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Persistent inflammation and persistent pain are major medical, social and economic
burdens. As such, related pharmacotherapy needs to be continuously improved. The
peptide ERa17p, which originates from a part of the hinge region/AF2 domain of the
human estrogen receptor a (ERa), exerts anti-proliferative effects in breast cancer cells
through a mechanism involving the hepta-transmembrane G protein-coupled estrogen
receptor (GPER). It is able to decrease the size of xenografted human breast tumors, in
mice. As GPER has been reported to participate in pain and inflammation, we were
interested in exploring the potential of ERa17p in this respect. We observed that the
peptide promoted anti-hyperalgesic effects from 2.5 mg/kg in a chronic mice model of paw
inflammation induced by the pro-inflammatory complete Freund’s adjuvant (CFA). This
action was abrogated by the specific GPER antagonist G-15, leading to the conclusion that
a GPER-dependent mechanism was involved. A systemic administration of a Cy5-labeled
version of the peptide allowed its detection in both, the spinal cord and brain. However,
ERa17p-induced anti-hyperalgesia was detected at the supraspinal level, exclusively. In
the second part of the study, we have assessed the anti-inflammatory action of ERa17p in
mice using a carrageenan-evoked hind-paw inflammation model. A systemic
administration of ERa17p at a dose of 2.5 mg/kg was responsible for reduced paw
swelling. Overall, our work strongly suggests that GPER inverse agonists, including
ERa17p, could be used to control hyperalgesia and inflammation.

Keywords: GPER, ERa17p, pain, hyperalgesia, inflammation
INTRODUCTION

Estrogens and their classical receptors, i.e. ERa and b, interfere with pain pathways, through specific
proteins and different molecular mechanisms (1). For example, 17b-estradiol (E2) facilitates
heterodimerization of k and µ opioid receptors via a membrane estrogen receptor (ER)-dependent
process (1, 2). Opioid peptides exert antiestrogenic effects by interfering with AP-1-driven
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transcription (3). Thus, ERa and b could explain, at least in part,
sex differences in pain sensitivity (1).

The newly discovered G protein-coupled estrogen receptor
(GPER) is expressed, inter alia, in different regions of the central
nervous system (CNS) such as the hippocampus and the
hypothalamus, brain stem, the spinal cord, and autonomic and
sensory ganglia (4–7), where it participates in a panel of
neurophysiological events including pain. These effects are
mediated through mechanisms involving an increase in the
concentration of intracellular calcium and the accumulation of
reactive oxygen species (ROS) (8–10). Likewise, the selective
GPER agonist G-1 induces the depolarization of ventral and
dorsal horn and cultured spinal neurons to mediate nociception,
two events that are abolished by the specific GPER antagonist
G-15 (5). Tamoxifen and fulvestrant, which also behave as GPER
agonists, induce hyperalgesia (11–13). Hence, GPER has an
indisputable role in nociception via rapid steroid hormone
signaling pathways.

The 17-mer GPER-interacting peptide ERa17p (sequence:
H2N-PLMIKRSKKNSLALSLT-COOH) was designed from the
human ERa hinge and ligand-binding domains (residues 295-
311) (14, 15). It corresponds to a surface-exposed polyproline II
(PPII) region, which is composed of amino acids belonging to the
C-terminus of the hinge region (D domain) and to the N-terminus
of the AF2 transactivation function (E/F domains) (14). In
the context of the whole protein, this fragment is in charge
of the recruitment of transcription regulatory partners such as
Ca2+-calmodulin (16) and Hsp70 (17). It is also subjected to post-
translational modifications such as acetylation, phosphorylation,
and SUMOylation [see (18) and references herein]. The KRSKK
motif (residues 299–303), which is targeted by proteolytic
enzymes (19), corresponds to the third ERa nuclear localization
sequence (20). Hence, this part of the receptor appears crucial for
the control of the turnover of ERa, its translocation and
associated transcription.

In the light of the above observations, we have extensively
studied the peptide ERa17p, notably in ERa-positive and
-negative human breast cancer cells where it has been shown
to exert a panel of activities. In steroid-deprived conditions, it
promotes ER-dependent transcription and the proliferation
exclusively of ERa-positive breast cancer cells through the
activation of genes that are also activated by E2 (21–23). Thus,
ERa17p can be seen as an estrogen-like molecule in these
atypical experimental conditions. In breast cancer cells
incubated in complete (physiological) culture medium, i.e., in
medium containing steroids and growth factors, it induces
apoptosis (24). Since these effects are observed in both ERa-
positive and -negative breast cancer cells with, however, a
preference for ERa-positive cell lines, it is likely that a
mechanism depending partially on ERa is involved (24). A
decrease in the migration of breast cancer cells through actin
cytoskeleton rearrangements is also observed (25). Accordingly,
ERa17p decreases the size of tumors xenografted in mice by about
50%, at low dose (1.5mg/kg) and over a short period (three times a
week for 4 weeks) (24). These observations highlight the amazing
pharmacological plasticity of G protein-coupled receptors
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(GPCRs) (26) and show the putative biased agonist character of
ERa17p. ERa17p also induces the proteasome-dependent
degradation of GPER and inhibits the activation of the
epidermal growth factor receptor (EGFR) and of the
extracellular signal-regulated kinase (ERK1/2). It also decreases
the level of the protein c-fos (15). In combination with its GPER
interaction, ERa17p interacts with artificial and breast cancer cell
membranes (27, 28).

Because of the role of GPER in nociception (8, 29–33) and
inflammation (34–42), it was decided to study the action of
ERa17p on inflammation-induced hyperalgesia and edema, by
using complete Freund’s adjuvant (CFA) and carrageenan mice
models, respectively. The involvement of ERa17p in hyperalgesia
and inflammation was evaluated by testing its action in vivo, in
the presence and in the absence of G-15, a selective GPER
antagonist. Strikingly, systemically administered ERa17p
supports anti-nociception between 2.5 and 10 mg/kg, a dose
range for which an antitumor activity, against ERa-negative
breast tumors, has previously been observed, in vivo (24). Thus,
targeting the GPER could be a promising approach not only to
fight cancer, but also to control inflammation and related pain.
Therefore, ERa17p could be proposed as a lead compound for
the synthesis of new a generation of polymodal (antitumor,
analgesic, and anti-inflammatory) drugs.
MATERIAL AND METHODS

Animals
Male mice CD1 (20–22 g, Janvier, France) were acclimatized for
a week before testing. They were housed under controlled
environmental conditions (21–22°C; 55% humidity, 12 h light/
dark cycles, food and water ad libitum). Male and female mice
CD1 have been used for the fluorecent imaging experiment.

Ethics
The studies involving animals were reviewed and approved by
the Auvergne Animal Experiment Ethics Committee, CE2A, and
by the French Ministry of Higher Education and Innovation
(authorization N° 18022) and performed according to European
legislation (Directive 2010/63/EU) on the protection of animals
used for scientific purposes, and complied with the
recommendations of the International Association for the
Study of Pain (IASP).

Chemicals
The selective GPER antagonist G-15 [(3aS*,4R*,9bR*)-4-(6-
bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta[c]
quinoline] was purchased from Tocris Bio-Techne SAS (Noyal-
Châtillon-sur-Seiche, France). Morphine and l-carrageenan
were purchased from Sigma Aldrich (Saint-Quentin-Fallavier,
France). We used the Fmoc strategy to synthesize the peptide
ERa17p (sequence: H2N-PLMIKRSKKNSLALSLT-COOH) and
its Cy5-labeled analogue [sequence: H2N-ERa17p-Pra(Cy5)-
COOH], as previously described (15, 27). Briefly, the Cy5-
labeled peptide was obtained by adding a propargylglycine
March 2021 | Volume 12 | Article 578250
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(Pra) in the C-terminus of ERa17p and then, the Cy5 fluorescent
probe on the propargyl moiety by using the click chemistry
strategy (15). Then, the peptides were purified by reverse phase
HPLC and identified by MALDI-TOF mass spectrometry (15).

All tested molecules were dissolved in saline solution except
for G-15 which was dissolved in saline with 5% Tween80 and 5%
DMSO. Drug solutions were prepared extemporaneously
before use.

Complete Freund’s adjuvant (CFA), which was administered
by periarticular injection, consists of Mycobacterium butyricum
(Ref DF0640-33-7, Difco Laboratories, Detroit, USA) dissolved
in paraffin oil and aqueous saline solution (0.9% NaCl) prior to
an autoclave sterilization for 20 min at 120°C.

Intracerebroventricular and Intrathecal
Injections
Injections were carried out in mice anaesthetized with isoflurane
(1–2%). Intracerebroventricular (i.c.v.) injections were made at
the bregma level with a syringe and a calibrated needle with a
guide so that the needle length was 4 mm (43). The injected
volume was 2 µl per mouse. For intrathecal (i.t.) injections, the
anesthetized mouse was held in one hand by the pelvic girdle and
a 25-gauge × 1-inch needle connected to a 25 µl Hamilton
syringe was inserted into the subarachnoid space between
lumbar vertebrae 5 and 6 until a tail flick was elicited (44). The
syringe was held in position for a few seconds after the injection
of a volume of 2 µl per mouse.

Monoarthritic Model
A persistent inflammatory pain model was produced by
injection, under brief anesthesia (2.5% isoflurane inhalation),
of 5 µl of CFA on either side of the left ankle joint of male mice
(45). Behaviors tests were performed before and 7 days after
CFA injection.

Von Frey Test
Mice were acclimatized to the testing environment before
baseline testing. The experimenter was blinded to the mice
treatments. On the behavior testing day (7 days after
CFA injection), mice were placed individually in Plexiglas
compartments 8 cm (L) × 3.5 cm (W) × 8 cm (D), on an
elevated wire mesh platform to afford access to the ventral surface
of the hindpaws and were allowed to acclimatize for 1 h before
testing. Von Frey filaments ranging from 0.02 to 1.4 g were applied
perpendicularly to the plantar surface of the paw. Paw withdrawal
or licking was considered as a positive response. Fifty percent paw
withdrawal threshold (PWT) in grams was determined with a
modified version of the Dixon up–down method, as previously
described (46).

Carrageenan Model and Edema
Measurement
Paw edema was induced in male mice by an intraplantar (left
hindpaw) subcutaneous injection of 20 µl of 3% l-carrageenan
with a 50 µl Hamilton syringe and a 26-gauge needle (43). Paw
edema was measured before induction of inflammation and the
Frontiers in Endocrinology | www.frontiersin.org 3
effects of the drugs were assessed 4 h after carrageenan injection
with a caliper.

Ex Vivo Fluorescence Imaging
Ex vivo fluorescence imaging was performed with the IVIS
Spectrum system (Perkin Elmer, Waltham, MA, USA) and a Cy5
filter set (excitation wavelength: 640 nm; emission wavelength:
680 nm). The peptide H2N-ERa17p-Pra(Cy5)-COOH (2 mg/kg)
was injected intraperitoneally to female and male mice that were
sacrificed 30 min post-injection. The brain and spinal cord were
then removed to perform ex vivo fluorescence imaging of isolated
organs. All images were acquired and analyzed with Living Image
4.7.2 software (PerkinElmer, Waltham, MA, USA). Experiments
were performed on the IVIA multimodal imaging platform
(Clermont-Ferrand, France).

Experimental Protocol
The design, analysis and reporting of the research were carried
out in accordance with the ARRIVE guidelines (47). Treatments
were administered according to the method of equal blocks, in
order to assess the effect of the different treatments over the same
time interval, thereby avoiding unverifiable and time-variable
environmental influences. All behavioral tests were performed in
a quiet room by the same blinded experimenter. To ensure the
methodological quality of the study, we followed the
recommendations of Rice et al (48). Intraperitoneal (i.p.)
administrations of ERa17p (1.25, 2.5, and 10 mg/kg),
morphine (1 mg/kg), H2N-ERa17p-Pra(Cy5)-COOH (2 mg/kg),
and G-15 (0.3 mg/kg) were performed with a constant volume of
10 ml/kg. To investigate the influence of GPER in the response to
ERa17p, the selective GPER antagonist G-15 was administrated
either i.p. (0.3 mg/kg, 10 ml/kg), i.c.v. (5 µg/mouse in 2 µl), or i.t.
(5 µg/mouse in 2 µl) 20 min before ERa17p. The local anti-
inflammatory effect of the peptide was investigated by an
intraplantar (i.pl.) injection of ERa17p (20 µg in 10 µl).

Statistical Analysis
Results were expressed as mean ± SEM and were recorded with
Prism 7 (GraphPad™ Software Inc., San Diego, CA, USA). Data
were tested for normality (Shapiro-Wilk test) and for equal
variance (Fisher test). Multiple measurements were compared
with two-way ANOVA. For kinetic data, the post hoc
comparisons were performed by the Sidak test (number of
groups = 2) or by the Dunnett test (number of groups > 2).
The Kruskal-Wallis post hoc test was performed to have a mean
comparison of the area under the time-course curves (AUC).
Values of p < 0.05 were considered statistically significant. The
AUC (0–180 min.) of 50% mechanical threshold (individual
values) were calculated by the trapezoidal rule taking in reference
the PWT baseline after CFA (threshold at time T0). The AUC of
individual values is the sum of each area between experimental
times from 0 to 180 min. calculated as: (time T − time before
time T) × [(threshold at time T − threshold at time T0) +
(thresholds obtained at time T0 or at time before time T −
threshold at time T0)/2]. AUC was expressed as mean ± SEM (in
g × min.).
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RESULTS

ERa17p Reduces Hyperalgesia
To explore the action of ERa17p on hyperalgesia, we used the
von Frey test in a complete Freund’s adjuvant (CFA) model
(arthritis model). A decrease in the mechanical paw withdrawal
threshold (PWT) was observed from 0.66 ± 0.05 g to 0.20 ±
0.04 g (n = 42, p < 0.001, t-test) for all mice, 7 days after CFA
injection (Figure 1A). A PWT value of ~0.20 g was recorded
with the vehicle (control, saline solution at 10 ml/kg) throughout
the experiment. At 30 min and at a dose of 1.25 mg/kg i.p., the
peptide induced a transitory anti-hyperalgesic effect. A marked
decrease in hyperalgesia was observed at higher doses, i.e.,
between 2.5 and 10 mg/kg i.p., from 30 to 90 min (Figure 1A).
The values obtained for 60 min were: 0.64 ± 0.10 g for ERa17p at
2.5 mg/kg and 0.60 ± 0.12 g for ERa17p at 10 mg/kg (control:
0.18 ± 0.05 g, p = 0.04, Dunnett post-hoc test). These results were
Frontiers in Endocrinology | www.frontiersin.org 4
confirmed by calculation of the area under the curve (AUC, in
g.min.), where a significant difference was observed between
ERa17p (2.5 and 10 mg/kg) or morphine (1 mg/kg, i.p., used as
positive control) treated mice and vehicle-treated mice. The
AUC values recorded for 2.5, 10 mg/kg ERa17p and morphine
were 74.2 ± 15.3 g.min. (p = 0.006), 64.6 ± 19.8 g.min. (p = 0.046),
and 86.6 ± 33.7 g.min. (p = 0.003), respectively (Kruskal-Wallis
test; AUC vehicle: −0.38 ± 9.95 g.min., Figure 1B).

These results were confirmed in a standard screening test used for
analgesic candidates with acetic acid-induced inflammation. The two
previous most active doses of ERa17p were tested in mice after an
intraperitoneal injection of acetic acid 0.6% i.p. At the doses of 2.5
and 10 mg/kg, a significant decrease in the number of abdominal
writhings was observed (2.86 ± 2.32, p < 0.001 and 8.13 ± 4.62, p =
0.017, respectively; vehicle: 30.63 ± 4.22, Kruskal-Wallis test,
Supplementary Figure 1A). ERa17p at a dose >10 mg/kg failed to
modify spontaneous locomotor activity (Supplementary Figure 1B).
A B

DC

FIGURE 1 | GPER-dependent action of ERa17p in tactile hypersensitivity in a CFA model. The Von Frey test was performed to assess the impact of ERa17p on
CFA-induced mechanical hypersensitivity in inflammatory pain. The 50% paw withdrawal threshold (PWT) was determined with a modified version of the Dixon up–
down method. (A) The anti-hyperalgesic action of ERa17p was determined by measuring dose-dependent effects. The Von Frey test was assessed before injection
of CFA (baseline) and after that of vehicle (saline solution) or ERa17p (1.25, 2.5, and 10 mg/kg, i.p.) 7 days after CFA injection. (C) Involvement of GPER was
determined using ERa17p with or without G-15. Mice were i.p. pre-treated with vehicle (5% DMSO, 5% Tween80 in saline solution, reference) or G-15 (0.3 mg/kg)
15 min before administration of vehicle (saline) or ERa17p (2.5 mg/kg, i.p.). (B, D) Area under the time-course AUC (0–180 min) of PWT variations obtained from
(A, C), respectively. Data are expressed as mean ± SEM (n = 8–10 per group). *p < 0.05, **p < 0.005, ***p < 0.001, when compared to the vehicle group (or G-15+
ERa17p group, as mentioned in D); two-way ANOVA followed by Dunnett post hoc test for time comparison or Kruskal-Wallis test for AUC mean comparison.
March 2021 | Volume 12 | Article 578250

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Mallet et al. GPER-Dependent Anti-Hyperalgesic and Anti-Inflammatory Actions of ERa17p
The Anti-Hyperalgesic Action of ERa17p Is
GPER-Dependent
In the second part of this work, we studied the involvement of
GPER in the anti-hyperalgesic action of ERa17p. The peptide
used at 2.5 mg/kg i.p. was administered to CFA mice 30 min after
an injection of the specific GPER antagonist G-15 (0.3 mg/kg
i.p.) (49). As previously observed, ERa17p significantly increased
PWT at 30 min (ERa17p: 0.47 ± 0.11 g; vehicle: 0.09 ± 0.03 g, p =
0.04, Dunnett post-hoc test), 60 min (ERa17p: 0.46 ± 0.11 g;
vehicle: 0.06 ± 0.01 g, p = 0.02, Dunnett post-hoc test), and
90 min (ERa17p: 0.78 ± 0.11 g; vehicle: 0.08 ± 0.01 g, p < 0.001,
Dunnett post-hoc test). G-15, inactive by itself, abolished the
anti-hyperalgesic action of ERa17p (Figure 1C). These results
were confirmed by AUC values over 180 min (ERa17p: 66.9 ±
9.0 g.min. vs ERa17p + G-15: 7.2 ± 17.2 g.min., p = 0.018 and
AUC vehicle: −3.7 ± 6.7 g.min. vs ERa17p + G15, p < 0.9,
Kruskal-Wallis test), as shown in the Figure 1D.

ERa17p Diffuses Into the Brain and
Spinal Cord
The i.p. injected ERa17p distribution in the CNS was determined
by using a Cy5-labeled version of the peptide [i.e., H2N-ERa17p-
Pra(Cy5)-COOH], which we used in a previous work (15). Ex
vivo fluorescence staining showed an important diffusion of the
Cys-5-labeled peptide in the supra-spinal (Figure 2A) and spinal
(Figure 2B) compartments.

Only the Supraspinal Pool of GPER
Is Involved in the Anti-Hyperalgesic
Action of ERa17p
To determine the site of the central action of ERa17p, two series
of experiments were performed: assessment of its effect 1) after
its central injections and 2) after its systemic injection, following
a central administration of the GPER antagonist G-15.

An intracerebroventricular injection of 1 µg/mouse of the
peptide failed to induce a significant increase of thresholds. In
contrast, a significant enhancement of PWT was observed 15 and
30 min after an i.c.v. injection of 2.5 µg/mouse of ERa17p
Frontiers in Endocrinology | www.frontiersin.org 5
(p = 0.04 and p = 0.01, respectively, Dunnett post-hoc test,
Figure 3A). With 5 µg/mouse, a more robust anti-hyperalgesic
effect was detected from 15 to 90 min, with a maximum at 60 min
(Figure 3A). Assessment of AUC confirmed this dose-dependent
effect: a dose of 1 µg/mouse failed to induce any change in PWT
(AUC ERa17p 1 µg/mouse: 25.38 ± 11.7 g.min.; AUC vehicle:
12.47 ± 7.66 g.min., p > 0.9, Kruskal-Wallis test, Figure 3B).
Significant effects were recorded with 2.5 µg/mouse ERa17p
(AUC: 76.45 ± 17.79 g.min., p = 0.011, Kruskal-Wallis test) and 5
µg/mouse (AUC: 79.49 ± 22.98 g.min., p = 0.012, Kruskal-Wallis
test, Figure 3B), when compared to the vehicle.

To assess the involvement of the supraspinal pool of GPER in
the action of ERa17p, 5 µg/mouse of G-15 were injected i.c.v.,
20 min before a systemic injection of the peptide (2.5 mg/kg, i.p.) or
of the vehicle (10 ml/kg). Except for an isolated peak at 45 min, the
scores obtained in animals treated with ERa17p and pre-treated
with G-15 were not different from those of the vehicle group
throughout the experiment (Figure 3C). PWT AUC values
confirmed the anti-hyperalgesic properties of the peptide (AUC
ERa17p alone: 81.29 ± 8.44 g.min.; AUC vehicle: 7.51 ± 5.35 g.min.,
p > 0.001, Kruskal-Wallis test) and the marked decrease in its effect
by G-15 (Figure 3D), revealing, thereby, that the anti-hyperalgesic
effect of systemic ERa17p involves supraspinal GPER.

The effects of the peptide at the spinal level were extensively
studied with the same strategy (Figure 4). Intrathecally
administered ERa17p at doses of 1, 2.5 and 5 µg/mouse induced
a significant anti-hyperalgesic effect compared to vehicle, only at
the dose of 5 µg/mouse at times 30 min (ERa17p: 0.81 ± 0.08 g;
vehicle: 0.40 ± 0.05 g, p < 0.001, Dunnett post-hoc test), 45 min
(ERa17p: 0.94 ± 0.10 g; vehicle: 0.45 ± 0.05 g, p < 0.001, Dunnett
post-hoc test) and 60 min (ERa17p: 0.87 ± 0.10 g; vehicle: 0.50 ±
0.14 g, p = 0.004, Dunnett post-hoc test) (Figure 4A). This
observation was confirmed by AUC (Figure 4B). The anti-
hyperalgesic effect of 5 µg/mouse of ERa17p (i.t.) was reduced
by G-15 (5 µg) co-administered 20 min before by the same route
(Figures 4C, D). Thus, the anti-hyperalgesic effect of ERa17p
directly administered in the spinal cord is mediated by GPER.

The fact that a drug involves a local target when injected
locally does not mean that it is the case when it is systemically
A

B

FIGURE 2 | CNS distribution of the Cy5-labeled ERa17p peptide. Upper views of brain (A) and spinal cord (B) sampled from three mice 30 min after an i.p.
injection of H2N-ERa17p-Pra(Cy5)-COOH (2 mg/kg).
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administered. We therefore investigated the involvement of
spinal GPER after an intraperitoneal injection of ERa17p.
When intrathecally injected 20 min before a systemic injection
of ERa17p (2.5 mg/kg, i.p.), G-15 (5 µg/mouse) failed to modify
the anti-hyperalgesic action of the peptide (Figure 4E), as
confirmed by AUCs. Indeed, both AUC of ERa17p (40.73 ±
10.0 g.min.) and AUC of ERa17p+G15 (46.55 ± 7.12 g.min.)
were significantly increased compared to AUC of vehicle
(−4.63 ± 7.08 g.min., p = 0.014 and p = 0.001, Kruskal-Wallis
test, respectively) but not statistically different between them p >
0.999, Kruskal-Wallis test (Figure 4F). This result indicates that
the anti-hyperalgesic effect of systemic ERa17p is not mediated
by spinal GPER.

ERa17p Exerts GPER-Dependent
Anti-Inflammatory Effects
The anti-inflammatory action of ERa17p was explored by
measuring its impact on carrageenan-induced edema. Four
hours after an intraplantar (i.pl.) carrageenan injection, the
diameter of the paw significantly increased from 2.10 ±
0.03 cm to 3.24 ± 0.05 cm (n = 43, p < 0.001, t-test; Figure
5A). After a systemic administration of ERa17p (2.5 mg/kg, i.p.),
Frontiers in Endocrinology | www.frontiersin.org 6
the time-course of the ankle diameter showed reduced edema
from 30 min (ERa17p: 2.78 ± 0.9 cm; vehicle: 3.24 ± 0.09 cm, p =
0.03, Dunnett post-hoc test, Figure 5A) to 60 min (ERa17p:
2.61 ± 0.14 cm; vehicle: 3.16 ± 0.11 cm, p = 0.03, Dunnett post-
hoc test). A pre-treatment with G-15 (0.3 mg/kg, i.p.) 15 min
before the injection of ERa17p (2.5 mg/kg, i.p.), abolished the
previously observed anti-inflammatory action of the peptide
(Figure 5A).

In the last part of this work, we investigated a potential local
anti-inflammatory action of ERa17p. The peptide was directly
administered in the paw at a concentration close to the highest
soluble dose (i.e., 20 µg in 10 µl per mouse, i.pl.). We observed a
significant decrease in carrageenan-induced edema (i.e., ankle
diameter) at 15, 30, and 90 min (Figure 5B). The maximum
effect was observed 30 min after the injection (ERa17p: 2.84 ±
0.09 cm; vehicle: 3.39 ± 0.14 cm, p = 0.002, Sidak test, Figure 5B).
DISCUSSION

Several studies that have outlined the involvement of the hepta-
transmembrane estrogen receptor GPER in pain (8, 29–33) have
A B

DC

FIGURE 3 | Involvement of supraspinal GPER in ERa17p action in the CFA model. (A, C) Area under the time-course AUC (0–180 min) of PWT variations from
(B, D), respectively. (B) Time-course effect of an i.c.v. administration of vehicle (saline solution, 2 µl/mice) or ERa17p (1, 2.5 and 5 µg/mice) on mechanical
hypersensitivity in CFA mice model. (D) Involvement of supraspinal GPER in the action of ERa17p with or without G-15 i.c.v. Mice were i.c.v. pre-treated with vehicle
(5% DMSO, 5% Tween80 in saline solution, 2 µl/mice) or G-15 (5 µg/mice) 20 min before administration of vehicle (saline solution, reference) or ERa17p (2.5 mg/kg,
i.p.). Data are expressed as mean ± SEM (n = 8–9 per group). *p < 0.05, **p < 0.01, ***p < 0.001 compared with the vehicle group; two-way ANOVA followed by
Dunnett post hoc test for time comparison or Kruskal-Wallis test for AUC mean comparison.
March 2021 | Volume 12 | Article 578250

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Mallet et al. GPER-Dependent Anti-Hyperalgesic and Anti-Inflammatory Actions of ERa17p
prompted our interest in studying the influence of the GPER
inverse agonist ERa17p (15) on hyperalgesia. We were all the
more interested in this approach that a number of ER ligands
have been shown to be involved in nociceptive responses
including those responses resulting from rheumatoid arthritis
(50–52).

In the present study, we have shown that CFA-induced
hypersensitivity was markedly reduced by one i.p. injection of
Frontiers in Endocrinology | www.frontiersin.org 7
ERa17p at a concentration of 2.5 mg/kg, which is the
concentration required to achieve maximum effect. The results
obtained with 2.5 and 10 mg/kg ERa17p are similar , suggesting
a saturation of the signaling cascade or the formation of
pharmacologically inert peptide aggregates. Indeed, it has been
shown that ERa17p was prone to form amyloid-like fibrils and
aggregates in vitro (53, 28). Although internalized in vacuoles,
these fibrils and aggregates are devoid of cytotoxicity (28).
A B

D

E F

C

FIGURE 4 | Spinal GPER is not involved in the action of ERa17p in the CFA model. (A) Time-course effect of the intrathecal administration of vehicle (saline solution,
reference, 2 µl), ERa17p (1, 2.5 and 5 µg/mice) on mechanical hypersensitivity in CFA mice. (C) Evaluation of the effect of intrathecally administered ERa17p (5 µg/
mice) or vehicle 20 min after G-15 (5 µg/mice, i.t.) or vehicle administration. (E) The involvement of spinal GPER in the mechanism of action of systemic ERa17p is
investigated by testing ERa17p i.p. with or without G-15 i.t. Mice were i.t. pre-treated with vehicle (saline solution, 2 µl/mice, reference) or G-15 (5 µg/mice) 20 min
before an administration of vehicle (saline solution, reference) or ERa17p (2.5 mg/kg, i.p.). (B, D, F) Area under the time-course (AUC, 0–180 min) of PWT variations
from (A, C, E), respectively. Data are expressed as mean ± SEM (n = 8–9 per group). *p < 0.05, **p < 0.01, ***p < 0.001, compared with the vehicle group; two-way
ANOVA followed by Dunnett post hoc test for time comparison or Kruskal-Wallis test for AUC mean comparison.
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We then sought to identify the receptor by which ERa17p
could exert supraspinal analgesia. GPER is expressed all along
pain pathways (4, 6, 7, 54) and is involved in pain modulation
(5). Accordingly, G-1, a specific GPER agonist belonging to the
family of the cyclopentyl[c]quinolines, induces nociception when
systemically (33, 55) or locally (8, 9, 29) administered. Likewise,
tamoxifen and fulvestrant, two GPER agonists, induce painful
Frontiers in Endocrinology | www.frontiersin.org 8
symptoms (56–60). Fulvestrant induces painful disorders such as
headache and joint and musculoskeletal pain (61, 62).

Since we have previously demonstrated that the anti-
proliferative activity of ERa17p was mediated through the
GPER (15), we have hypothesized that this membrane receptor
could constitute the keystone of the anti-hyperalgesic action of the
peptide. Accordingly, we have observed that the anti-hyperalgesic
action of ERa17p was abrogated by the GPER antagonist G-15,
highlighting a GPER-dependent mechanism. As reported by
others, G-15 fails to influence by itself pain threshold (PWT)
when systemically administered in inflammatory and neuropathic
models (63), or when intrathecally injected in a neuropathic
model (64). The absence of G-15-mediated analgesic effects,
whereas the GPER inverse agonist ERa17p is active, reinforces
the concept of an intrinsic/constitutive physiological pro-
nociceptive profile of GPER.

We then assessed the ability of ERa17p to cross the blood
brain barrier. Using a Cy5-labeled (fluorescent) version of the
peptide, we observed a strong fluorescence signal at the spinal
cord and in the brain. Since cyanines, per se, do not diffuse in the
CNS (65, 66), we assume that the brain and spinal cord staining
detected with H2N-ERa17p-Pra(Cy5)-COOH would be
exclusively due to the peptide, which consequently is able to
cross the blood-brain barrier. The mechanism by which ERa17p
reaches the CNS will be subject to future investigations.

Analgesic activity was observed following direct injection of
the peptide into the brain. Although this suggests that the brain
could be the site of action of the peptide, it does not necessarily
imply a direct involvement of a supraspinal GPER population.
Thus, we administered ERa17p intraperitoneally and G-15 via
the intracerebroventricular route. In these experimental
conditions, G-15 did not affect pain threshold on its own but
decreased ERa17p-induced analgesia, thus definitively
confirming the involvement of a supraspinal pool of GPER.

An anti-hyperalgesic effect GPER-dependent was also
observed when the peptide was injected intrathecally. Opinion
differs greatly on the involvement of the spinal cord pool of
GPER in nociception, with some authors providing evidence of
the nociceptive effects of G-1 when intrathecally injected (9) and
others failing to detect any effect (32, 64, 67). Despite its ability to
diffuse into the spinal cord, analgesic effects resulting from a
systemic administration of ERa17p were not abolished by an
intrathecal injection of G-15. Thus, a spinal action of the
systemically administered peptide in the spinal cord seems
unlikely. This apparent discrepancy could be due to the fact
that the spinal concentration of the peptide after its systemic
administration of the would be peptide, too small to induce
analgesic effect.

Finally, we observed that ERa17p possessed an anti-
inflammatory effect at the dose of 2.5 mg/kg. This effect being
fully abolished by G-15, a GPER-induced pro-inflammatory
constitutive activity is likely (8, 29–33). Some studies show no
evidence of the beneficial effects of pure GPER agonists on
inflammation (63, 68, 69) while others have concluded to their
anti-inflammatory action (34, 38, 39). Although further
investigations are required the concomitant anti-hyperalgesic
A

B

FIGURE 5 | GPER involvement in the anti-inflammatory action of ERa17p in
the carrageenan model. (A) Ankle diameter of mice was measured before
(baseline) and 4 h after carrageenan injection. The involvement of GPER in the
mechanism of action of ERa17p was investigated with or without G-15. Mice
were i.p. pretreated with vehicle (5% DMSO, 5% Tween80 in saline solution,
10 ml/kg, reference) or G-15 (0.3 mg/kg), 20 min before the administration of
vehicle (saline solution, reference) or ERa17p (2.5 mg/kg, 10 ml/kg, i.p.).
(B) Effect of an intra-plantar (i.pl.) injection of vehicle (saline solution, 10 µl,
reference) or of ERa17p (20 µg) on edema measured by ankle diameter (in
cm) induced by carrageenan. Data are expressed as mean ± SEM (n = 10–12
per group). Two-way ANOVA followed by Dunnett post hoc test (A) or Sidak
post hoc test (B). *p < 0.05, **p < 0.01 compared with the vehicle group.
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and anti-inflammatory effects displayed by ERa17p strongly
suggest that this peptide could be of clinical interest in the
management of inflammatory pain.
CONCLUSION

By using mouse models of mechanical hypersensitivity and
inflammation, we have shown that the GPER inverse agonist
and antitumor compound ERa17p was active in vivo on pain
and inflammation. These effects were observed at the dose of
2.5 mg/kg and upward, i.e., at doses for which antitumor activity is
also observed. These beneficial effects were abolished by the
specific GPER antagonist G-15, leading to the conclusion that is
involved. We have also evidenced that the anti-hyperalgesic action
of ERa17p occurred at the supraspinal level. The mechanism by
which the peptide cross the blood brain barrier remains to be
determined. Finally, our results suggest that peptides resulting
from the proteasome-dependent ERa turnover could play a
pivotal role in some physiological and pathological processes
through the GPER membrane protein (70).
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