12<br>10<br>18<br>90                               | 12.7%<br>11.9%<br>22.7%<br>18.0%<br>15.2%<br>19.4%<br>100.0% | V, Random, 95% Cl<br>-16.70 [-41.96, 8.56]<br>29.40 [2.44, 56.36]<br>-14.90 [-22.07, -7.73]<br>11.70 [-4.01, 27.41]<br>-12.50 [-33.05, 8.05]<br>3.10 [-10.24, 16.44]                                           | IV, Random, 95% Cl                    |
| Study or Subgroup<br>2.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 18<br>Test for overall effect: Z =<br>2.2.2 Placebo control<br>Subtotal (95% Cl)                                                                                         | S<br>Mean<br>110.6<br>140.4<br>62.5<br>171.3<br>118.5<br>128.9<br>11.25; Chi<br>= 0.18 (P =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35.5<br>25.9<br>15<br>13.6<br>25.1<br>22.9<br>i <sup>2</sup> = 20.                                              | Total<br>15<br>27<br>12<br>20<br>18<br>97<br>15, df =                           | C<br><u>Mean</u><br>127.3<br>111<br>77.4<br>159.6<br>131<br>125.8    | SD<br>35.1<br>16.6<br>12.3<br>24.2<br>28<br>17.6           | 15<br>5<br>30<br>12<br>10<br>18<br>90<br>; I <sup>2</sup> = 75      | 12.7%<br>11.9%<br>22.7%<br>18.0%<br>15.2%<br>19.4%<br>100.0% | V, Random, 95% Cl<br>-16.70 [-41.96, 8.56]<br>29.40 [2.44, 56.36]<br>-14.90 [-22.07, -7.73]<br>11.70 [-4.01, 27.41]<br>-12.50 [-33.05, 8.05]<br>3.10 [-10.24, 16.44]<br>-1.19 [-14.22, 11.84]                  | IV, Random, 95% Cl                    |
| Study or Subgroup<br>2.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 18<br>Test for overall effect: Z =<br>2.2.2 Placebo control                                                                                                              | 5<br><u>Mean</u><br>110.6<br>140.4<br>62.5<br>171.3<br>118.5<br>128.9<br>11.25; Chi<br>co.18 (P :<br>cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35.5<br>25.9<br>15<br>13.6<br>25.1<br>22.9<br>i <sup>2</sup> = 20.<br>= 0.86)                                   | Total<br>15<br>27<br>12<br>20<br>18<br>97<br>15, df =                           | C<br><u>Mean</u><br>127.3<br>111<br>77.4<br>159.6<br>131<br>125.8    | SD<br>35.1<br>16.6<br>12.3<br>24.2<br>28<br>17.6           | 15<br>5<br>30<br>12<br>10<br>18<br>90<br>; I <sup>2</sup> = 75      | 12.7%<br>11.9%<br>22.7%<br>18.0%<br>15.2%<br>19.4%<br>100.0% | V, Random, 95% Cl<br>-16.70 [-41.96, 8.56]<br>29.40 [2.44, 56.36]<br>-14.90 [-22.07, -7.73]<br>11.70 [-4.01, 27.41]<br>-12.50 [-33.05, 8.05]<br>3.10 [-10.24, 16.44]<br>-1.19 [-14.22, 11.84]                  | IV, Random, 95% Cl                    |
| Study or Subgroup<br>2.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 18<br>Test for overall effect: Z =<br>2.2.2 Placebo control<br>Subtotal (95% Cl)<br>Heterogeneity: Not applin<br>Test for overall effect: No                             | 5<br><u>Mean</u><br>110.6<br>140.4<br>62.5<br>171.3<br>118.5<br>128.9<br>11.25; Chi<br>co.18 (P :<br>cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35.5<br>25.9<br>15<br>13.6<br>25.1<br>22.9<br>i <sup>2</sup> = 20.<br>= 0.86)                                   | Total<br>15<br>5<br>27<br>12<br>20<br>18<br>97<br>15, df=                       | C<br><u>Mean</u><br>127.3<br>111<br>77.4<br>159.6<br>131<br>125.8    | SD<br>35.1<br>16.6<br>12.3<br>24.2<br>28<br>17.6           | 15<br>5<br>30<br>12<br>10<br>18<br>90<br>; I <sup>2</sup> = 75      | 12.7%<br>11.9%<br>22.7%<br>18.0%<br>15.2%<br>19.4%<br>100.0% | V, Random, 95% CI<br>-16.70 [-41.96, 8.56]<br>29.40 [2.44, 56.36]<br>-14.90 [-22.07, -7.73]<br>11.70 [-4.01, 27.41]<br>-12.50 [-33.05, 8.05]<br>3.10 [-10.24, 16.44]<br>-1.19 [-14.22, 11.84]<br>Not estimable | IV, Random, 95% Cl                    |
| Study or Subgroup<br>2.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 18<br>Test for overall effect: Z =<br>2.2.2 Placebo control<br>Subtotal (95% Cl)<br>Heterogeneity: Not applin<br>Test for overall effect: Not<br>Subtotal (95% Cl)       | 5<br><u>Mean</u><br>110.6<br>140.4<br>62.5<br>171.3<br>118.5<br>128.9<br>1.25; Chi<br>2.25; Chi<br>2. | SSNB<br>SD<br>35.5<br>25.9<br>15<br>13.6<br>25.1<br>22.9<br>i <sup>2</sup> = 20.<br>= 0.86)                     | Total<br>15<br>5<br>27<br>12<br>20<br>18<br>97<br>15, df=<br>0<br>97            | C<br>Mean<br>127.3<br>111<br>77.4<br>159.6<br>131<br>125.8<br>5 (P = | SD<br>35.1<br>16.6<br>12.3<br>24.2<br>28<br>17.6<br>0.001) | 15<br>5<br>30<br>12<br>10<br>18<br>90<br>; I <sup>2</sup> = 75<br>0 | 12.7%<br>11.9%<br>22.7%<br>18.0%<br>15.2%<br>19.4%<br>100.0% | V, Random, 95% Cl<br>-16.70 [-41.96, 8.56]<br>29.40 [2.44, 56.36]<br>-14.90 [-22.07, -7.73]<br>11.70 [-4.01, 27.41]<br>-12.50 [-33.05, 8.05]<br>3.10 [-10.24, 16.44]<br>-1.19 [-14.22, 11.84]                  | IV, Random, 95% Cl                    |
| Study or Subgroup<br>2.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 18<br>C2.2 Placebo control<br>Subtotal (95% Cl)<br>Heterogeneity: Not applin<br>Test for overall effect: No<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 18 | 5<br><u>Mean</u><br>110.6<br>140.4<br>62.5<br>171.3<br>118.5<br>128.9<br>11.25; Chi<br>cable<br>t applical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SSNB<br>SD<br>35.5<br>25.9<br>15<br>13.6<br>25.1<br>22.9<br>i <sup>2</sup> = 20.<br>ble<br>i <sup>2</sup> = 20. | Total<br>15<br>5<br>27<br>12<br>20<br>18<br>97<br>15, df=<br>0<br>97<br>15, df= | C<br>Mean<br>127.3<br>111<br>77.4<br>159.6<br>131<br>125.8<br>5 (P = | SD<br>35.1<br>16.6<br>12.3<br>24.2<br>28<br>17.6<br>0.001) | 15<br>5<br>30<br>12<br>10<br>18<br>90<br>; I <sup>2</sup> = 75<br>0 | 12.7%<br>11.9%<br>22.7%<br>18.0%<br>15.2%<br>19.4%<br>100.0% | V, Random, 95% CI<br>-16.70 [-41.96, 8.56]<br>29.40 [2.44, 56.36]<br>-14.90 [-22.07, -7.73]<br>11.70 [-4.01, 27.41]<br>-12.50 [-33.05, 8.05]<br>3.10 [-10.24, 16.44]<br>-1.19 [-14.22, 11.84]<br>Not estimable | IV, Random, 95% Cl                    |
| Study or Subgroup<br>2.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 18<br>Test for overall effect: Z =<br>2.2.2 Placebo control<br>Subtotal (95% Cl)<br>Heterogeneity: Not applin<br>Test for overall effect: No                             | 5<br><u>Mean</u><br>110.6<br>140.4<br>62.5<br>171.3<br>118.5<br>128.9<br>1.25; Chi<br>cable<br>tapplical<br>1.25; Chi<br>cable<br>tapplical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SSNB<br>SD<br>35.5<br>25.9<br>15<br>13.6<br>25.1<br>22.9<br>i <sup>2</sup> = 20.<br>= 0.86j                     | Total<br>15<br>27<br>12<br>20<br>97<br>15, df=<br>97<br>15, df=                 | C<br>Mean<br>127.3<br>111<br>77.4<br>159.6<br>131<br>125.8<br>5 (P = | SD<br>35.1<br>16.6<br>12.3<br>24.2<br>28<br>17.6<br>0.001) | 15<br>5<br>30<br>12<br>10<br>18<br>90<br>; I <sup>2</sup> = 75<br>0 | 12.7%<br>11.9%<br>22.7%<br>18.0%<br>15.2%<br>19.4%<br>100.0% | V, Random, 95% CI<br>-16.70 [-41.96, 8.56]<br>29.40 [2.44, 56.36]<br>-14.90 [-22.07, -7.73]<br>11.70 [-4.01, 27.41]<br>-12.50 [-33.05, 8.05]<br>3.10 [-10.24, 16.44]<br>-1.19 [-14.22, 11.84]<br>Not estimable | IV, Random, 95% Cl                    |

controls and six active controls. The active control treatment included ultrasound treatment (16), intra-articular hyaluronic acid (HA) injection (15), intra-articular shoulder methyl prednisolone acetate injection (9), suprascapular nerve pulsed radiofrequency (11), botulinum toxin-A (BoNT-A) injection (10), and glenohumeral joint triamcinolone acetonide injection (13). The baseline details of the included studies are displayed in **Table 1**.

#### Primary Endpoint of Visual Analog Scale

VAS was an endpoint in all the eight included studies. For effects of SSNB on HSP within 4 wk, a total of 251 patients participated. For effects no less than 4 wk, 281 participated. As shown in **Figure 2**, there was no obvious difference between SSNB group and active control group regardless of the follow-up period (<4

or  $\geq$ 4 wk), which were -1.64 (-10.67, 7.39; *p* = 0.72) and 7.91 (-11.89, 27.70; *p* = 0.43), but when compared with placebo, the SSNB showed obvious benefits than control group despite the follow-up period (<4 or  $\geq$ 4 wk), and the corresponding mean differences (and 95% CI) were -19.41 (-30.38, -8.44; *p* = 0.0005) and -17.07 (-27.70, -6.44; *p* = 0.002) (**Figure 2**).

## **Secondary Endpoints**

The secondary endpoint we were interested in mainly included PROM of abduction, flexion, and external rotation. In addition, the indicator FMA reflecting the motor function was also a secondary outcome. For abduction, flexion, or external rotation ROM, similar with VAS, the difference between SSNB and active group was not statistically significant, which were 2.08 (-5.18, 9.33; p = 0.57), 5.42 (-4.51, 15.34; p = 0.28), and -3.24 (-8.41,

|                                                                                                                                                                                                                                                                                                                                                                 | S                                                                                                                           | SNB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                     | C                                                                     | ontrol                                             |                                                                       |                                                             | Mean Difference                                                                                                                                                                     | Mean Difference                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total                                                                                               |                                                                       |                                                    |                                                                       | Weight                                                      | IV, Random, 95% Cl                                                                                                                                                                  | IV, Random, 95% Cl                    |
| 3.1.1 Active control                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     |                                                                       |                                                    |                                                                       |                                                             |                                                                                                                                                                                     |                                       |
| Boonsong,2009                                                                                                                                                                                                                                                                                                                                                   | 149.6                                                                                                                       | 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                   | 120.6                                                                 | 30.3                                               | 5                                                                     | 10.4%                                                       | 29.00 [-0.22, 58.22]                                                                                                                                                                |                                       |
| Kim,2014                                                                                                                                                                                                                                                                                                                                                        | 165.8                                                                                                                       | 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                     | 156.7                                                                 |                                                    | 12                                                                    | 26.4%                                                       | 9.10 [-7.56, 25.76]                                                                                                                                                                 |                                       |
| Sencan,2019                                                                                                                                                                                                                                                                                                                                                     | 147                                                                                                                         | 21.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                  | 145                                                                   | 30                                                 | 10                                                                    | 18.5%                                                       | 2.00 [-18.86, 22.86]                                                                                                                                                                | <b>_</b>                              |
| Tubay,2012                                                                                                                                                                                                                                                                                                                                                      | 128.6                                                                                                                       | 19.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18                                                                                                  | 129.4                                                                 | 14.6                                               | 18                                                                    | 44.7%                                                       | -0.80 [-11.94, 10.34]                                                                                                                                                               |                                       |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55                                                                                                  |                                                                       |                                                    | 45                                                                    | 100.0%                                                      | 5.42 [-4.51, 15.34]                                                                                                                                                                 | ◆                                     |
| Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                               | 24.98; 0                                                                                                                    | Chi² = :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.92, df                                                                                            | = 3 (P =                                                              | = 0.27)                                            | ; 1= 23                                                               | 3%                                                          |                                                                                                                                                                                     |                                       |
| Test for overall effect:                                                                                                                                                                                                                                                                                                                                        | Z=1.07                                                                                                                      | (P = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .28)                                                                                                |                                                                       |                                                    |                                                                       |                                                             |                                                                                                                                                                                     |                                       |
| 3.1.2 Placebo control                                                                                                                                                                                                                                                                                                                                           | ı                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     |                                                                       |                                                    |                                                                       |                                                             |                                                                                                                                                                                     |                                       |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                   |                                                                       |                                                    | 0                                                                     |                                                             | Not estimable                                                                                                                                                                       |                                       |
| Heterogeneity: Not ap                                                                                                                                                                                                                                                                                                                                           | nlicable                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     |                                                                       |                                                    |                                                                       |                                                             |                                                                                                                                                                                     |                                       |
| Test for overall effect:                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     |                                                                       |                                                    |                                                                       |                                                             |                                                                                                                                                                                     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     |                                                                       |                                                    |                                                                       |                                                             |                                                                                                                                                                                     |                                       |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55                                                                                                  |                                                                       |                                                    | 45                                                                    | 100.0%                                                      | 5.42 [-4.51, 15.34]                                                                                                                                                                 | ◆                                     |
| Heterogeneity: Tau² =                                                                                                                                                                                                                                                                                                                                           |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     | '= 3 (P =                                                             | = 0.27)                                            | $ ^{2} = 23$                                                          | 3%                                                          |                                                                                                                                                                                     | -100 -50 0 50 100                     |
| Test for overall effect:                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                     |                                                                       |                                                    |                                                                       |                                                             |                                                                                                                                                                                     | Hazards [SSNB] Hazards [Control]      |
|                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     |                                                                       |                                                    |                                                                       |                                                             |                                                                                                                                                                                     |                                       |
| Test for subaroup diff                                                                                                                                                                                                                                                                                                                                          | erences                                                                                                                     | : Not a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | apilaa                                                                                              | ole                                                                   |                                                    |                                                                       |                                                             |                                                                                                                                                                                     |                                       |
| Test for subaroup diff<br>Flexion R                                                                                                                                                                                                                                                                                                                             | erences<br>OM >                                                                                                             | :Nota<br>4 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bolicat<br>Veel                                                                                     | ole<br>∢S                                                             |                                                    |                                                                       |                                                             |                                                                                                                                                                                     |                                       |
| Test for subaroup diff<br>Flexion R                                                                                                                                                                                                                                                                                                                             | OM≥                                                                                                                         | :4 v<br>isnb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | veel                                                                                                | KS<br>C                                                               | ontrol                                             |                                                                       |                                                             | Mean Difference                                                                                                                                                                     | Mean Difference                       |
| Test for subaroup diff<br>Flexion R <sup>4</sup><br>Study or Subgroup                                                                                                                                                                                                                                                                                           | OM≥                                                                                                                         | :4 v<br>isnb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | veel                                                                                                | KS<br>C                                                               |                                                    | Total                                                                 | Weight                                                      | Mean Difference<br>IV, Random, 95% Cl                                                                                                                                               |                                       |
| Flexion R                                                                                                                                                                                                                                                                                                                                                       | OM≥<br>s                                                                                                                    | :4 v<br>isnb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | veel                                                                                                | KS<br>C                                                               |                                                    | Total                                                                 | Weight                                                      |                                                                                                                                                                                     | Mean Difference                       |
| Flexion R <sup>4</sup><br>Study or Subgroup<br>3.2.1 Active control<br>Alanbay,2020                                                                                                                                                                                                                                                                             | OM ≥<br>s<br><u>Mean</u><br>118.6                                                                                           | :4 т<br>snb<br>sd<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Veeł<br><u>Total</u><br>15                                                                          | ≦S<br>Co<br><u>Mean</u><br>134.6                                      | SD<br>34.4                                         | 15                                                                    | 15.8%                                                       | IV, Random, 95% Cl                                                                                                                                                                  | Mean Difference                       |
| Flexion R <sup>4</sup><br>Study or Subgroup<br>3.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009                                                                                                                                                                                                                                                            | OM ≥<br>s<br><u>Mean</u><br>118.6<br>156.4                                                                                  | :4 V<br>SNB<br>SD<br>30<br>12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vee<br><u>Total</u><br>15<br>5                                                                      | ∑S<br><u>Co</u><br><u>Mean</u><br>134.6<br>128                        | SD<br>34.4<br>26.6                                 | 15<br>5                                                               | 15.8%<br>13.8%                                              | IV, Random, 95% CI<br>-16.00 [-39.10, 7.10]<br>28.40 [2.64, 54.16]                                                                                                                  | Mean Difference                       |
| Flexion R <sup>4</sup><br>Study or Subgroup<br>3.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kim,2014                                                                                                                                                                                                                                                | OM ><br>s<br><u>Mean</u><br>118.6<br>156.4<br>178.3                                                                         | 30<br>3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Veel<br><u>Total</u><br>15<br>5<br>12                                                               | ∑S<br><u>Mean</u><br>134.6<br>128<br>166.7                            | SD<br>34.4<br>26.6<br>23.1                         | 15<br>5<br>12                                                         | 15.8%<br>13.8%<br>25.8%                                     | V, Random, 95% CI<br>-16.00 [-39.10, 7.10]<br>28.40 [2.64, 54.16]<br>11.60 [-1.65, 24.85]                                                                                           | Mean Difference                       |
| Flexion R <sup>4</sup><br><u>Study or Subgroup</u><br>3.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kim,2014<br>Sencan,2019                                                                                                                                                                                                                          | OM S<br><u>Mean</u><br>118.6<br>156.4<br>178.3<br>137.5                                                                     | 30<br>30<br>12.5<br>3.9<br>22.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Veel<br>Total<br>15<br>5<br>12<br>20                                                                | ∑S<br><u>Mean</u><br>134.6<br>128<br>166.7<br>139                     | SD<br>34.4<br>26.6<br>23.1<br>31                   | 15<br>5<br>12<br>10                                                   | 15.8%<br>13.8%<br>25.8%<br>17.0%                            | V, Random, 95% Cl<br>-16.00 [-39.10, 7.10]<br>28.40 [2.64, 54.16]<br>11.60 [-1.65, 24.85]<br>-1.50 [-23.06, 20.06]                                                                  | Mean Difference                       |
| Flexion R <sup>4</sup><br><u>Study or Subgroup</u><br>3.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kim,2014<br>Sencan,2019<br>Tubay,2012                                                                                                                                                                                                            | OM ><br>s<br><u>Mean</u><br>118.6<br>156.4<br>178.3                                                                         | 30<br>30<br>12.5<br>3.9<br>22.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Veel<br><u>Total</u><br>15<br>5<br>12<br>20<br>18                                                   | ∑S<br><u>Mean</u><br>134.6<br>128<br>166.7                            | SD<br>34.4<br>26.6<br>23.1<br>31                   | 15<br>5<br>12<br>10<br>18                                             | 15.8%<br>13.8%<br>25.8%<br>17.0%<br>27.6%                   | V, Random, 95% Cl<br>-16.00 [-39.10, 7.10]<br>28.40 [2.64, 54.16]<br>11.60 [-1.65, 24.85]<br>-1.50 [-23.06, 20.06]<br>-3.10 [-14.89, 8.69]                                          | Mean Difference                       |
| Flexion R <sup>4</sup><br><u>Study or Subgroup</u><br>3.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)                                                                                                                                                                                       | OM S<br><u>Mean</u><br>118.6<br>156.4<br>178.3<br>137.5<br>128.6                                                            | 30<br>30<br>12.5<br>3.9<br>22.3<br>20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vee<br><u>Total</u><br>15<br>5<br>12<br>20<br>18<br><b>70</b>                                       | ∑S<br><u>Mean</u><br>134.6<br>128<br>166.7<br>139<br>131.7            | 34.4<br>26.6<br>23.1<br>31<br>15.2                 | 15<br>5<br>12<br>10<br>18<br><b>60</b>                                | 15.8%<br>13.8%<br>25.8%<br>17.0%<br>27.6%<br><b>100.0</b> % | V, Random, 95% Cl<br>-16.00 [-39.10, 7.10]<br>28.40 [2.64, 54.16]<br>11.60 [-1.65, 24.85]<br>-1.50 [-23.06, 20.06]                                                                  | Mean Difference                       |
| Flexion R <sup>4</sup><br><u>Study or Subgroup</u><br>3.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                  | Mean<br>118.6<br>156.4<br>178.3<br>137.5<br>128.6<br>100.83;                                                                | 4 V<br>SNB<br>SD<br>12.5<br>3.9<br>22.3<br>20.5<br>Chi <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vee<br><u>Total</u><br>15<br>5<br>12<br>20<br>18<br><b>70</b><br>\$9.15, 0                          | ∑S<br><u>Mean</u><br>134.6<br>128<br>166.7<br>139<br>131.7            | 34.4<br>26.6<br>23.1<br>31<br>15.2                 | 15<br>5<br>12<br>10<br>18<br><b>60</b>                                | 15.8%<br>13.8%<br>25.8%<br>17.0%<br>27.6%<br><b>100.0</b> % | V, Random, 95% Cl<br>-16.00 [-39.10, 7.10]<br>28.40 [2.64, 54.16]<br>11.60 [-1.65, 24.85]<br>-1.50 [-23.06, 20.06]<br>-3.10 [-14.89, 8.69]                                          | Mean Difference                       |
| Flexion R <sup>4</sup><br>Study or Subgroup<br>3.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kim,2014                                                                                                                                                                                                                                                | Mean<br>118.6<br>156.4<br>178.3<br>137.5<br>128.6<br>100.83;                                                                | 4 V<br>SNB<br>SD<br>12.5<br>3.9<br>22.3<br>20.5<br>Chi <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vee<br><u>Total</u><br>15<br>5<br>12<br>20<br>18<br><b>70</b><br>\$9.15, 0                          | ∑S<br><u>Mean</u><br>134.6<br>128<br>166.7<br>139<br>131.7            | 34.4<br>26.6<br>23.1<br>31<br>15.2                 | 15<br>5<br>12<br>10<br>18<br><b>60</b>                                | 15.8%<br>13.8%<br>25.8%<br>17.0%<br>27.6%<br><b>100.0</b> % | V, Random, 95% Cl<br>-16.00 [-39.10, 7.10]<br>28.40 [2.64, 54.16]<br>11.60 [-1.65, 24.85]<br>-1.50 [-23.06, 20.06]<br>-3.10 [-14.89, 8.69]                                          | Mean Difference                       |
| Flexion R <sup>4</sup><br><u>Study or Subgroup</u><br>3.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>3.2.2 Placebo control                                                                                             | OM →<br>s<br><u>Mean</u><br>118.6<br>156.4<br>178.3<br>137.5<br>128.6<br>100.83;<br>Z = 0.53                                | 4 V<br>SNB<br>SD<br>12.5<br>3.9<br>22.3<br>20.5<br>Chi <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vee<br><u>Total</u><br>15<br>5<br>12<br>20<br>18<br>70<br>9.15, 0<br>.59)                           | ∑S<br><u>Mean</u><br>134.6<br>128<br>166.7<br>139<br>131.7            | 34.4<br>26.6<br>23.1<br>31<br>15.2                 | 15<br>5<br>12<br>10<br>18<br><b>60</b><br>6); I <sup>2</sup> = 9      | 15.8%<br>13.8%<br>25.8%<br>17.0%<br>27.6%<br><b>100.0</b> % | V, Random, 95% Cl<br>-16.00 [-39.10, 7.10]<br>28.40 [2.64, 54.16]<br>11.60 [-1.65, 24.85]<br>-1.50 [-23.06, 20.06]<br>-3.10 [-14.89, 8.69]                                          | Mean Difference                       |
| Flexion R <sup>4</sup><br><u>Study or Subgroup</u><br>3.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>3.2.2 Placebo control<br>Subtotal (95% CI)                                                                        | ()M →<br><u>Mean</u><br>118.6<br>156.4<br>178.3<br>137.5<br>128.6<br>100.83;<br>Z = 0.53<br>I                               | :4 v<br>ssns<br>sp<br>12.5<br>3.9<br>22.3<br>20.5<br>Chi <sup>2</sup> =<br>(P = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vee<br><u>Total</u><br>15<br>5<br>12<br>20<br>18<br><b>70</b><br>\$9.15, 0                          | ∑S<br><u>Mean</u><br>134.6<br>128<br>166.7<br>139<br>131.7            | 34.4<br>26.6<br>23.1<br>31<br>15.2                 | 15<br>5<br>12<br>10<br>18<br><b>60</b>                                | 15.8%<br>13.8%<br>25.8%<br>17.0%<br>27.6%<br><b>100.0</b> % | V, Random, 95% Cl<br>-16.00 [-39.10, 7.10]<br>28.40 [2.64, 54.16]<br>11.60 [-1.65, 24.85]<br>-1.50 [-23.06, 20.06]<br>-3.10 [-14.89, 8.69]                                          | Mean Difference                       |
| Flexion R <sup>4</sup><br><u>Study or Subgroup</u><br>3.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>3.2.2 Placebo control                                                                                             | ()M →<br><u>Mean</u><br>118.6<br>156.4<br>178.3<br>137.5<br>128.6<br>100.83;<br>Z = 0.53<br>I                               | :4 v<br>ssns<br>sp<br>12.5<br>3.9<br>22.3<br>20.5<br>Chi <sup>2</sup> =<br>(P = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vee<br><u>Total</u><br>15<br>5<br>12<br>20<br>18<br>70<br>9.15, 0<br>.59)                           | ∑S<br><u>Mean</u><br>134.6<br>128<br>166.7<br>139<br>131.7            | 34.4<br>26.6<br>23.1<br>31<br>15.2                 | 15<br>5<br>12<br>10<br>18<br><b>60</b><br>6); I <sup>2</sup> = 9      | 15.8%<br>13.8%<br>25.8%<br>17.0%<br>27.6%<br><b>100.0</b> % | V, Random, 95% Cl<br>-16.00 [-39.10, 7.10]<br>28.40 [2.64, 54.16]<br>11.60 [-1.65, 24.85]<br>-1.50 [-23.06, 20.06]<br>-3.10 [-14.89, 8.69]<br>3.28 [-8.77, 15.33]                   | Mean Difference                       |
| Flexion R <sup>4</sup><br><u>Study or Subgroup</u><br>3.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>3.2.2 Placebo control<br>Subtotal (95% CI)<br>Heterogeneity: Not ap                                               | ()M →<br>S<br>Mean<br>118.6<br>156.4<br>178.3<br>137.5<br>128.6<br>100.83;<br>Z = 0.53<br>I<br>pplicable                    | 4 V<br>SNB<br>30<br>12.5<br>3.9<br>22.3<br>20.5<br>Chi <sup>2</sup> =<br>(P = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vee<br><u>Total</u><br>15<br>5<br>12<br>20<br>18<br>70<br>9.15, 0<br>.59)<br>0                      | ∑S<br><u>Mean</u><br>134.6<br>128<br>166.7<br>139<br>131.7            | 34.4<br>26.6<br>23.1<br>31<br>15.2                 | 15<br>5<br>12<br>10<br>18<br><b>60</b><br>6); I <sup>2</sup> = 9      | 15.8%<br>13.8%<br>25.8%<br>17.0%<br>27.6%<br><b>100.0</b> % | V, Random, 95% Cl<br>-16.00 [-39.10, 7.10]<br>28.40 [2.64, 54.16]<br>11.60 [-1.65, 24.85]<br>-1.50 [-23.06, 20.06]<br>-3.10 [-14.89, 8.69]<br>3.28 [-8.77, 15.33]                   | Mean Difference                       |
| Flexion R <sup>4</sup><br>Study or Subgroup<br>3.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>3.2.2 Placebo control<br>Subtotal (95% CI)<br>Heterogeneity: Not ap<br>Test for overall effect:                          | ()M →<br>S<br>Mean<br>118.6<br>156.4<br>178.3<br>137.5<br>128.6<br>100.83;<br>Z = 0.53<br>I<br>pplicable                    | 4 V<br>SNB<br>30<br>12.5<br>3.9<br>22.3<br>20.5<br>Chi <sup>2</sup> =<br>(P = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vee<br><u>Total</u><br>15<br>5<br>12<br>20<br>18<br>70<br>9.15, 0<br>.59)<br>0                      | ∑S<br><u>Mean</u><br>134.6<br>128<br>166.7<br>139<br>131.7            | 34.4<br>26.6<br>23.1<br>31<br>15.2                 | 15<br>5<br>12<br>10<br>8<br><b>60</b><br>6); I <sup>2</sup> = 9       | 15.8%<br>13.8%<br>25.8%<br>17.0%<br>27.6%<br><b>100.0</b> % | V, Random, 95% Cl<br>-16.00 [-39.10, 7.10]<br>28.40 [2.64, 54.16]<br>11.60 [-1.65, 24.85]<br>-1.50 [-23.06, 20.06]<br>-3.10 [-14.89, 8.69]<br>3.28 [-8.77, 15.33]                   | Mean Difference                       |
| Flexion R <sup>4</sup><br><u>Study or Subgroup</u><br>3.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>3.2.2 Placebo control<br>Subtotal (95% CI)<br>Heterogeneity: Not ap<br>Test for overall effect:<br>Total (95% CI) | ()M →<br>S<br>Mean<br>118.6<br>156.4<br>178.3<br>137.5<br>128.6<br>100.83;<br>Z = 0.53<br>I<br>pplicable<br>Not app         | $(4 ) = \frac{30}{50}$<br>$(7) = \frac{30}{12.5}$<br>(22.3) = 22.3<br>(22.3) = 22.3 | Veel<br><u>Total</u><br>15<br>5<br>12<br>20<br>18<br>70<br>9.15, 0<br>.59)<br>0<br>70               | S<br>Co<br>Mean<br>134.6<br>128<br>166.7<br>139<br>131.7<br>df = 4 (P | SD<br>34.4<br>26.6<br>23.1<br>31<br>15.2<br>= 0.00 | 15<br>5<br>12<br>10<br>18<br><b>60</b><br>6); I <sup>2</sup> = 9<br>0 | 15.8%<br>13.8%<br>25.8%<br>17.0%<br>27.6%<br>100.0%<br>56%  | IV, Random, 95% Cl<br>-16.00 [-39.10, 7.10]<br>28.40 [2.64, 54.16]<br>11.60 [-1.65, 24.85]<br>-1.50 [-23.06, 20.06]<br>-3.10 [-14.89, 8.69]<br>3.28 [-8.77, 15.33]<br>Not estimable | Mean Difference<br>IV, Random, 95% CI |
| Flexion R <sup>4</sup><br><u>Study or Subgroup</u><br>3.2.1 Active control<br>Alanbay,2020<br>Boonsong,2009<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>3.2.2 Placebo control<br>Subtotal (95% CI)                                                                        | ()M → S<br>Mean<br>118.6<br>156.4<br>178.3<br>137.5<br>128.6<br>100.83;<br>Z = 0.53<br>I<br>pplicable<br>Not app<br>100.83; | $(4 \ V)^{30}$<br>$(4 \ V)^{30}$<br>$(12.5 \ 3.9 \ 22.3 \ 20.5 \ (P = 0 \ 10)^{2}$<br>$(P = 0 \ (P = 0 \ 10)^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Veel<br><u>Total</u><br>15<br>5<br>12<br>20<br>18<br>70<br>9.15, 0<br>0<br>70<br>9.15, 0<br>9.15, 0 | S<br>Co<br>Mean<br>134.6<br>128<br>166.7<br>139<br>131.7<br>df = 4 (P | SD<br>34.4<br>26.6<br>23.1<br>31<br>15.2<br>= 0.00 | 15<br>5<br>12<br>10<br>18<br><b>60</b><br>6); I <sup>2</sup> = 9<br>0 | 15.8%<br>13.8%<br>25.8%<br>17.0%<br>27.6%<br>100.0%<br>56%  | IV, Random, 95% Cl<br>-16.00 [-39.10, 7.10]<br>28.40 [2.64, 54.16]<br>11.60 [-1.65, 24.85]<br>-1.50 [-23.06, 20.06]<br>-3.10 [-14.89, 8.69]<br>3.28 [-8.77, 15.33]<br>Not estimable | Mean Difference                       |

1.94; p = 0.22) in a follow-up less than 4 wk. When the follow-up period extended to over 4 wk, there were still no differences, and the mean differences (and 95% CI) were -1.19 (-14.22, 11.84; p = 0.86), -1.19 (-14.22, 11.84; p = 0.59), and -4.45 (-15.89, 6.99; p = 0.45) separately. For motor function of FMA, only two studies reported the outcome, and the FMA scores in SSNB group was -2.59 (-4.52, -0.66) less than those in active group (**Figures 3–6**).

#### **Publication Bias and Quality Assessment**

A funnel plot was employed to test the publication bias, as shown in **Supplementary Material**. No obvious publication bias was observed. For quality assessment, we noticed that all the published articles had a high performance bias (**Supplementary Material**).

#### **Sensitivity Analysis**

We performed sensitivity analysis for the primary endpoint VAS and found that our results were robust (**Supplementary Material**).

## DISCUSSION

At present, SSNB is widely used in patients with chronic shoulder pain or frozen shoulder and gains excellent clinical effects (17, 18), but the application of SSNB in HSP patients is relatively rare. To the best of our knowledge, the present meta-analysis is the first one to investigate the effectiveness of SSNB vs. other treatments for HSP. In the analysis, we found that SSNB is an effective way to alleviate HSP at a longest follow-up period of 12 wk.

Suprascapular nerve is a mixed nerve fiber containing afferent and efferent content, and it originates from the upper trunk of

| Study or Subgroup         Mean         SD         Total         Mean         SD         Total         Weight         N. Random, 95% CI         N. Random, 95% CI           Kasapoglu-Aksoy,2020         40.7         16.3         27         46.2         9.8         30         53.5%         -5.50 [+12.58, 1.58]           Kim,2014         7.38         22         12         88.8         18.7         12         10.0%         5.00 [+17.99, 7.99]           Subtoral (95% CI)         77         70         100.0%         -3.24 [-8.41, 1.94]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                             | S                                                                                                     | SNB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                          | С                                            | ontrol                                                     |                                                                             |                                                             | Mean Difference                                                                                                                                                                      | Mean Difference                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| $\begin{aligned} \text{Kasapoglu-Aksoy,2020} & 40.7 & 16.3 & 27 & 46.2 & 9.8 & 30 & 53.5\% & -5.50 [+2.58, 1.58] \\ \text{Kim,2014} & 73.8 & 22 & 12 & 68.8 & 18.7 & 12 & 10.0\% & 5.00 [+7.13, 21.34] \\ \text{Sencan,2019} & 64 & 15.2 & 20 & 69 & 18 & 05.4 & 16.3 & 18 & 20.5\% & 0.00 [+11.43, 11.43] \\ \text{Tubay,2012} & 59.4 & 18.6 & 18 & 59.4 & 16.3 & 18 & 20.5\% & 0.00 [+11.43, 11.43] \\ \text{Heterogeneily, Tau" = 0.00; Chi" = 1.75, dif = 3 (P = 0.63); P = 0\% \\ \text{Test for overall effect } Z = 1.22 (P = 0.22) \\ \text{4.1.2 Placebo control} \\ \text{Subtotal (95\% CI)} & 0 & 0 \\ \text{Heterogeneily, Tau" = 0.00; Chi" = 1.75, dif = 3 (P = 0.63); P = 0\% \\ \text{Test for overall effect } Z = 1.22 (P = 0.22) \\ \text{Total (95\% CI)} & 0 & 0 \\ \text{Kim, 2014} & \text{Not applicable} \\ \text{Total (95\% CI)} & 0 & 0 \\ \text{Kudy or Subgroup} & Mean & SD & Total & Mean & SD & Total & Weight \\ \text{Kasapoglu-Aksoy,2020} & 59 & 17 & 15 & 69 & 22.5 & 15 & 17.9\% & -10.00 [-24.27, 4.27] \\ \text{Aanabay,2020} & 59 & 17 & 15 & 69 & 22.5 & 15 & 17.9\% & -10.00 [-24.27, 4.27] \\ \text{Aanabay,2020} & 59 & 17 & 15 & 69 & 22.5 & 15 & 17.9\% & -10.00 [-24.27, 4.27] \\ \text{Aanabay,2020} & 59 & 17 & 15 & 69 & 22.5 & 15 & 17.9\% & -10.00 [-24.27, 4.27] \\ \text{Aanabay,2020} & 59 & 17 & 15 & 69 & 22.5 & 15 & 17.9\% & -10.00 [-24.27, 4.27] \\ \text{Aanabay,2020} & 59 & 17 & 15 & 69 & 22.5 & 15 & 17.9\% & -10.00 [-24.27, 4.27] \\ \text{Aanabay,2020} & 59 & 17 & 15 & 69 & 22.5 & 15 & 17.9\% & -10.00 [-24.27, 4.27] \\ \text{Aanabay,2020} & 59 & 17 & 15 & 69 & 22.5 & 15 & 17.9\% & -10.00 [-24.27, 4.27] \\ \text{Aanabay,2020} & 59 & 17 & 15 & 69 & 22.5 & 15 & 17.9\% & -10.00 [-24.27, 4.27] \\ \text{Heterogeneily, Tau" = 137.13; Chi" = 22.76, dif = 4 (P = 0.0001); P = 82\% \\ \text{Total (95\% CI)} & 92 & 85 & 100.0\% & -4.45 [-15.89, 6.99] \\ \text{Heterogeneily, Tau" = 137.13; Chi" = 22.76, dif = 4 (P = 0.0001); P = 82\% \\ \text{Test for overall effect X applicable} \\ \text{Total (95\% CI)} & 92 & 85 & 100.0\% & -4.45 [-15.89, 6.99] \\ \text{Heterogeneily, Tau" = 137.13; Chi" = 22.76, dif = 4 (P = 0.0001); P = 82\% \\ \text{Test for overall effect X applicable} \\ \text{Total (95\% CI)} & 92 & 85 & 100.0\% &$                                                                                                                                                                                                                                                                                                                                                                                                                                  | Study or Subgroup                                                                                                                                                                                                                                                                                                                                                           | Mean                                                                                                  | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total                                                                    | Mean                                         | SD                                                         | Total                                                                       | Weight                                                      | IV, Random, 95% Cl                                                                                                                                                                   | IV, Random, 95% Cl                    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.1.1 Active control                                                                                                                                                                                                                                                                                                                                                        |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                              |                                                            |                                                                             |                                                             |                                                                                                                                                                                      |                                       |
| Sencan, 2019 64 15.2 20 69 18 10 15.9% - 5.00 [-17.99, 799]<br>Tubay, 2012 59.4 18.6 18 59.4 16.3 18 20.5% 0.00 [-11.43, 11.43]<br>Tubay, 2012 59.4 18.6 18 59.4 16.3 18 20.5% 0.00 [-11.43, 11.43]<br>Total (95% CI) 77 70 100.0% .3.24 [-8.41, 1.94]<br>Heterogeneity, Tau" = 0.00; Chi" = 1.75, df = 3 (P = 0.63); P = 0%<br>Test for overall effect Z = 1.22 (P = 0.22)<br>4.1.2 Placebo control<br>Subtotal (95% CI) 0 0 0 Not estimable<br>Heterogeneity, Tau" = 0.00; Chi" = 1.75, df = 3 (P = 0.63); P = 0%<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Test for subgroup differences: Not applicable<br>SNRE Control<br>Mean Difference<br>SNRE Control<br>Alanbay,2020 59 17 15 69 22.5 15 17.9% -10.00 [-24.27, 4.27]<br>Kim,2014 87.5 4.6 12 74.6 17 12 20.9% 12.90 [2.94, 22.86]<br>Sencan,2019 59 16.2 20 67 19 10 18.3% -8.00 [-21.75, 5.75]<br>Tubay,2012 61.1 17.1 18 62.2 16.3 18 20.3% -11.01 [-2.01, 9.81]<br>Subtotal (95% CI) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau" = 137.13; Chi" = 22.76, df = 4 (P = 0.0001); P = 82%<br>Test for overall effect Z = 0.76 (P = 0.45)<br>4.2.2 Placebo control<br>Subtotal (95% CI) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau" = 137.13; Chi" = 22.76, df = 4 (P = 0.0001); P = 82%<br>Test for overall effect X tot applicable<br>Test for overall effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kasapoglu-Aksoy,2020                                                                                                                                                                                                                                                                                                                                                        | 40.7                                                                                                  | 16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27                                                                       | 46.2                                         | 9.8                                                        | 30                                                                          | 53.5%                                                       | -5.50 [-12.58, 1.58]                                                                                                                                                                 |                                       |
| Tubay, 2012 59.4 18.6 18 59.4 16.3 18 20.5% 0.00 $(\frac{1}{1}, 43, \frac{1}{1}, 43, \frac{1}{$ | Kim,2014                                                                                                                                                                                                                                                                                                                                                                    | 73.8                                                                                                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                                                       | 68.8                                         | 18.7                                                       | 12                                                                          | 10.0%                                                       | 5.00 [-11.34, 21.34]                                                                                                                                                                 |                                       |
| Subtotal (95% CI) 77 70 100.0% -3.24 [-8.41, 1.94]<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.75, df = 3 (P = 0.63); P = 0%<br>Test for overall effect Z = 1.22 (P = 0.22)<br>4.12 Placebo control<br>Subtotal (95% CI) 0 0 Not estimable<br>Heterogeneity: Not applicable<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Total (95% CI) 77 70 100.0% -3.24 [-8.41, 1.94]<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.75, df = 3 (P = 0.63); P = 0%<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Test for subaroug differences: Not applicable<br>Ext Cernal rotation $\neq$ Weeks<br>SSNB Control Mean Difference<br>SSNB Control Mean Difference Mean Difference<br>Study or Subgroup Mean SD Total Mean SD Total Weight V, Random, 95% Cl<br>4.2.1 Active control<br>Anahazy.2020 59 17 15 69 22.5 15 17.9% -10.00 [-24.27, 4.27]<br>Kasapoglu-Aksoy.2020 35 15 27 51.2 12.3 30 22.6% -16.20 [-23.37, -9.03]<br>Kim,2014 87.5 4.6 12 74.6 17 12 20.9% 12.90 [2.94, 22.86]<br>Sencen,2019 59 16.2 20 67 19 10 16.3% -8.00 [-21.75, 5.75]<br>Tubay.2012 61.1 17.1 18 62.2 16.3 18 20.3% -1.10 [-12.01, 9.81]<br>Subtotal (95% CI) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); P = 82%<br>Test for overall effect Z = 1.76, 6(P = 0.45)<br>4.2.2 Placebo control<br>Subtotal (95% CI) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); P = 82%<br>Test for overall effect Z = 0.76, 6(P = 0.45)<br>4.2.2 Placebo control<br>Subtotal (95% CI) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); P = 82%<br>Test for overall effect Z = 0.76, 6(P = 0.45)<br>4.2.2 Placebo control<br>Subtotal (95% CI) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); P = 82%<br>Test for overall effect Z = 0.76, 0 = 0.45)<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); P = 82%<br>Test for overall effect Z = 0.76, 0 = 0.000<br>Heterogeneity: T                                                                                                                                                                                                                                                                                                                                                                                                           | Sencan,2019                                                                                                                                                                                                                                                                                                                                                                 | 64                                                                                                    | 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                                       | 69                                           | 18                                                         | 10                                                                          | 15.9%                                                       | -5.00 [-17.99, 7.99]                                                                                                                                                                 |                                       |
| Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.75, df = 3 (P = 0.63); P = 0%<br>Test for overall effect Z = 1.22 (P = 0.22)<br>4.12 Placebo control<br>Subtotal (95% Cl) 0 0 0 Not estimable<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.75, df = 3 (P = 0.63); P = 0%<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Test for subaroup differences: Not applicable<br>EX LOTIAL I OTIAL I OTIAL Week S<br>SNB Control Mean Difference<br>Study or Subgroup Mean SD Total Mean SD Total Weight N. Random, 95% Cl<br>4.2.1 Active control<br>Anabay.2020 59 17 15 69 22.5 15 17.9% -10.00 [-24.27, 4.27]<br>Kim.2014 87.5 4.6 12 74.6 17 12 20.9% 12.00 [-24.27, 4.27]<br>Kim.2014 87.5 4.6 12 74.6 17 12 0.09% 12.00 [-24.27, 4.27]<br>Subtotal (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%<br>Test for overall effect Z = 0.76 (P = 0.45)<br>4.2.2 Placebo control<br>Subtotal (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%<br>Test for overall effect Z = 0.76 (P = 0.45)<br>4.2.2 Placebo control<br>Subtotal (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%<br>Test for overall effect X = 0.76 (P = 0.45)<br>4.2.2 Placebo control<br>Subtotal (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%<br>Total (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%<br>Total (95% Cl) 92 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%<br>Total (95% Cl) 92 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heteropaneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup>                                                                                                                                                                                                                                                                                                           | Tubay,2012                                                                                                                                                                                                                                                                                                                                                                  | 59.4                                                                                                  | 18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                          | 59.4                                         | 16.3                                                       | 18                                                                          | 20.5%                                                       |                                                                                                                                                                                      |                                       |
| Test for overall effect: $Z = 1.22$ (P = 0.22)<br>4.1.2 Placebo control<br>Subtotal (95% CI) 0 0 Not estimable<br>Heterogeneity: Not applicable<br>Total (95% CI) 77 70 100.0% -3.24 [-8.41, 1.94]<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Ch <sup>2</sup> = 1.75, df = 3 (P = 0.63); P = 0.%<br>Test for overall effect: Z = 1.22 (P = 0.22)<br>Test for overall effect: Z = 1.22 (P = 0.22)<br>Test for overall effect: Z = 1.22 (P = 0.22)<br>Test for overall effect: Z = 1.22 (P = 0.22)<br>Test for overall effect: Z = 1.22 (P = 0.22)<br>Test for overall effect: Z = 1.22 (P = 0.22)<br>Test for overall effect: Z = 1.22 (P = 0.22)<br>Test for overall effect: Z = 1.22 (P = 0.22)<br>Test for overall effect: Z = 1.22 (P = 0.22)<br>Test for overall effect: Z = 1.22 (P = 0.22)<br>Test for overall effect: Z = 1.22 (P = 0.22)<br>Test for overall effect: Z = 1.22 (P = 0.22)<br>Test for overall effect: Z = 1.22 (P = 0.22)<br>Tubay.2020 59 17 15 69 22.5 15 17.9% -10.00 [-24.27, 4.27]<br>Kasapoglu-Aksoy.2020 35 15 27 51.2 12.3 30 22.6% -16.20 [-23.77, -0.03]<br>Kim,2014 87.5 4.6 12 74.6 17 112 20.9% 12.02 (9.4, 22.86]<br>Sencan,2019 59 16.2 20 67 19 10 18.3% -8.00 [-21.75, 5.75]<br>Tubay.2012 61.1 17.1 18 62.2 16.3 18 20.3% -1.10 [-12.01, 9.81]<br>Subtotal (95% CI) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); P = 82%<br>Test for overall effect: Not applicable<br>Test for overall effect. Not applicable<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                           |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77                                                                       |                                              |                                                            | 70                                                                          | 100.0%                                                      | -3.24 [-8.41, 1.94]                                                                                                                                                                  | •                                     |
| Subtotal (95% CI)       0       0       Not estimable         Heterogeneity: Not applicable       Total (95% CI)       77       70       100.0%       -3.24 [-8.41, 1.94]         Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.75, df = 3 (P = 0.63); P = 0%       -3.24 [-8.41, 1.94]       -100       -50       50       100         Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.75, df = 3 (P = 0.63); P = 0%       Total (95% CI)       -0       -50       50       100         Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.75, df = 3 (P = 0.63); P = 0%       Total (95% CI)       Mean Differences: Not applicable       Mean Difference       Mean Difference         Ext termal       rotat 100       4       Weeks       Weeks       Mean Difference       Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          | P = 0.63                                     | 3); l² =                                                   | 0%                                                                          |                                                             |                                                                                                                                                                                      |                                       |
| Heterogeneity: Not applicable<br>Test for overall effect: Not applicable<br>Total (95% CI) 77 70 100.0% -3.24 [-8.41, 1.94]<br>Heterogeneity: Tau <sup>2</sup> = 0.00; Ch <sup>2</sup> = 1.75, df = 3 (P = 0.63); P = 0%<br>Test for overall effect: Z = 1.22 (P = 0.22)<br>Test for overall effect: Z = 1.22 (P = 0.22)<br>Test for overall effect: Z = 1.22 (P = 0.22)<br>Test for subtoral (100 $\rightarrow$ 4 Weeks<br>SSNB Control Mean SD Total Weight V. Random, 95% CI V. Random, 95% CI V. Random, 95% CI<br>4.2.1 Active control<br>Alanbay.2020 59 17 15 69 22.5 15 17.9% -10.00 [-24.27, 4.27]<br>Kasapoglu-Aksoy.2020 35 15 27 51.2 12.3 30 22.6% -16.20 [-23.37, -9.03]<br>Kim.2014 87.5 4.6 12 74.6 17 12 20.9% 12.90 [-24.27, 8.26]<br>Subtoral (95% CI) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Ch <sup>2</sup> = 22.76, df = 4 (P = 0.0001); P = 82%<br>Test for overall effect: Not applicable<br>Test for over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                        |                                              |                                                            | 0                                                                           |                                                             | Not estimable                                                                                                                                                                        |                                       |
| Total (95% CI)       77       70       100.0%       -3.24 [-8.41, 1.94]         Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.75, df = 3 (P = 0.63); I <sup>2</sup> = 0%         Test for overall effect: Z = 1.22 (P = 0.22)         Test for overall effect: Z = 1.22 (P = 0.22)         Test for overall effect: Z = 1.22 (P = 0.22)         Test for overall effect: Z = 1.22 (P = 0.22)         Test for overall effect: Z = 1.22 (P = 0.22)         Test for overall effect: Z = 1.22 (P = 0.22)         Test for overall effect: Z = 1.22 (P = 0.22)         Test for overall effect: Z = 0.76 (P = 0.45)         Mean SD Total Mean SD Total Mean SD Total Mean Mean SD Total Mean Mean Difference         Mean Difference         SSNB       Control       Mean Difference         Kasapoglu-Aksoy.2020       59       17       15       69       12.90 (2.24, 2.7, 4.27]         Kim/201       8       10.00 [24.27, 4.27]       Kim/201 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29 (2.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Heterogeneity: Not applic                                                                                                                                                                                                                                                                                                                                                   |                                                                                                       | hlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ŭ                                                                        |                                              |                                                            | 0                                                                           |                                                             | notestimable                                                                                                                                                                         |                                       |
| Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.75, df = 3 (P = 0.63); l <sup>2</sup> = 0%<br>Test for overall effect Z = 1.22 (P = 0.22)<br>Test for suboroup differences: Not applicable<br>EX ternal rotation $\stackrel{>}{\rightarrow}$ Weeks<br>SSNB Control Mean Difference Mean Difference<br>Study or Subgroup Mean SD Total Mean SD Total Weight V, Random, 95% Cl<br>4.2.1 Active control<br>Alanbay, 2020 59 17 15 69 22.5 15 17.9% -10.00 [-24.27, 4.27]<br>Kasapoglu-Aksoy, 2020 35 15 27 51.2 12.3 30 22.6% -16.20 [-23.37, -9.03]<br>Kim, 2014 87.5 4.6 12 74.6 17 12 20.9% 12.90 [2.94, 22.86]<br>Sencan, 2019 59 16.2 20 67 19 10 18.3% -8.00 [-21.75, 5.75]<br>Tubay, 2012 61.1 17.1 18 62.2 16.3 18 20.3% -11.0 [-12.01, 9.81]<br>Subtotal (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); l <sup>2</sup> = 82%<br>Test for overall effect: Z = 0.76 (P = 0.45)<br>4.2.2 Placebo control<br>Subtotal (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); l <sup>2</sup> = 82%<br>Test for overall effect: Z = 0.76 (P = 0.45)<br>4.2.2 Placebo control<br>Subtotal (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); l <sup>2</sup> = 82%<br>Total (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); l <sup>2</sup> = 82%<br>Total (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); l <sup>2</sup> = 82%<br>Total (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); l <sup>2</sup> = 82%<br>Total (95% Cl) 92 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); l <sup>2</sup> = 82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                             | applica                                                                                               | Jie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77                                                                       |                                              |                                                            | 70                                                                          | 100.0%                                                      | -3.24 [-8.41, 1.94]                                                                                                                                                                  | •                                     |
| Test for overall effect: $Z = 1.22$ (P = 0.22)<br>Test for subgroup differences: Not applicable<br>EXternal rotation $\stackrel{>}{>}4$ Weeks<br>SSNB Control<br>Mean <u>SD Total Mean SD Total Weight</u> <u>N. Random, 95% Cl</u><br>4.2.1 Active control<br>Alanbay, 2020 59 17 15 69 22.5 15 17.9% -10.00 [-24.27, 4.27]<br>Kasapoglu-Aksoy, 2020 35 15 27 51.2 12.3 30 22.6% -16.20 [-23.37, -9.03]<br>Kim, 2014 87.5 4.6 12 74.6 17 12 20.9% 12.90 [2.94, 22.86]<br>Sencan, 2019 59 16.2 20 67 19 10 18.3% -8.00 [-21.75, 5.75]<br>Tubay, 2012 61.1 17.1 18 62.2 16.3 18 20.3% -1.10 [-12.01, 9.81]<br>Subtotal (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%<br>Total (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Not applicable<br>Total (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%<br>Total (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%<br>Total (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%<br>Total (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%<br>Total (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%<br>Total (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%<br>Total (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%<br>Total (95% Cl) 0 50 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                           | 0: Chi <sup>2</sup> =                                                                                 | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                          | P = 0.6                                      | 3); l² =                                                   |                                                                             |                                                             |                                                                                                                                                                                      |                                       |
| Test for subgroup differences: Not applicable         Hazards (control         Mean SD Total Mean SD Total Weight       Mean Difference       Mean Difference         SSNB       Control       Mean Difference       Mean Difference         Study or Subgroup       Mean SD Total Weight       Ny, Random, 95% CI       Ny, Random, 95% CI         Alanbay, 2020       59 17       15       69 22.5       15       17.13       69 22.5       15       17.13       69 22.5       15       17.13       69 22.5       15       17.13       69 22.5       15       17.12       2.0.9%       1.0.00 [-24.27, 4.27]         Kim, 2014       87.5       N       1.0.00 [-24.27, 4.27]         Kim, 2014       87.5       1.0.1       N, Random, 95% CI       N, Random, 95% CI         Tubay, 2012       61.1       17.1       18       2.2.76, df = 4 (P = 0.0001); IP = 82%         Total (95% C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          | 0.01                                         | -// -                                                      | • •                                                                         |                                                             |                                                                                                                                                                                      |                                       |
| External rotation $\ge 4$ weeks         SSNB       Control       Mean Difference         Study or Subgroup       Mean SD Total Mean       SD Total Weight       Mean Difference         ALActive control         Alanbay,2020       59       17       15       69       22.5       15       17.9%       -10.00 [-24.27, 4.27]         Kasapoglu-Aksoy,2020       35       15       27       51.2       12.3       30       22.6%       -16.20 [-23.37, -9.03]         Kim,2014       87.5       4.6       12       74.6       17       12       20.9%       12.90 [2.94, 22.86]         Sencan,2019       59       16.2       20       67       19       10       18.3%       -8.00 [-21.75, 5.75]         Tubay,2012       61.1       17.1       18       62.2       16.3       18       20.3%       -1.10 [-12.01, 9.81]         Subtotal (95% Cl)       92       85       100.0%       -4.45 [-15.89, 6.99]       -         Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%       -       -       4.45 [-15.89, 6.99]       -         Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                              |                                                            |                                                                             |                                                             |                                                                                                                                                                                      | Hazarde (SSNR) Hazarde (Control)      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test for subaroup differen                                                                                                                                                                                                                                                                                                                                                  | nces: No                                                                                              | t appli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cable                                                                    |                                              |                                                            |                                                                             |                                                             |                                                                                                                                                                                      | Hazards (SSND) Hazards (Control)      |
| Study or Subgroup         Mean         SD         Total         Mean         SD         Total         Weight         IV, Random, 95% CI         IV, Random, 95% CI           4.2.1 Active control         Alanbay, 2020         59         17         15         69         22.5         15         17.9% $-10.00$ [-24.27, 4.27]         Kasapoglu-Aksoy, 2020         35         15         27         51.2         12.3         30         22.6% $-16.20$ [-23.37, -9.03]         Image: constant of the start of the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          | wee                                          | eks                                                        |                                                                             |                                                             |                                                                                                                                                                                      |                                       |
| 4.2.1 Active control         Alanbay,2020       59       17       15       69       22.5       15       17.9% $-10.00$ [-24.27, 4.27]         Kasapoglu-Aksoy,2020       35       15       27       51.2       12.3       30       22.6% $-16.20$ [-23.37, $-9.03$ ]         Kim,2014       87.5       4.6       12       74.6       17       12       20.9%       12.90 [2.94, 22.86]         Sencan,2019       59       16.2       20       67       19       10       18.3% $-8.00$ [-21.75, 5.75]         Tubay,2012       61.1       17.1       18       62.2       16.3       18       20.3% $-1.10$ [-12.01, 9.81]         Subtotal (95% CI)       92       85       100.0% $-4.45$ [-15.89, 6.99]       -         Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%       Test for overall effect: Not applicable       -         Test for overall effect: Not applicable       92       85       100.0% $-4.45$ [-15.89, 6.99]       -         Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%       -       -       -       -         Total (95% CI)       92       85       100.0%       -4.45 [-15.89, 6.99]       -       - <td></td> <td>tati</td> <td>ion</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Mean Difference</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                             | tati                                                                                                  | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                          |                                              |                                                            |                                                                             |                                                             | Mean Difference                                                                                                                                                                      |                                       |
| Alanbay,2020 59 17 15 69 22.5 15 17.9% $-10.00$ [-24.27, 4.27]<br>Kasapoglu-Aksoy,2020 35 15 27 51.2 12.3 30 22.6% $-16.20$ [-23.37, -9.03]<br>Kim,2014 87.5 4.6 12 74.6 17 12 20.9% 12.90 [2.94, 22.86]<br>Sencan,2019 59 16.2 20 67 19 10 18.3% $-8.00$ [-21.75, 5.75]<br>Tubay,2012 61.1 17.1 18 62.2 16.3 18 20.3% $-1.10$ [-12.01, 9.81]<br>Subtotal (95% CI) 92 85 100.0% $-4.45$ [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%<br>Test for overall effect: Not applicable<br>Test for overall effect: Not applicable<br>Total (95% CI) 92 85 100.0% $-4.45$ [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%<br>Total (95% CI) 92 85 100.0% $-4.45$ [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | External ro                                                                                                                                                                                                                                                                                                                                                                 | tati<br>s                                                                                             | ion<br>SNB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ≥4                                                                       | C                                            | ontrol                                                     | Total                                                                       | Weight                                                      |                                                                                                                                                                                      | Mean Difference                       |
| Kasapoglu-Aksoy,2020 35 15 27 51.2 12.3 30 22.6% $-16.20$ [-23.37, -9.03]<br>Kim,2014 87.5 4.6 12 74.6 17 12 20.9% 12.90 [2.94, 22.86]<br>Sencan,2019 59 16.2 20 67 19 10 18.3% $-8.00$ [-21.75, 5.75]<br>Tubay,2012 61.1 17.1 18 62.2 16.3 18 20.3% $-1.10$ [-12.01, 9.81]<br>Subtotal (95% CI) 92 85 100.0% $-4.45$ [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%<br>Test for overall effect: Not applicable<br>Test for overall effect: Not applicable<br>Total (95% CI) 92 85 100.0% $-4.45$ [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%<br>Total (95% CI) 92 85 100.0% $-4.45$ [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%<br>Total (95% CI) 92 85 100.0% $-4.45$ [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | External ro<br>Study or Subgroup                                                                                                                                                                                                                                                                                                                                            | tati<br>s                                                                                             | ion<br>SNB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ≥4                                                                       | C                                            | ontrol                                                     | Total                                                                       | Weight                                                      |                                                                                                                                                                                      | Mean Difference                       |
| Kim,2014 $87.5$ $4.6$ $12$ $74.6$ $17$ $12$ $20.9\%$ $12.90$ $22.86$ Sencan,2019 $59$ $16.2$ $20$ $67$ $19$ $10$ $18.3\%$ $-8.00$ $[-21.75, 5.75]$ Tubay,2012 $61.1$ $17.1$ $18$ $62.2$ $16.3$ $18$ $20.3\%$ $-1.10$ $[-12.01, 9.81]$ Subtotal (95% CI)       92 $85$ $100.0\%$ $-4.45$ $[-15.89, 6.99]$ Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%       Test for overall effect: Not applicable         Total (95% CI)       0       0       Not estimable         Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82% $-4.45$ $-15.89, 6.99$ Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82% $-4.45$ $-15.89, 6.99$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | External ro<br><u>Study or Subgroup</u><br>4.2.1 Active control                                                                                                                                                                                                                                                                                                             | tati<br>s<br>Mean                                                                                     | LON<br>SNB<br>SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ≥4<br>Total                                                              | Co<br>Mean                                   | ontrol<br>SD                                               |                                                                             |                                                             | IV, Random, 95% Cl                                                                                                                                                                   | Mean Difference                       |
| Sencan, 2019 59 16.2 20 67 19 10 18.3% -8.00 [-21.75, 5.75]<br>Tubay, 2012 61.1 17.1 18 62.2 16.3 18 20.3% -1.10 [-12.01, 9.81]<br>Subtotal (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%<br>Test for overall effect: Z = 0.76 (P = 0.45)<br>4.2.2 Placebo control<br>Subtotal (95% Cl) 0 0 Not estimable<br>Heterogeneity: Not applicable<br>Total (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%<br>Total (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%<br>Total (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | External ro<br><u>Study or Subgroup</u><br>4.2.1 Active control<br>Alanbay,2020                                                                                                                                                                                                                                                                                             | tati<br>s<br><u>Mean</u><br>59                                                                        | LON<br>SNB<br>SD<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ≥4<br><u>Total</u><br>15                                                 | Co<br>Mean<br>69                             | ontrol<br>SD<br>22.5                                       | 15                                                                          | 17.9%                                                       | IV, Random, 95% CI<br>-10.00 [-24.27, 4.27]                                                                                                                                          | Mean Difference                       |
| Tubay,2012 $61.1$ $17.1$ $18$ $62.2$ $16.3$ $18$ $20.3\%$ $-1.10[-12.01], 9.81]$ Subtotal (95% CI)       92 $85$ $100.0\%$ $-4.45$ $[-15.89, 6.99]$ Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); l <sup>2</sup> = 82%       Test for overall effect: $Z = 0.76$ (P = 0.45)         4.2.2 Placebo control       0       0       Not estimable         Heterogeneity: Not applicable       0       0       Not estimable         Total (95% CI)       92       85 $100.0\%$ $-4.45$ $[-15.89, 6.99]$ Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); l <sup>2</sup> = 82% $-4.45$ $[-15.89, 6.99]$ Total (95% CI)       92       85 $100.0\%$ $-4.45$ $[-15.89, 6.99]$ Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); l <sup>2</sup> = 82% $-100$ $-50$ $0$ $50$ $100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | External ro<br><u>Study or Subgroup</u><br>4.2.1 Active control<br>Alanbay,2020<br>Kasapoglu-Aksoy,2020                                                                                                                                                                                                                                                                     | otati<br>s<br><u>Mean</u><br>59<br>35                                                                 | LON<br>SNB<br>SD<br>17<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥4<br><u>Total</u><br>15<br>27                                           | Co<br><u>Mean</u><br>69<br>51.2              | 22.5<br>12.3                                               | 15<br>30                                                                    | 17.9%<br>22.6%                                              | V, Random, 95% Cl<br>-10.00 [-24.27, 4.27]<br>-16.20 [-23.37, -9.03]                                                                                                                 | Mean Difference                       |
| Subtotal (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); l <sup>2</sup> = 82%<br>Test for overall effect: Z = 0.76 (P = 0.45)<br>4.2.2 Placebo control<br>Subtotal (95% Cl) 0 0 Not estimable<br>Heterogeneity: Not applicable<br>Total (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); l <sup>2</sup> = 82%<br>Total (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); l <sup>2</sup> = 82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | External ro<br><u>Study or Subgroup</u><br>4.2.1 Active control<br>Alanbay,2020<br>Kasapoglu-Aksoy,2020<br>Kim,2014                                                                                                                                                                                                                                                         | 0tati<br>s<br><u>Mean</u><br>59<br>35<br>87.5                                                         | LON<br>SNB<br>SD<br>17<br>15<br>4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ≥4<br><u>Total</u><br>15<br>27<br>12                                     | 69<br>51.2<br>74.6                           | 22.5<br>12.3<br>17                                         | 15<br>30<br>12                                                              | 17.9%<br>22.6%<br>20.9%                                     | V, Random, 95% Cl<br>-10.00 [-24.27, 4.27]<br>-16.20 [-23.37, -9.03]<br>12.90 [2.94, 22.86]                                                                                          | Mean Difference                       |
| Test for overall effect: $Z = 0.76$ (P = 0.45)         4.2.2 Placebo control         Subtotal (95% Cl)       0         Heterogeneity: Not applicable         Total (95% Cl)       92         85       100.0%         -4.45 [-15.89, 6.99]         Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); l <sup>2</sup> = 82%         Total (95% Cl)       92         Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); l <sup>2</sup> = 82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | External ro<br><u>Study or Subgroup</u><br>4.2.1 Active control<br>Alanbay,2020<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019                                                                                                                                                                                                                                          | 0tati<br>s<br><u>Mean</u><br>59<br>35<br>87.5<br>59                                                   | LON<br>SSNB<br>SD<br>17<br>15<br>4.6<br>16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥4<br><u>Total</u><br>15<br>27<br>12<br>20                               | 69<br>51.2<br>74.6<br>67                     | 22.5<br>12.3<br>17<br>19                                   | 15<br>30<br>12<br>10                                                        | 17.9%<br>22.6%<br>20.9%<br>18.3%                            | V, Random, 95% Cl<br>-10.00 [-24.27, 4.27]<br>-16.20 [-23.37, -9.03]<br>12.90 [2.94, 22.86]<br>-8.00 [-21.75, 5.75]                                                                  | Mean Difference                       |
| Test for overall effect: $Z = 0.76$ (P = 0.45)<br>4.2.2 Placebo control<br>Subtotal (95% Cl) 0 0 Not estimable<br>Heterogeneity: Not applicable<br>Total (95% Cl) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); l <sup>2</sup> = 82%<br>Total (95% Cl) 92 0 50 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | External ro<br><u>Study or Subgroup</u><br>4.2.1 Active control<br>Alanbay,2020<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012                                                                                                                                                                                                                            | 0tati<br>s<br><u>Mean</u><br>59<br>35<br>87.5<br>59                                                   | LON<br>SSNB<br>SD<br>17<br>15<br>4.6<br>16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥4<br><u>Total</u><br>15<br>27<br>12<br>20<br>18                         | 69<br>51.2<br>74.6<br>67                     | 22.5<br>12.3<br>17<br>19                                   | 15<br>30<br>12<br>10<br>18                                                  | 17.9%<br>22.6%<br>20.9%<br>18.3%<br>20.3%                   | V, Random, 95% Cl<br>-10.00 [-24.27, 4.27]<br>-16.20 [-23.37, -9.03]<br>12.90 [2.94, 22.86]<br>-8.00 [-21.75, 5.75]<br>-1.10 [-12.01, 9.81]                                          | Mean Difference                       |
| Subtotal (95% CI) 0 0 Not estimable<br>Heterogeneity: Not applicable<br>Total (95% CI) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); l <sup>2</sup> = 82%<br>Total (95% CI) 92 0 50 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | External ro<br><u>Study or Subgroup</u><br>4.2.1 Active control<br>Alanbay,2020<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)                                                                                                                                                                                                       | 0tati<br><u>S</u><br>59<br>35<br>87.5<br>59<br>61.1                                                   | LON<br>SNB<br>SD<br>17<br>15<br>4.6<br>16.2<br>17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                          | 69<br>51.2<br>74.6<br>67<br>62.2             | 22.5<br>12.3<br>17<br>19<br>16.3                           | 15<br>30<br>12<br>10<br>18<br><b>85</b>                                     | 17.9%<br>22.6%<br>20.9%<br>18.3%<br>20.3%<br><b>100.0</b> % | V, Random, 95% Cl<br>-10.00 [-24.27, 4.27]<br>-16.20 [-23.37, -9.03]<br>12.90 [2.94, 22.86]<br>-8.00 [-21.75, 5.75]<br>-1.10 [-12.01, 9.81]                                          | Mean Difference                       |
| Heterogeneity: Not applicable<br>Test for overall effect: Not applicable<br>Total (95% CI) 92 85 100.0% -4.45 [-15.89, 6.99]<br>Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%<br>Test for overall effect: 7 = 0.76 (P = 0.45)<br>-100 -50 0 50 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | External ro<br><u>Study or Subgroup</u><br>4.2.1 Active control<br>Alanbay,2020<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 137                                                                                                                                                              | )tati<br>s<br><u>Mean</u><br>59<br>35<br>87.5<br>59<br>61.1<br>7.13; Chi                              | ION<br>SNB<br>SD<br>17<br>15<br>4.6<br>16.2<br>17.1<br><sup>2</sup> = 22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          | 69<br>51.2<br>74.6<br>67<br>62.2             | 22.5<br>12.3<br>17<br>19<br>16.3                           | 15<br>30<br>12<br>10<br>18<br><b>85</b>                                     | 17.9%<br>22.6%<br>20.9%<br>18.3%<br>20.3%<br><b>100.0</b> % | V, Random, 95% Cl<br>-10.00 [-24.27, 4.27]<br>-16.20 [-23.37, -9.03]<br>12.90 [2.94, 22.86]<br>-8.00 [-21.75, 5.75]<br>-1.10 [-12.01, 9.81]                                          | Mean Difference                       |
| Test for overall effect: Not applicable Total (95% CI) 92 85 100.0% -4.45 [-15.89, 6.99] Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); l <sup>2</sup> = 82% -100 -50 0 50 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | External ro<br><u>Study or Subgroup</u><br>4.2.1 Active control<br>Alanbay,2020<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 137<br>Test for overall effect: Z =                                                                                                                              | )tati<br>s<br><u>Mean</u><br>59<br>35<br>87.5<br>59<br>61.1<br>7.13; Chi                              | ION<br>SNB<br>SD<br>17<br>15<br>4.6<br>16.2<br>17.1<br><sup>2</sup> = 22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          | 69<br>51.2<br>74.6<br>67<br>62.2             | 22.5<br>12.3<br>17<br>19<br>16.3                           | 15<br>30<br>12<br>10<br>18<br><b>85</b>                                     | 17.9%<br>22.6%<br>20.9%<br>18.3%<br>20.3%<br><b>100.0</b> % | V, Random, 95% Cl<br>-10.00 [-24.27, 4.27]<br>-16.20 [-23.37, -9.03]<br>12.90 [2.94, 22.86]<br>-8.00 [-21.75, 5.75]<br>-1.10 [-12.01, 9.81]                                          | Mean Difference                       |
| Test for overall effect: Not applicable         Total (95% CI)       92       85       100.0%       -4.45 [-15.89, 6.99]         Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); I <sup>2</sup> = 82%       -100       -50       0       50       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | External ro<br><u>Study or Subgroup</u><br>4.2.1 Active control<br>Alanbay,2020<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 133<br>Test for overall effect: Z =<br>4.2.2 Placebo control                                                                                                     | )tati<br>s<br><u>Mean</u><br>59<br>35<br>87.5<br>59<br>61.1<br>7.13; Chi                              | ION<br>SNB<br>SD<br>17<br>15<br>4.6<br>16.2<br>17.1<br><sup>2</sup> = 22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A     A     Total     15     27     12     20     18     92     76, df = | 69<br>51.2<br>74.6<br>67<br>62.2             | 22.5<br>12.3<br>17<br>19<br>16.3                           | 15<br>30<br>12<br>10<br>18<br><b>85</b><br>); I <sup>2</sup> = 8            | 17.9%<br>22.6%<br>20.9%<br>18.3%<br>20.3%<br><b>100.0</b> % | V, Random, 95% CI<br>-10.00 [-24.27, 4.27]<br>-16.20 [-23.37, -9.03]<br>12.90 [2.94, 22.86]<br>-8.00 [-21.75, 5.75]<br>-1.10 [-12.01, 9.81]<br>-4.45 [-15.89, 6.99]                  | Mean Difference                       |
| Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); l <sup>2</sup> = 82%<br>Test for overall effect 7 = 0.76 (P = 0.45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | External ro<br><u>Study or Subgroup</u><br>4.2.1 Active control<br>Alanbay,2020<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 137<br>Test for overall effect: Z =<br>4.2.2 Placebo control<br>Subtotal (95% CI)                                                                                | ) tatj<br>s<br><u>Mean</u><br>59<br>35<br>87.5<br>59<br>61.1<br>7.13; Chi<br>0.76 (P=                 | ION<br>SNB<br>SD<br>17<br>15<br>4.6<br>16.2<br>17.1<br><sup>2</sup> = 22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A     A     Total     15     27     12     20     18     92     76, df = | 69<br>51.2<br>74.6<br>67<br>62.2             | 22.5<br>12.3<br>17<br>19<br>16.3                           | 15<br>30<br>12<br>10<br>18<br><b>85</b><br>); I <sup>2</sup> = 8            | 17.9%<br>22.6%<br>20.9%<br>18.3%<br>20.3%<br><b>100.0</b> % | V, Random, 95% CI<br>-10.00 [-24.27, 4.27]<br>-16.20 [-23.37, -9.03]<br>12.90 [2.94, 22.86]<br>-8.00 [-21.75, 5.75]<br>-1.10 [-12.01, 9.81]<br>-4.45 [-15.89, 6.99]                  | Mean Difference                       |
| Heterogeneity: Tau <sup>2</sup> = 137.13; Chi <sup>2</sup> = 22.76, df = 4 (P = 0.0001); l <sup>2</sup> = 82%<br>Test for overall effect: 7 = 0.76 (P = 0.45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | External ro<br><u>Study or Subgroup</u><br>4.2.1 Active control<br>Alanbay,2020<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 137<br>Test for overall effect: Z =<br>4.2.2 Placebo control<br>Subtotal (95% CI)<br>Heterogeneity: Not applic                                                   | ) tatj<br>s<br><u>Mean</u><br>59<br>35<br>87.5<br>59<br>61.1<br>7.13; Chi<br>0.76 (P =<br>able        | LON<br>SNB<br>SD<br>17<br>15<br>4.6<br>16.2<br>17.1<br><sup>2</sup> = 22.<br>= 0.45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A     A     Total     15     27     12     20     18     92     76, df = | 69<br>51.2<br>74.6<br>67<br>62.2             | 22.5<br>12.3<br>17<br>19<br>16.3                           | 15<br>30<br>12<br>10<br>18<br><b>85</b><br>); I <sup>2</sup> = 8            | 17.9%<br>22.6%<br>20.9%<br>18.3%<br>20.3%<br><b>100.0</b> % | V, Random, 95% CI<br>-10.00 [-24.27, 4.27]<br>-16.20 [-23.37, -9.03]<br>12.90 [2.94, 22.86]<br>-8.00 [-21.75, 5.75]<br>-1.10 [-12.01, 9.81]<br>-4.45 [-15.89, 6.99]                  | Mean Difference                       |
| Test for overall effect: 7 = 0.76 (P = 0.45) -100 -50 0 50 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | External ro<br><u>Study or Subgroup</u><br>4.2.1 Active control<br>Alanbay,2020<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 137<br>Test for overall effect: Z =<br>4.2.2 Placebo control<br>Subtotal (95% Cl)<br>Heterogeneity: Not applic<br>Test for overall effect: Not                   | ) tatj<br>s<br><u>Mean</u><br>59<br>35<br>87.5<br>59<br>61.1<br>7.13; Chi<br>0.76 (P =<br>able        | LON<br>SNB<br>SD<br>17<br>15<br>4.6<br>16.2<br>17.1<br><sup>2</sup> = 22.<br>= 0.45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                          | 69<br>51.2<br>74.6<br>67<br>62.2             | 22.5<br>12.3<br>17<br>19<br>16.3                           | 15<br>30<br>12<br>10<br>18<br>85<br>);   <sup>2</sup> = 8<br>0              | 17.9%<br>22.6%<br>20.9%<br>18.3%<br>20.3%<br><b>100.0</b> % | V, Random, 95% Cl<br>-10.00 [-24.27, 4.27]<br>-16.20 [-23.37, -9.03]<br>12.90 [2.94, 22.86]<br>-8.00 [-21.75, 5.75]<br>-1.10 [-12.01, 9.81]<br>-4.45 [-15.89, 6.99]<br>Not estimable | Mean Difference                       |
| Hazards [SSNB] Hazards [Control]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | External ro<br><u>Study or Subgroup</u><br>4.2.1 Active control<br>Alanbay,2020<br>Kasapoglu-Aksoy,2020<br>Kim,2014<br>Sencan,2019<br>Tubay,2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 137<br>Test for overall effect: Z =<br>4.2.2 Placebo control<br>Subtotal (95% CI)<br>Heterogeneity: Not applic<br>Test for overall effect: Not<br>Total (95% CI) | ) tatj<br>s<br>Mean<br>59<br>35<br>87.5<br>59<br>61.1<br>7.13; Chi<br>0.76 (P =<br>able<br>: applicat | In the second se |                                                                          | 69<br>51.2<br>74.6<br>67<br>62.2<br>: 4 (P = | ontrol<br>SD<br>22.5<br>12.3<br>17<br>19<br>16.3<br>0.0001 | 15<br>30<br>12<br>10<br>18<br><b>85</b><br>); I <sup>2</sup> = 8<br>0<br>85 | 17.9%<br>22.6%<br>20.9%<br>18.3%<br>20.3%<br>100.0%         | V, Random, 95% Cl<br>-10.00 [-24.27, 4.27]<br>-16.20 [-23.37, -9.03]<br>12.90 [2.94, 22.86]<br>-8.00 [-21.75, 5.75]<br>-1.10 [-12.01, 9.81]<br>-4.45 [-15.89, 6.99]<br>Not estimable | Mean Difference<br>IV, Random, 95% Cl |

FIGURE 5 | Forest plot of external rotation ROM between SSNB and other treatment.

|                                       | S         | SNB   |          | Co        | ontro               | l     |        | Mean Difference       | Mean Difference                  |
|---------------------------------------|-----------|-------|----------|-----------|---------------------|-------|--------|-----------------------|----------------------------------|
| Study or Subgroup                     | Mean      | SD    | Total    | Mean      | SD                  | Total | Weight | IV, Random, 95% CI    | IV, Random, 95% Cl               |
| Kasapoglu-Aksoy,2020                  | 10        | 4     | 27       | 12.6      | 3.4                 | 30    | 98.9%  | -2.60 [-4.54, -0.66]  |                                  |
| Kim,2014                              | 22.8      | 23    | 12       | 24.6      | 24                  | 12    | 1.1%   | -1.80 [-20.61, 17.01] |                                  |
| Total (95% CI)                        |           |       | 39       |           |                     | 42    | 100.0% | -2.59 [-4.52, -0.66]  | •                                |
| Heterogeneity: Tau <sup>2</sup> = 0.0 | 0; Chi² = | 0.01  | , df = 1 | (P = 0.9) | 33); l <sup>a</sup> | °= 0% |        |                       | -100 -50 0 50 100                |
| Test for overall effect: Z =          | 2.63 (P = | = 0.0 | 08)      |           |                     |       |        |                       | Hazards [SSNB] Hazards [Control] |
|                                       |           |       |          |           |                     |       |        |                       |                                  |
| URE 6   Forest plot of FMA            | hotwoor   | 001   | IP and   | othor tro | otmo                | ot    |        |                       |                                  |

the brachial plexus (C5, C6). The motor of supraspinatus and infraspinatus muscles is innervated by the suprascapular nerve, which is the basic of SSNB for the treatment of HSP (9, 19, 20). Given the different mechanisms of SSNB vs. other treatments, the treatment effects may differ. SSNB just temporarily blocked

the suprascapular nerve; this may explain why the VAS failed to continue to decrease in the follow-up period more than 1 wk in the study by Adey-Wakeling et al. (8), but the VAS at weeks 1, 4, and 12 is much lower than baseline (about 30 vs. 69). In the study by Sencan et al. (9), the lowest VAS occurred in the second

week after SSNB procedure, and the VAS at week 8 is similar to that at week 2. In our study, we synthesized data from eight studies involving 281 patients followed up for at least 4 wk and demonstrated that the VAS in SSNB is not higher than that in the other treatments. The reason why the pain relief still works after 4 wk may be that the patients move more after the SSNB, and this helps to relieve HSP; even though the pain relief from SSNB disappeared after 4 wk, the pain relief from increased movement is still sustained (21).

Compared with intra-articular shoulder injection (IAI), SSNB may be much safer; SSNB does not have side effects caused by steroids used in the IAI (9, 22). Some complications like intraarticular infection, which is common in the other treatments, we found no such complications reported in articles about SSNB. Besides effects in HSP relief, SSNB also has the advantage of costeffectiveness; the current price of SSNB is much lower than that of other treatments like nerve pulsed radiofrequency treatment. It is also easy for the physical therapist to conduct the procedure.

In our analysis, we noticed that a combination of SSNB and other therapies may cause a better outcome. Sencan et al. (9) found that compared with SSNB or intra-articular shoulder injection (IAI), a combination of SSNB and IAI can reduce the VAS of HSP patients, although not different statistically, but the function of the shoulder improves significantly. Parashar et al. (23) divided 60 patients into three groups and found that SSNB in combination with non-invasive rehabilitation (NIR) is much more effective than either SSNB or NIR. One of the earliest studies about frozen shoulder also found that treatment with SSNB plus electroacupuncture is superior than any single one (24). Although the latter two studies focused on patients with chronic shoulder pain and frozen shoulder, it indicates that a combination of SSNB and other therapies may gain a better outcome.

The clinical benefits of injection guided by ultrasound or other equipment are still unknown. Compared with fluoroscopyguided injection, the ultrasound-guided injection causes less harm to the therapist (9). In our clinical practice, the use of ultrasound can help us with a clear view of the tissues and may be much safer. In a cross-sectional study, the researchers found that compared with conservative treatment, the ultrasound-guided SSNB can obviously improve the pain relief, but it does not prove the role of ultrasound in the SSNB, as the control group received conservative treatment (25). Kang et al. (18) found that SSNB by fluoroscopy-guided anterior approach can reduce the dose of local anesthetics and avoid pneumothorax, indicating that ultrasound-guided injection may be a better method. However, a study published in 2020 found that ultrasound-guided SSNB did not improve the VAS or the shoulder function compared

#### REFERENCES

 Wang L, Tao Y, Chen Y, Wang H, Zhou H, Fu X. Association of post stroke depression with social factors, insomnia, and neurological status in Chinese elderly population. *Neurol Sci.* (2016) 37:1305–10. doi: 10.1007/s10072-016-2590-1 with landmark-guided SSNB in chronic shoulder pain patients (26). More RCTs are needed to verify the validity of ultrasound-guided SSNB.

#### LIMITATIONS

The present meta-analysis has several limitations besides those inherent in the original studies. Firstly, some data in our study are transformed from the published articles, and this may cause the data to be not so accurate. Secondly, the control group patients received several kinds of treatment; this may introduce bias. Thirdly, our included studies reported no adverse events; it is impossible for us to investigate the safety of SSNB. Fourthly, the maximum follow-up period in our study is 12 wk; the efficacy of SSNB more than 3 months is unknown. Finally, the sample size in every study is small; this may introduce bias.

#### CONCLUSION

SSNB is an effective way for HSP patients.

#### DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

#### **AUTHOR CONTRIBUTIONS**

This study was designed by TZ. YH performed the study and wrote the manuscript. YW, XS, YL, and YY all participated in the study. All authors contributed to the article and approved the submitted version.

#### FUNDING

This study was supported by the 2021 Outstanding Talents Project of Xicheng District, Beijing (Fund No. 202131).

#### SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fneur. 2021.723664/full#supplementary-material

- Viana R, Pereira S, Mehta S, Miller T, Teasell R. Evidence for therapeutic interventions for hemiplegic shoulder pain during the chronic stage of stroke: a review. *Top Stroke Rehabil.* (2012) 19:514–22. doi: 10.1310/tsr1906-514
- Snels IA, Beckerman H, Lankhorst GJ, Bouter LM. Treatment of hemiplegic shoulder pain in the Netherlands: results of a national survey. *Clin Rehabil.* (2000) 14:20–7. doi: 10.1191/026921500668239146

- Kalichman L, Ratmansky M. Underlying pathology and associated factors of hemiplegic shoulder pain. Am J Phys Med Rehab. (2011) 90:768–80. doi: 10.1097/PHM.0b013e31821 4e976
- Wilson RD, Chae J. Hemiplegic shoulder pain. Phys Med Rehabil Clin N Am. (2015) 26:641–55. doi: 10.1016/j.pmr.2015.06.007
- Coskun Benlidayi I, Basaran S. Hemiplegic shoulder pain: a common clinical consequence of stroke. *Pract Neurol.* (2014) 14:88–91. doi: 10.1136/practneurol-2013-000606
- Brown, D. E, James, D. C, Roy, S. Pain relief by suprascapular nerve block in gleno-humeral arthritis. *Scand J Rheumatol.* (1988) 17:411– 5. doi: 10.3109/03009748809105280
- Adey-Wakeling Z, Crotty M, Shanahan EM. Suprascapular nerve block for shoulder pain in the first year after stroke: a randomized controlled trial. *Stroke.* (2013) 44:3136–41. doi: 10.1161/STROKEAHA.113. 002471
- Sencan S, Celenlioglu AE, Karadag-Saygi E, Midi I, Gunduz OH. Effects of fluoroscopy-guided intraarticular injection, suprascapular nerve block, and combination therapy in hemiplegic shoulder pain: a prospective double-blind, randomized clinical study. *Neurol Sci.* (2019) 40:939– 46. doi: 10.1007/s10072-019-03733-6
- Kasapoglu-Aksoy M, Aykurt-Karlibel I, Altan L. Comparison of the efficacy of intramuscular botulinum toxin type-A injection into the pectoralis major and the teres major muscles and suprascapular nerve block for hemiplegic shoulder pain: a prospective, double-blind, randomized, controlled trial. *Neurol Sci.* (2020) 41:2225–30. doi: 10.1007/s10072-020-04334-4
- Alanbay, E, Aras, B, Kesikburun, S, Kizilirmak, S, Yasar, E, Tan, A. K. Effectiveness of Suprascapular Nerve Pulsed Radiofrequency Treatment for Hemiplegic Shoulder Pain: A Randomized-Controlled Trial. Pain physician (2020) 23 (3):245-252. doi: 10.36076/ppj.2020/23/245
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA statement: an updated guideline for reporting systematic reviews. *BMJ*. (2021) 372:n71. doi: 10.1136/bmj.n71
- Tubay A, Bal S, Bayram KB, Koçyigit H, Gürgan A. Suprascapular nerve block and glenohumeral injection in hemiplegic shoulder pain: To compare the effectiveness on pain and disability. *Turkiye Fiziksel Tip ve Rehabilitasyon Dergisi.* (2012) 58:299–306. doi: 10.4274/tftr.54771
- Terlemez R, Çiftçi S, Topaloglu M, Dogu B, Yilmaz F, Kuran B. Suprascapular nerve block in hemiplegic shoulder pain: comparison of the effectiveness of placebo, local anesthetic, and corticosteroid injections—a randomized controlled study. *Neurol Sci.* (2020) 41:3243–7. doi: 10.1007/s10072-020-04362-0
- Kim SH, Kim DS. Suprascapular nerve block versus intra-articular hyaluronic acid injection in hemiplegic shoulder pain. *Brain Neurorehabil.* (2014) 7:118– 25. doi: 10.12786/bn.2014.7.2.118
- Boonsong P, Jaroenarpornwatana A, Boonhong J. Preliminary study of suprascapular nerve block (SSNB) in hemiplegic shoulder pain. J Med Assoc Thailand. (2009) 92:1669–74.
- Klç Z, Filiz MB, Çakr T, Toraman NF. Addition of suprascapular nerve block to a physical therapy program produces an extra benefit to adhesive capsulitis: a randomized controlled trial. *Am J Phys Med Rehab.* (2015) 94:912–20. doi: 10.1097/PHM.00000000000336

- Kang SS, Jung JW, Song CK, Yoon YJ, Shin KM. A new anterior approach for fluoroscopy-guided suprascapular nerve block - a preliminary report. *Korean J Pain*. (2012) 25:168–72. doi: 10.3344/kjp.2012.25.3.168
- Chan CW, Peng PWH. Suprascapular nerve block: a narrative review. *Reg Anesth Pain Med.* (2011) 36:358–73. doi: 10.1097/AAP.0b013e31822 04ec0
- Picelli A, Bonazza S, Lobba D, Parolini M, Martini A, Chemello E, et al. Suprascapular nerve block for the treatment of hemiplegic shoulder pain in patients with long-term chronic stroke: a pilot study. *Neurol Sci.* (2017) 38 (9):1697-1701. doi: 10.1007/s10072-017-3057-8
- Hodges PW, Smeets RJ. Interaction between pain, movement, and physical activity: short-term benefits, long-term consequences, and targets for treatment. *Clin J Pain*. (2015) 31:97–107. doi: 10.1097/AJP.000000000000008
- Sun, Y, Zhang, P, Liu, S, Li, H, Jiang, J, Chen, S, Chen, J. Intra-articular steroid injection for frozen shoulder: a systematic review and meta-analysis of randomized controlled trials with trial sequential analysis. *Am J Sports Med.* (2017) 45:2171–9. doi: 10.1177/0363546516669944
- Parashar A, Goni V, Neradi D, Guled U, Rangasamy K, Batra YK. Comparing three modalities of treatment for frozen shoulder: a prospective, double-blinded, randomized control trial. *Indian J Orthop.* (2021) 55:449– 56. doi: 10.1007/s43465-020-00201-8
- Lin ML, Huang CT, Lin JG, Tsai SK. A comparison between the pain relief effect of electroacupuncture, regional never block and electroacupuncture plus regional never block in frozen shoulder. *Acta Anaesthesiol Sin.* (1994) 32:237–42.
- Aydin T, Sen E, Yardimci MY, Kesiktaş FN, Öneş K, Paker N. Efficacy of ultrasound-guided suprascapular nerve block treatment in patients with painful hemiplegic shoulder. *Neurol Sci.* (2019) 40:985–91. doi: 10.1007/s10072-019-03749-y
- Saglam G, Alisar DÇ. A comparison of the effectiveness of ultrasoundguided versus landmark-guided suprascapular nerve block in chronic shoulder pain: a prospective randomized study. *Pain Phys.* (2020) 23:581– 88. doi: 10.36076/ppj.2020.23.581

**Conflict of Interest:** The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

**Publisher's Note:** All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Hou, Wang, Sun, Lou, Yu and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.