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A B S T R A C T

Machine learning (ML) techniques are increasingly being used in clinical medical imaging to automate
distinct processing tasks. In post-mortem forensic radiology, the use of these algorithms presents
significant challenges due to variability in organ position, structural changes from decomposition,
inconsistent body placement in the scanner, and the presence of foreign bodies. Existing ML approaches
in clinical imaging can likely be transferred to the forensic setting with careful consideration to account
for the increased variability and temporal factors that affect the data used to train these algorithms.
Additional steps are required to deal with these issues, by incorporating the possible variability into the
training data through data augmentation, or by using atlases as a pre-processing step to account for
death-related factors. A key application of ML would be then to highlight anatomical and gross
pathological features of interest, or present information to help optimally determine the cause of death.
In this review, we highlight results and limitations of applications in clinical medical imaging that use ML
to determine key implications for their application in the forensic setting.

© 2020 Elsevier B.V. All rights reserved.
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. Introduction

Forensic radiology is not clinical radiology applied to a deceased
erson. In the forensic setting, findings that a clinical radiologist
ay not typically have encountered are commonplace [1], e.g.
ost-mortem gas formation [2]. Post-mortem computed tomogra-
hy (PMCT) is widely used in forensic investigations, where
cquisition protocols used during clinical CT are not applicable due
o rigor mortis and aversion to repositioning the decedent to avoid
ampering with evidence. However, CT scans can be acquired with
igher doses and there is no patient motion, therefore improving
mage quality. Additionally, recent developments such as PMCT
ngiography (PMCTA) with specialized pumps allows the diagnosis
f vascular lesions whilst maintaining the integrity of anatomic
tructures, thus preserving evidence integrity [3,4].
In order to overcome the limitations of soft tissue contrast and a

ack of vascular visualization provided by PMCT [5], postmortem
agnetic resonance imaging (PMMRI) is increasing in impact,
lbeit in a small way thus far. Whilst PMMRI offers improved soft
issue contrast, for vascular diagnoses it presents similar perfor-
ance to PMCTA, with higher associated cost. However, applica-

ions to cardiac imaging are an exception, due to improved
isualization of the coronary arteries and myocardium [5].
Recently, there has been much progress in the automation of

mage processing tasks to enhance medical imaging workflow [6,7]
or the key modalities of plain film X-ray [8], CT [9,10], and MRI
11]. In the forensic setting, the completion of these tasks suffers
rom added complications such as decedent decomposition,
rauma, incineration, variability in positioning of normal anatomi-
al structures, and artefacts from foreign bodies. This review
nitially introduces the basic concepts of machine learning (ML)
hat relate to image processing, before discussing the limited
iterature on the use of ML in post-mortem forensic imaging. The
eview then synthesizes the existing literature on the relevant pre-
linical and clinical uses of ML, and contextualizes the information
elative to future use in the forensic setting. Whilst the use of MRI
s not yet widespread in forensic medicine, its growing popularity
nd extensive use with ML in clinical imaging yields important
onclusions for long-term forensic implementation consider-
tions. In addition, it should be noted that whilst there are
xtensive applications for the use of ML in both clinical and
orensic histopathology, these are not considered.

. Machine learning (ML) algorithms

Image processing typically involves segmentation, feature
xtraction, and classification. Image segmentation refers to the
artitioning of a digital image into multiple segments that are sets
f pixels (or voxels) which usually represent discrete structures.
pproaches to image segmentation prior to ML included probabi-
istic atlases [12,13], statistical shape models (SSMs) [14,15], graph-
ut (GC) algorithms [16,17], and multi-atlas segmentation (MAS)
18]. Feature extraction is a dimensionality reduction technique
sed to efficiently represent parts of an image as a compact feature
ector. Feature extraction was traditionally performed through
etermining properties such as first order textures (e.g. mean or
ntropy) or correlations [19,20]. Image classification is the process
f taking an image or volume and predicting whether it belongs to

 list of predefined classes. Traditional approaches to classification
ncluded linear- and normal-discriminant analysis [21,22]. A

environments, data is composed of input-output patterns, and the
task is to find a deterministic function that can predict the output
from an observed input. Unsupervised techniques are a type of self-
organized learning that extracts structures from the training
samples directly, without pre-existing labels [25]. More recently,
self-supervised techniques, a type of unsupervised learning where
the training data is automatically labelled by exploiting the
relations between different input signals, are being studied for
better utilizing unlabeled data [26]. Reinforcement learning on the
other hand is based on trial-and-error, where the algorithm
evaluates a current situation, takes an action, and receives
feedback from the environment; this feedback can be positive or
negative [27]. The most common ML techniques used in medical
applications are summarized below.

2.1. Random forests (RFs)

RFs operate by creating a multitude of decision trees (Fig.1) that
can be trained for classification and regression tasks [28,29], where
the output is obtained by majority vote. Majority vote is a
technique utilized to combine the outputs from multiple
classifiers, with the voting rule following one of three forms: (i)
unanimous voting, where all the individual votes must agree in one
output class, (ii) simple majority, where the class with one more
than 50 % of votes is selected, and (iii) plurality or majority voting,
where the class with the highest number of votes is chosen [30].

2.2. k-nearest neighbors (k-NN)

In k-NN, the training samples are divided into classes, and the
prediction of a new sample or test point is classified by a majority
vote of its neighbors (Fig. 2). The algorithm uses a distance
measurement function to search the k (defined by the user) closest
training samples in the feature space, and assigns the case of the
class that is the most common in the subset.

2.3. Support vector machines (SVMs)

SVMs originated from statistical learning theory [31] and are
used for classification as they can model highly non-linear systems.
SVMs project the data onto a high-dimensional space and apply a
linear classifier on the projected data (Fig. 3) [25,32]. SVMs are
intrinsically more suited to two-class problems as opposed to RFs
which are best for those with multiple classes.

Fig. 3 SVM maps the input data (left) to a high-dimensional
feature space (right) and calculates a hyperplane able to separate
the different classes. The class assigned to new samples is decided
according to the location of the data points on the high-
dimensional space with respect to the generated hyperplane.
Fig. 1. RFs present a multitude of decision trees at training and outputs a class
according to a defined majority vote technique (for classification tasks) or mean
prediction (for regression tasks). In this example, the result would be the selection
of Class B.
ariety of ML alternatives to each of these image processing tasks
ave now been proposed and pipelines that can automate many
iagnostic and prognostic tasks have been introduced to reduce
he burden on radiologists [23,24].

ML techniques can be categorized as supervised learning,
nsupervised learning, and reinforcement learning. In supervised
2
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2.4. Artificial neural networks (ANNs)

ANNs are inspired by the biological nervous system. ANNs
contain a large number of highly interconnected nodes (called
neurons) separated into layers (Fig. 4), enabling the network to
process different pieces of information while considering con-
straints to coordinate internal processing, and to optimize its final
output [25,33].

2.5. Convolutional neural networks (CNNs)

CNNs were inspired by the connectivity pattern of the animal
visual cortex. Neurons respond to stimuli only in a restricted region
(receptive field) of the previous layer, where receptive fields of
different neurons partially overlap until they cover the entire
visual field (Fig. 5). Unlike other ML techniques, the network learns
the filters that are usually “hand crafted”. Also, CNNs exploit the
strong spatially local correlation found on images, allowing the
features to be detected regardless of their position. In recent years,
Deep Neural Networks (DNNs), which differ from ANNs by their
depth (the number of neuron layers), have proven to be successful
in solving diverse problems, mainly for their capacity to learn
features from large datasets [34].

It should be noted that in the following discussion, algorithmic
performance is assessed in terms of Dice’s coefficient (DC), the

modified Hausdorff distance (MHD) and the area under the
receiver operating characteristic curve (AUC or AUROC), where
possible. The quantification usually starts with calculation of true
positives (TPs), true negatives (TNs), false positives (FPs), and false
negatives (FNs). TP refers to cases correctly classified as pertaining
to the class, opposite to FP, when the case is wrongly classified.
Inversely, TN and FN refer to a case correctly and incorrectly
classified as not belonging to the class, respectively. The DC
quantifies overlap between the processed image from the
technique with a defined ground truth, ranging from zero (no
overlap) to unity (identical segmentation). MHD is a measure of
similarity between two objects based on their shape attributes.
AUC combines information of the true positive rate or sensitivity,
and false positive rate or fall-out. Sensitivity measures the
proportion of actual positives that are correctly identified, while
fall-out indicates the proportion of cases wrongly classified as
positives. Inversely, the specificity measures the proportion of
negatives that are correctly identified. Recall is the ratio of TPs to
the sum of TPs and FNs, indicating the proportion of actual
positives that are correctly identified. Precision is defined as the
ratio of TPs to the sum of TPs and FPs, indicating the proportion of
identified positives that are correct [35].

3. Forensic applications

In terms of the currently reported use of ML in forensic post-
mortem imaging, it is in its infancy. ML has only been trialed in a
few specific forensic applications including automatic forensic
dental identification [36]; sex determination [37–39]; the auto-
mation of bone age assessment [40,41]; prediction of bone
fractures [42]; and the automatic detection of hemorrhagic
pericardial effusion [43]. As far as we are aware, none of these
studies has translated into daily forensic practice, despite the
potential to streamline case-work.

The legally robust identification of a decedent is the first
objective when their body is triaged for a post-mortem. Dental
analysis and comparison of ante-mortem and post-mortem
information is one of the recognized tools for determining a
decedent’s identity. This traditionally requires an odontologist to
find the best match to an ante-mortem database, using features
such as dental restorations, pathologies, and tooth and bone
morphologies. Zhang et al. [36] proposed a new descriptor that
encodes the local shape of a person’s dental features. They
subsequently used an RF classifier to match the features of the
unknown person to those in the database (n = 200). The result
yielded 100 % accuracy for complete (n = 20) and incomplete

Fig. 2. k-NN assigns a class to the new data point, denoted here by X, according to
the class of k neighbors. In this example, if k = 3 (inner circle), the new sample is
assigned to Class B; if k = 6 (outer circle), the assignment changes to Class A.
Fig. 3. SVM maps the input data (left) to a high-dimensional feature space (right) and calculates a hyperplane able to separate the different classes. The class assigned to new
samples is decided according to the location of the data points on the high-dimensional space with respect to the generated hyperplane.

3
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n = 20) feature datasets. Incomplete datasets were derived from
ases involving trauma. The method presented was shown to be
otationally and translationally invariant, and was orders of
agnitude faster than conventional 2D methods. It is important

o note that the database was constructed using a surface laser
canner on plaster samples in contrast to PMCT scans.
Accurate determination of the sex of a decedent also aides in the

dentification process. Several different approaches have been used
or sex estimation. Arigbabu et al. [37] utilized 100 head PMCT
cans. They combined and evaluated six local feature representa-
ions, two feature learning, and three classification algorithms.
his technique of combining multiple features and classifiers is
ften used in ML pipelines as it has been shown to improve
ccuracy and reliability. The best prediction rate was 86 %, which
as within the reported sex prediction range for applications that
se cranial features. The small number of cases obtained only from
outh East Asia limited the generalizability of the results. Anderson
t al. [38] utilized morphological gray matter differences on MRIs
o differentiate between male and female incarcerated offenders,
ith implications to cognitive neuroscience research. Preprocess-

ng steps were described, including realignment and image
egistration, to obtain the volume and density of the gray matter
n each case utilizing Statistical Parametric Mapping software
SPM12; http://www.fil.ion.ucl.ac.uk/spm). Source-based mor-
hometry (SBM) was utilized to extract features from the gray
atter spatial information, with SBM being able to identify distinct

egions with common covariation between subjects. A number of
L classification approaches were trialed, however, only an SVM
nd logistic regression were described due to present the highest
lassification accuracy of 94 %. Limitations included the use of
olumetric brain data only, without accounting for other

moderating variables and quantitative methods, such as age,
functional activity, and structural and functional connectivity.
Ortiz et al. [39] compared five different ML techniques in the
assessment of panoramic radiographs. The ANN outperformed the
rest of the models, including k-NNs and logistic regression, with an
accuracy of 89 %. Only 100 panoramic radiographs were used,
limiting the statistical significance of the results.

As with the identification of a decedent’s sex, their estimated
age is also an important parameter for streamlining the
identification process. Štern, Payer and Urschler [40] compared
two ML approaches, RFs and DCNNs to determine age (through
regression) and distinguish minors from adults (classification)
using bone ossification from MRI scans of the hand/wrist. As a
general note, DCNNs are often compared with RFs as the DCNN can
determine the most important features itself whereas the RF must
be supplied with those deemed important by the user. To better
study the impact of different input information on the decision
process, three strategies were tested: the use of the whole hand, a
cropped image with age relevant bones, or the hand-crafted filter-
based enhanced epiphyseal gap. The best mean absolute error and
standard deviation results with respect to the biological age (as
estimated by radiologists) were 0.20 � 0.42 and 0.23 � 0.45 years
for the DCNN using cropped structures and the RFs using enhanced
images, respectively. The results were reported to achieve the new
state-of-the-art accuracy compared with previous MRI-based
methods and their earlier work. Furthermore, when the technique
was adapted for 2D MRI, the method was in line with state-of-the-
art methods using X-ray data. Limitations of this work included the
requirement for age-relevant anatomical information, which
implies a labor-intensive pre-processing step, and decreased
accuracy for cases with biological ages greater than 18 years. In
an alternative approach, Li et al. [41] utilized pelvic X-ray images
and a DCNN to create a bone age assessment pipeline which
yielded a mean error of 0.94 years, 0.36 years better than the
existing reference standard. This work used transfer learning from
a CNN pre-trained on the ImageNet database [44], achieving an
appropriate accuracy for this type of input data. Transfer learning is
widely used in ML applications and is particularly useful when
small or unbalanced datasets are available. Limitations acknowl-
edged by the authors included the lack of diversity in ethnicity of
patients, and the exclusion of images with artefacts and diseases.

Many forensic institutions utilize PMCT to guide the pathologist
in their approach to the autopsy. PMCT is particularly useful for
identifying fractures due to the high attenuation of bone. Heimer
et al. [42] used an undisclosed DCNN from a dedicated software
(VIDI, Cognex, Natick, MA, USA) to predict the presence of skull
fractures using 150 head PMCT scans (75 scans for each case: with
and without fractures). The skulls were preprocessed through the

ig. 4. Fully connected ANN with three inputs (X1-X3), two output classes (A and B),
nd two hidden layers of five neurons each. The weights that exist in the hidden
yers are determined through the process of back-propagation which maximizes
he classification success as the network is supplied with increased levels of training
ata.
ig. 5. A CNN for classification of the input image, e.g. MRI, into five categories. The CNN presents two convolutional layers, each followed by a pooling layer in charge of
ecreasing the size of the generated feature maps, and two fully connected layers, including the output layer, to increase the number of features closer to the network’s output.

4
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generation of curved maximum intensity projections, so that the
skull’s surface could be unfolded onto a single image. Deep
learning was applied and the best-performing selected network
yielded an AUROC of 0.965, a sensitivity of 91.4 % and a specificity of
87.5 %. An AUROC of 0.5 defines a model that classifies at random,
while 1.0 is a completely accurate model.

PMCT is also useful for assessing many aspects of cardiac
condition prior to autopsy, e.g. the appearance of discontinuities of
the aortic wall can be a direct sign of injury in the aorta, whereas
the appearance of a blood collection within the chest cavity
(hemothorax or hemopericardium) can be an indirect sign [45,46].
These signs, observed on plain film X-ray or PMCT must be
interpreted by radiologists and forensic pathologists. Ebert et al.
[43] used two separated and undisclosed DCNNs from a dedicated
software (VIDI) for the classification of images with or without
hemopericardium and also the corresponding segmentation of the
blood content in PMCT. The average DC, recall, and precision for the
classification task were 77 %, 77 %, and 85 % respectively. For
segmentation, the values obtained were 78 %, 78 %, and 79 %,
respectively. Limitations of this study include the small number of
training cases (n = 14 cases with hemopericardium), while the use
of a dedicated software restricted the training data to individual
slices, losing sometimes crucial volumetric information.

Due to the dearth of information relating to the application of
ML to forensic imaging, it is important to review the state-of-the-
art and establish lessons learned from the significant body of
literature describing its application to clinical image analysis.

4. Current clinical applications

ML techniques have been used in the diagnosis and prognosis of
diseases, as well as for segmentation, classification, and measure-
ment of anatomical structures [24,47]. In this review, the ML
applications have been grouped according to the tissue or organ
studied, where brain, lungs, and skeleton were chosen to highlight
results and limitations. Each anatomical section concludes with a
summary evaluating the key implications determined from the
clinical literature and their application in the forensic setting.

4.1. Brain tissue

Traditional atlas-based segmentations require registration to
align the atlas images to the unseen image. Whereas, ML
approaches can learn the variability between patients, making
them especially useful in forensics, where variance is greater than
for clinical imaging. ML can also be used in combination with atlas-
based approaches or in its own right. As an example of the former,
Srhoj-Egekher et al. [48] used atlas-based segmentation for pre-
processing T2-weighted MRI neonatal brain images to obtain
initial probabilities, subsequently refined using a k-NN approach.
Whilst this approach achieved DCs and MHDs ranging from 77 % to
93 %, and 0.35 to 2.86 respectively, the assignment of a tissue
classification to each voxel independently, post atlas registration,
meant some voxels were attributed to more than one class, while
background voxels were unclassified. Conversely, Zhang et al. [49]
opted for purely ML approaches that analyzed image patches for
segmentation into white matter (WM), gray matter (GM), and

cerebrospinal fluid (CSF) of infant brains (n = 10). Four network
architectures were tested and, in most cases, the CNN method
significantly outperformed SVMs and RFs with overall DC scores
and MHDs of 85 % and 0.32, respectively. The CNN method also
outperformed two other common image segmentation methods:
coupled level sets (CLS) and majority voting (MV).

Three further publications were found where the authors
segmented similar structures within adult brains. Van Opbroek
et al. [50] applied an SVM for pixel-wise classification to registered
volumes from a variety of MRI sequences for patients with diabetes
and controls. The resulting segmentation of eight different tissue
types demonstrated limited success (Table 1). The SVM showed
poor performance in low contrast areas, while atlas misregistration
caused voxels to be improperly classified. Moeskops et al. [51] used
CNNs to process T1-weighted scans to segment the same eight
tissue types. With CNNs, the use of different sized patches during
training allowed for a smooth segmentation and analysis of local
texture. In general, CNNs delivered better segmentation (Table 1),
although this was a different patient cohort. A more recent
application of 3D DCNNs [52] was used to identify 25 brain
structures in T1-weighted MRI scans (n = 30). Again, image patches
were utilized as input to the network. However, spectral and
Cartesian coordinate information relating to the patches was
added after the convolutional layers (e.g. see arrow in Fig. 5) in
order to introduce spatial information, which substantially
increased the segmentation accuracy.

ML can also be used for the assisted diagnosis of neurodegen-
erative diseases. Salvatore et al. [53] used a combination of
principal component analysis (PCA) with an SVM to classify
morphological MRI sequences as patients with Parkinson's disease
(n = 28), progressive supranuclear palsy (PSP) (n = 28), or controls
(n = 28). The large cohort sizes, inter-class cohort balance, and
separation between PSP patients and other parkinsonian variants
were identified as particular strengths, compared to other papers.
The performance (accuracy, specificity and sensitivity were all >
80 %) of the model was shown to be limited by the number of
principal components (16–26) utilized for classification. This
dependence is an important consideration when using dimension-
ality reduction techniques and was also demonstrated for
approaches that classified Alzheimer's disease [54].

Finally, ML techniques have also been used to segment and
classify brain tumors. Zacharaki et al. [55] used conventional and
perfusion MRI from patients with a diagnosis of intra-cranial
neoplasm to classify them by type and grade of tumor (n = 98).
Their approach consisted of region of interest (ROI) definition,
feature extraction, feature selection, and classification by SVMs.
For comparison, linear discrimination analysis (LDA) and k-NN
were also implemented. The mean classification accuracy was 91 %
for the SVM approach, compared with 81 % for LDA and 90 % for k-
NN. Some of the limitations were related to the lack of features
selected that described deformation of healthy structures due to
the tumor, and the utilization of ROIs which yielded inter-observer
variability.

Once the presence of tumors is verified, one possible
subsequent step would be segmentation of the pathology, which
is challenging even for experienced neuroradiologists [56]. To
address this segmentation problem, a variant of CNNs named U-net

Table 1

Summary of selection of papers for non-infant brain tissue segmentation.

Authors Type / No. images Mean Dice’s coefficient (%)

van Opbroek et al. [50] MRI / 5 training, 12 testing GM = 85, WM = 88, CSF = 78 (SVM)
Moeskops et al. [51] MRI / 5 training, 10 testing GM = 91, WM = 94, CSF = 85 (CNN)
Wachinger et al. [52] MRI / 20 cases for training, 10 cases for testing (>256 images per case) All structures = 91 (DCNN)
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s often employed [57]. Beers et al. [58] utilized two 3D U-nets
onnected sequentially to perform whole tumor, enhancing tumor,
nd tumor core segmentation, achieving mean DCs for the test set
n = 95) of 84 %, 70 %, and 71 %, respectively. When the
ethodology was implemented on patients from ongoing clinical

rials, the mean DCs decreased to 66 %, 54 %, and 45 %, respectively.
he lower performances on the clinical trial patients were
ttributed to scans being post-operative, highlighting the impor-
ance of case selection for training.

Studies on brain tissues used mostly MRI data due to the multi-
odality information and a good soft-tissue contrast. Whilst the
pecific pathologies discussed are not all relevant to the forensic
etting, the general conclusions deduced from the segmentation
nd localization of anatomical abnormalities are. Models that
tilized dimensionality reduction techniques prior to classification
ere shown to yield performances dependent on the number of
elected components. In addition, the identification of abnormali-
ies in biological tissues required features capable of describing
omplicated deformations of the healthy structures. For CNNs, the
erformance of the pipeline depended significantly on the training
et adequately representing expected cases. In general, CNNs
utperformed algorithms such as SVMs, RFs, CLSs, and MV in
egmentation and classification tasks. Note that some studies used
mall datasets, which limited statistical power. In addition, as will
e demonstrated throughout this review, a combination of the
ariability in reporting of metrics, the lack of reporting of a
iagnostic odds ratio [59], the unavailability of datasets and
eference implementations, and the effect of imbalanced data in
he classification accuracy, common in medical datasets [60,61],
ade it difficult to compare papers quantitatively.
In forensics, PMCT does not provide good resolution of internal

ranial structures or brain metastases, and in general, the
esolution is not sufficient to identify neurodegenerative issues,
ut degeneration can sometimes be observed in defined structures,
.g. in the caudate nucleus in Huntington’s disease. On the other
and, PMCT is adequate in showing evolving brain infarcts and in
isplaying collections of blood, e.g. subdural hemorrhages (which
re reasonably common). PMCT can also show intra-parenchymal
emorrhages and parenchymal hemorrhagic contusions. Intra-
arenchymal hemorrhages, e.g. hypertensive hemorrhage, classi-
ally involve distinct areas in the brain: basal ganglia, thalamus,
ons, and cerebellar hemispheres. Parenchymal hemorrhagic
ontusions are classically seen with contra-coup basal frontal
obe contusions (bleed within brain tissue occurring on the
pposite side of the head to the primary injury site) when someone
alls onto the back of their head (often associated with a skull
racture – occipital).

.2. Lungs

In ML, feature learning refers to the automatic discovery of
eaningful representations from raw data, in contrast to manual

eature engineering, where the features have to be chosen by a
omain expert. Feature learning allows for end-to-end learning,
here a complex system can be represented by a single model,
ypassing the intermediate layers present in traditional workflow
esigns. Learning a representation of any tissue is a useful process
f subsequent classification is required, or if the goal is to find

differences between samples in the training data. The representa-
tion quality is highly dependent on the learned features.

A restricted Boltzmann machine (RBM) is a generative neural
network that can be used to perform automatic feature learning. Li
et al. [62] used a Gaussian RBM with a training dataset consisting of
different sized patches obtained from high-resolution lung CT
images (n = 92), with the purpose of classifying five tissue types
using SVMs. The best accuracy obtained was 84 %, with a high rate
of FPs caused by the similarity between tissues. Van Tulder and de
Bruijne [63] utilized convolutional RBMs, adding learning objec-
tives that helped the algorithm to extract features for description
and training data classification. The training data consisted of CT
scans (n = 73) with five types of tissues classified. Resulting
accuracies were <75 % and 85–90 % for the classification of lung
patches and airway centerlines, respectively. The low accuracies
were attributed to small training sets and number of extracted
filters due to computational restrictions.

Netto et al. [64] utilized examinations (n = 50) with 198
identified nodules and an SVM to classify the structure as nodule or
non-nodule. The resulting accuracy was 91 %, with a sensitivity of
86 %. The largest errors were reported when the feature was very
large or very small, where it could be mistaken for other structures
or for being the continuation of one. Hua et al. [65] used images
containing nodules from the Lung Image Database Consortium
(LIDC) CT dataset to train both a CNN and a deep belief network
(DBN) constructed by stacking RBMs. The performance of the two
networks was then compared with two feature-based methods
(Table 2). The major limitation reported was resizing of the input
images, which discarded size cues that were important indicators
of malignancy.

Kumar et al. [66] also classified the lung nodules in the LIDC
images (Table 2) using an autoencoder (AE) and a binary decision
tree classifier (BDT). An AE is an unsupervised deep learning
technique utilized for feature extraction, while a binary decision
tree is a specialized implementation for classification where every
node has only two branches. The false positive rate of 39 % was
attributed to the visual similarity between benign and malignant
cases, which can be compared to a 27 % rate obtained on The
National Lung Screening Trial (NLST) using low-dose CT (LDCT)
[67].

A more recent study compared massive-training artificial
neural networks (MTANNs) against CNNs [68] using a database
of LDCT scans (n = 38), consisting of 1057 slices. MTANNs are an
extension of ANNs, where a large number of overlapping sub-
regions are created for each voxel of the original image and used as
inputs to the network. The reported AUROC was 0.88 for the
MTANN, and 0.78 for the best of the four CNN architectures. The
MTANN required a smaller number of training samples than the
CNNs for a better classification performance. This was attributed to
the hierarchies of the learned features, where the MTANN learned
to detect lesions utilizing low-level features, while the CNNs
extracted low-, mid- and high-level features, increasing their
reliance on irrelevant characteristics.

A recent focus of attention was related to the use of ML for early
diagnosis, assessment of severity, and differentiation between the
novel coronavirus (COVID-19) and community acquired pneumo-
nia (CAP) from CT scans. Barstugan et al. [69] utilized n = 150 CT
abdominal images from 53 infected patients, five feature
able 2
ummary of selection of papers for lung nodule classification.

Authors Type / dataset Accuracy (%) Sensitivity (%)

Hua et al. [65] CT / 2545 nodules – 73 (DBN), 73 (CNN), 76 (SIFT)
Kumar et al. [66] CT / 4323 nodules 75 83 (AE + BDT)
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extraction methods, and an SVM for the final classification,
achieving a maximum accuracy of 99.7 %. The main limitation of
their work was the manual selection of the patches obtained from
the original images and used for the training, which restricts the
usability and reproducibility of this approach. Tang et al. [70]
assessed the severity (severe, non-severe) of the disease from chest
CT images from 176 patients, utilizing quantitative measures, e.g.
the ratio between the volume of the whole lung and the volume of
ground-glass opaque regions, with several RF models. The best
performing RF yielded results of 93 %, 75 %, 88 %, and 91 % for the
sensitivity, specificity, accuracy, and AUC, respectively. To differ-
entiate between COVID-19, CAP, or non-pneumonia, Li et al. [71]
collected 4356 chest CT exams from 3322 patients. A DCNN was
utilized, with an architecture denoted COVNet, able to classify the
volumetric data with a sensitivity, specificity, and AUC of 90 %, 96 %,
and 96 % for COVID-19 cases, 87 %, 92 %, and 95 % for CAP cases, and
94 %, 96 %, and 98 % for non-pneumonia cases, respectively. A
limitation of this work included the lack of laboratory confirmation
for each case, where COVID-19 could have similar imaging
characteristics as other viral pneumonias.

Studies on lungs generally used CT scans for the segmentation
of tissues and tumors, and classification of nodules for early cancer
diagnosis. Due to the low contrast between different tissues in the
lungs, the approaches reported were reliant on shape, texture, and
feature size. The segmentation performance was poor for nodules
at the size extremes. Major findings included lower performances
due to image resizing, and the importance of reporting FP rates,
which can yield high values in applications that intend to
determine nodule malignancy.

Potential applications to the forensic setting include detection
of emphysema, consolidation of lung parenchyma (pneumonia),
and if appropriate windows are used, interstitial changes. Of
crucial forensic interest is the presence of blood and fluid in the
chest. Furthermore, establishing the presence of a lung lesion (and
especially more than one) independently of the cause of death may
indicate the presence of occult malignancy. In such cases, the
deceased’s next of kin can be alerted, and the family contact nurses
can organize appropriate follow up for family members if a cancer
is found. It is important to note that the appearance of the lungs in
PMCTs can be affected by aspiration of gastric content that may
occur in the process of dying, e.g. from a ‘heart attack’.

4.3. Skeleton

Skeletal segmentation usually occurs before measurement and/
or diagnosis of bone or articular diseases. Koch et al. [72]
segmented MRIs (n = 110) of the wrist using marginal space
learning (MSL) and RFs, where MSL incrementally learned
classifiers in marginal spaces of lower dimensions [73]. The
segmented images were used to compute the 3D model of every
carpal bone, with AUCs of 0.88 for both scan modalities. The
approach was an order of magnitude faster than previous work
using a semi-automatic method. Similar literature did not report
segmentation errors and could not be used for comparison.

Bone age assessment from plain X-rays is used in pediatrics by
comparing the results to chronological age for the evaluation of
endocrine and metabolic disorders. A fully automated pipeline was
presented by Lee et al. [74] using a pre-trained CNN (transfer
learning). Both male and female test X-rays were assigned a bone
age within 1 year of the correct value over 90 % of the time, and

improvement over using just one classifier, or only one feature
type. Reported accuracies, precisions, and sensitivities were above
97 %. Instead of fusing the results from the classifiers, multi-stage
classifiers have also been used. Wels et al. [76] reported a fully
automatic system using several RF stages, capable of detecting
osteolytic spinal bone lesions from CT volumes, with an average
sensitivity of 75 %. The performance was affected by differences in
contrast and noise characteristics in the data used for training and
testing, however, values for accuracy were not presented for
further interrogation.

Sharma et al. [77] measured trabecular bone microarchitecture
and used the information to discriminate between healthy cases
(n = 10) and patients with Type 1 Gaucher disease (n = 20). SVMs
were used to classify different genotypes of the disease, achieving
an average 70 % classification accuracy, 74 % sensitivity, and 85 %
precision. The structure of the trabecular bone obtained from MRI
have also been used classify knees with osteoarthritis [78]. The
characteristics found to relate to the disease were useful in
classifying healthy from affected patients (n = 159) with an AUC of
0.92, as well as predicting the risk of cartilage loss. In a similar
study, the fractal analysis of X-ray images with SVMs enabled the
automatic classification of osteoporotic patients (n = 39) versus
controls (n = 38) with accuracies of up to 95 % [79]. Reported
limitations from the papers in this section include the small
number of cases and the high percentages of patients at early
stages of the disease.

Orthopedic ML applications include disease diagnosis, age
assessment, and risk prediction e.g. osteoporosis, osteoarthritis.
Plain film X-ray and CT were most common; however, MRI studies
of joints are being increasingly reported. The performance of ML
applications was shown to be affected by the number and selected
features, which is significantly influenced by differences in
contrast and noise characteristics in the datasets. Comparison or
ranking of the results was limited by reported performance metrics
and the use of databases that were not representative of the
disease stages studied. Other limitations included small patient
cohorts and the processing times.

The most common skeletal disorders that could be picked up on
PMCT scans are osteoporosis and Paget’s disease, while fracture
diagnosis, and then pattern of fracture diagnosis, e.g. a “hangman’s
fracture”, extension/tear-drop fractures of the cervical spine, and
spiral fracture of a long bone in an infant are of significant forensic
interest.

5. Discussion

Typical goals of ML techniques in medical imaging include the
differentiation of healthy from diseased patients or tissues and the
localization of pathologies in anatomic structures. Algorithmic
performance can be significantly affected when trying to process a
new sample that differs significantly from the training dataset. This
characteristic is especially important when it comes to applica-
tions in forensic medicine, where there is a high variability in the
structures and image acquisition protocols, and unclear definition
of what normal implies, due to changes occurring because of
circumstances of death, tissue decomposition, trauma, or inciner-
ation. However, some applications e.g. organ localization, can be
immediately translated to the forensic setting by using the
appropriate training data, or by using the clinical medical images
for the initial training of CNNs and then fine-tuning using forensic
over 98 % within 2 years.
X-rays have also been widely used for fracture detection, e.g. of

the tibia [75], where texture and shape features were fed into three
different ML algorithms: an ANN, k-NN, and SVM, and the outputs
fused using a majority vote scheme. The combination of the
classifiers using both types of features presented a significant
7

information. This is usually referred to as transfer learning. On the
other hand, due to the size and availability of forensic databases,
the opposite is also possible, with applications being trained in
forensic data and then fine-tuned to the clinical setting.

To improve the capabilities of ML techniques, the training data
can be modified, or more informative features can be used as
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nputs to the algorithms. The selection of features can be optimized
sing learning objectives [63] or by utilizing an unsupervised
echnique as a preprocessing step to the classification task [66,80].
he features selected can also be used to alleviate human labelling,
y selecting more representative training data for the medical
xpert [81,82]. Another approach to the improvement of ML
erformance is the combination of several techniques using a
ajority vote scheme [75], or the use of multi-stage classifiers [58]

or segmentation of different spatially related tissues.
A wide range of implemented algorithms were found during the

eview process, where SVMs outperformed techniques such as LDA
nd k-NN [55], however the trend in recent works has been the
igh performance of CNNs [49,51]. The main disadvantage of
lassic ML approaches compared to CNNs is the performance
ariability due to the quality of the features [53] that must be
and-crafted by an expert according to the goal and dataset. The
elected feature pool is commonly processed to lower its
imensionality before training the classifier by using techniques
uch as PCA. It is important to note that the number of principal
omponents or features selected at the end of this step plays a key
ole in the classification performance [53].

The performance of the algorithms can also be significantly
ffected if the labelling process (diagnosis) is prone to error [54].
urthermore, for medical and forensic applications, the common
ractice of resizing input images can yield to a loss of information
hat could be essential for diagnostic purposes [65]. An additional
onsideration is that some authors use for example a radiologist to
lassify cases, then benchmark the performance of the algorithm
gainst radiologists. Rajpurkar et al. [83], for instance, presented a
NN that achieved radiologist-level pneumonia detection on a
atabase [84] for which no gold-standard label existed, and listed
s limitation the lack of information in the database that affects the
adiologists’ accuracy. It is also important to note that the lack of
eporting of a diagnostic odds ratio [59] and the variability in
eporting of metrics makes it difficult to compare papers.

For the task of segmentation, both multi-atlas algorithms and
CNNs with multiple patch sizes showed comparable results
48,49], demonstrating CNNs were most successful. Patch-based
echniques could be a good approach in forensic cases were organs
r structures are not localized in the usual anatomic positions [63].
urthermore, the use of different sized patches in segmentation
asks allows for both a smoother separation and the detailed
nalysis of local texture [51].
Three important results for the use of ML in clinically-related

pplications were found that can also be applied in the forensic
etting: firstly, temporal efficiency through the use of transfer
earning; secondly, improved accuracy through the combination of
L classifiers using majority voting techniques or multi-stage
pproaches; and finally, the addition of an active learning phase,
here the human labor can be alleviated during labeling.
One of the main issues that affects both the clinical and forensic

ettings is the lack of interpretability of predictions by black-box
pproaches such as neural networks. This is active area of current
esearch and a current approach to addressing this concern is the
se of visual explanations for the class label under consideration,
btained from the convolutional layer feature maps [85,86], and
ttention mechanisms [87], able to determine the parts of the
nput images more relevant for a particular classification.
urthermore, depending on the application, it is not required
nd could be counter-productive to completely automate a task, for

[88,89]; computation of organ 3D models [72] for virtual
autopsies; detection of lesions and calcification on vascular
cross-sections [90]; identification of bone and joint atrophies or
disorders [81,77–79]; fluid volume and composition on body
cavities (blood, pus, ascites) [91]; and organ volume estimation,
e.g. heart size with respect to body size [92].

Tasks in forensic radiology that to our knowledge have not been
tackled using ML include: segmentation and classification of
foreign bodies, differentiation between ante-mortem and post-
mortem gases, calculation of body mass index, and determination
of skeletal completeness after accidents.

For the segmentation and classification of foreign bodies, e.g.
bullets, metallic dental fillings, the main challenge becomes
finding the object that does not belong inside the body.
Furthermore, metallic components can create artefacts such as
beam-hardening on CT scans or field distortions in MRI [93], which
can also be addressed using deep learning [94].

Differentiation between ante-mortem and post-mortem gases
can be difficult using the voxel values of CT scans or MRI, so
emphasis should be placed on understanding the expected
location and evolution of these gases at different points in time
[95]; also, differentiation between acute and remote infarction on
the brain, which on a CT scan can be characterized by voxel values
and tissue volume changes, can be tackled utilizing existing tissue
classification techniques [50,51,54], with the addition of new
classes to differentiate the types of infarction.

In forensic anthropology, tasks that could be addressed using
ML include: determination of skeletal completeness after acci-
dents [96], e.g. plane crashes; 3D reconstruction of incomplete
bones, that could be extrapolated from the work by Hermoza and
Sipiran [97] on incomplete archaeological objects; and 3D
reconstruction of fractured skulls [98–100], used to infer a cause
of death, or to perform facial reconstruction.

In addition to the aforementioned applications traditionally
related to medical imaging, there is the potential for the use of CT
scans for facial identification [101,102]. As a final note, the release
this year of the New Mexico Decedent Image Database (NMDID,
https://nmdid.unm.edu/) [103] should be acknowledged as a
significant step forward for the development of tools that can
be used to enhance the post-mortem workflow.

6. Conclusions

ML techniques have been applied to a large number of tasks that
can be used in clinical medicine, where the algorithms most widely
utilized in applications with medical images include RFs, SVMs,
and CNNs. CNNs have shown better performance in the literature.

Techniques to improve the ML performance in radiology
include data augmentation, improved feature selection and
algorithmic combination, e.g. majority voting. Performance was
shown to be affected by resizing of the input images and the
accuracy of the labels provided with the training data. In addition,
benchmarking was found to be difficult due to the lack of gold-
standard labels, as well as the variability in reporting of metrics,
and lack of reporting of a diagnostic odds ratio.

ML applications investigated for clinical medicine could be
repurposed to the forensic domain with careful consideration to
account for the increased variability and temporal factors, e.g.
decomposition, that affect the data used to train the ML
techniques. Due to the complexity of the autopsy process, a key
hich a human-in-the-loop can be beneficial by reducing the
omplexity through human input and assistance [82].
Some applications of ML already found in clinical medicine, that

ould be repurposed for forensic medicine, include segmentation
nd classification of organs and structures, including arteries, tiny
lood vessels, the liver, spleen, stomach, gallbladder, and pancreas
8

application of ML to forensic radiology would be to streamline
decedent identification and highlight and annotate areas of
forensic interest. ML pipelines could be used to present informa-
tion to optimally determine the cause of death, including
differentiation between body cavity fluid accumulations (blood,
pus, ascites) and their corresponding volumes, calculation of organ

https://nmdid.unm.edu/
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volumes and weights, percentage of coronary artery calcification,
identification of subtle fractures especially in critical areas such as
the cervical spine, and determination of skeletal completeness and
skeletal commingling after mass fatality incidents.
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