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Abstract: Resveratrol (RES) has a low bioavailability. This limitation was addressed in an earlier
review and several recommendations were offered. A literature search was conducted in order to
determine the extent of the research that was conducted in line with these recommendations, along
with new developments in this field. Most of the identified studies were pre-clinical and confirmed
the heightened activity of RES analogues compared to their parent compound. Although this has
provided additional scientific kudos for these compounds and has strengthened their potential to
be developed into phytopharmaceutical products, clinical trials designed to confirm this increased
activity remain lacking and are warranted.
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1. Introduction

The health benefits of resveratrol (RES) have been widely published. To this end,
244 clinical trials had been completed with a further 27 ongoing at the end of 2019. Clinical
data from these studies were reviewed by Singh et al. [1], who referred to the rapid
metabolism and poor bioavailability of RES which limits its therapeutic use. The low RES
bioavailability and potential ways in which this may be overcome was made the focus of
a previous review by the current authors [2]. Several recommendations were made, one
being the use of analogues which have increased bioavailability.

Since 2017, a number of pre-clinical studies focused on RES analogues have been
published. Methoxylated analogues (most noteworthy, tetramethoxystilbene) showed
anticancer activity by reducing MCF-7 breast cancer cell viability and inducing cell cycle
arrest in vitro. These effects were superior to the parent compound, RES [3]. Another RES
analogue, isorhapontigenin (ISO), was reported to inhibit human bladder cancer stem cell-
like phenotypes in vitro [4]. ISO also protected against doxorubicin-induced cardiotoxicity
in an animal model [5]. Resveratrol trimethyl ether (trans-3,5,4′-trimethoxystilbene, RTE)
was shown to offer protection against atherosclerosis by suppressing plaque formation in
the aortas of apolipoprotein E deficient mice by reducing macrophages and cholesterol
levels [6].

Efficacious vaccines and treatments for COVID-19 are currently a research priority.
Publications of RES for this role have emerged. Ter Ellen et al. [7] demonstrated that
RES and its analogue, pterostilbene, exert antiviral effects against SARS-CoV-2 in a dose-
dependent manner, possibly by inhibiting the viral replication cycle in vitro. RES was
also shown to play a crucial role in the major pathophysiology pathways involved in
SARS-CoV-2 infections by regulating the renin-angiotensin system and expression of
angiotensin-converting enzyme 2, immune system modulation, and downregulation of
pro-inflammatory cytokines [8]. These may therefore be promising antiviral agents against
SARS-CoV-2 and should be investigated further in clinical trials. A novel administration of
an RES and zinc combination using nano-carrier delivery systems, or a pterostilbene-zinc
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combination without a nano-carrier system, have both been suggested as possible mono
and adjunct therapies for mild COVID-19 [9].

The purpose of this review is to update current information and to highlight the ad-
vances in identifying RES lead compounds that have the potential to be developed further.

2. Results and Discussion
2.1. Synergism of RES with Other Phytochemicals

Although the authors of the previous review recommended that further research be
conducted on the co-supplementation of RES with piperine, there was no new information
on this combination. Conversely, results of the combination of piperine with oxyresveratol
(an RES analogue) were available.

The biflavone ginkgetin, isolated from leaves of Ginkgo biloba, has been reported to con-
tain a number of pharmacological activities including inhibition of different cancers [10–13].
When this compound was combined with RES, a synergistic effect was noted which re-
sulted in the suppression of the angiogenic properties of the vascular endothelial growth
factor (VEGF) [14]. This anti-angiogenesis activity was evident in in vitro cell proliferation,
cell migration, and tube formation assays, as well as in in vivo studies in colon cancer
xenograft mice models [14]. The vascular density of these tumors reportedly decreased by
~38% in mice receiving the combination treatment. Regarding the inflammatory response,
the combination significantly reduced TNF-α and IL-6 cytokines by 85% and 66%, respec-
tively. This synergistic activity was ascribed to the two compounds binding to different
sites on VEGF [14].

2.2. Prodrugs

A group of researchers investigated the efficacy of 3,5,4′-tri-O-acetylresveratrol (TARES)
in an animal model of acute respiratory distress syndrome [15]. TARES pre-treatment
inhibited pulmonary inflammation and oxidative stress in seawater-induced lung injury
in vivo [15]. TARES may prove to be an effective prodrug, capable of increasing the bio-
efficacy of RES by elevating plasma levels of free trans-resveratrol. Further investigation,
such as pre-clinical safety evaluation is required to establish whether or not TARES could
be used in a clinical setting.

The alkylated derivatives of RES are prodrugs that have also shown promise for
potential clinical use. These compounds were evaluated for toxicity as well as for their neu-
roprotective ability in a zebrafish in vitro model [16]. The most promising piceid acylated
prodrug, [resveratrol-3-O-(60-O-octanoyl)-b-D-glucopyranoside], was then subjected to
further investigation in a pre-clinical model of Huntington’s disease (HD) to determine
its efficacy in treating neurodegeneration [16]. In this experiment, acetylcholinesterase
(AChE) activity of zebrafish embryos that had been challenged with pentylentetrazole
(a competitive GABA antagonist), before and after treatment with the prodrugs, was de-
termined. Recovery of AChE activity after treatment with the parent compound RES
was 92%, whereas 100% of AChE activity was noted when treated with the prodrug [16].
In a preclinical model of HD, both the prodrug and RES improved locomotor activity
and prevented weight loss in mice to a similar degree [16]. The therapeutic potential
of resveratrol-3-O-(60-O-octanoyl)-b-D-glucopyranoside appears promising. However,
further clinical investigation is required.

2.3. Alternative Routes of Administration

Promising progress has been made in alternative routes of administration that have
increased the bioavailability of orally administrated resveratrol. These are discussed below.

2.3.1. Inhalation

Dipalmitoylphosphatidylcholine-coated lipid nanoparticles (DPPC-LNs) have been
proposed as a potential viable delivery system for site-specific treatment of pulmonary
arterial hypertension. Intratracheal administration of RES-loaded DPPC-LNs exhibited
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an 80% cumulative drug release over a 48-hour period [17]. This is indicative of a longer
pulmonary retention of RES, with a slower entry into the systemic blood circulation com-
pared to an intravenously dosed RES solution [17]. Wang et al. [18] demonstrated how the
water solubility of RES may be increased 66-fold by aerosolization with a sulfobutylether-
β-cyclodextrin (CD-RES) complex loaded onto polymeric nanoparticles [18]. In the in vitro
experiments, CD-RES nanoparticles demonstrated improved cellular uptake, cytotoxicity,
and apoptosis compared to RES (while antioxidant activity was preserved) [18]. This led to
the proposal that CD-RES nanoparticles be used as a potential inhalable delivery system for
the treatment of non-small-cell-lung-cancer [18]. Once again, clinical studies are required
to validate the efficacy of this approach.

2.3.2. Transdermal

Topical application of RES is not new. However, in recent years many efforts have
been made to enhance absorption, aquas stability and UV-dependent stability for the
treatment of various skin conditions. Different nanocarriers for topical application hold
great potential to enhance RES’s aquas solubility, providing photoprotection and blocking
the conversion of the active trans-isomer to an inactive cis-isomer [19,20]. Microemulsions
have been found to facilitate superior skin penetration of trans-RES compared to aquas
solutions. Additionally, enhanced transdermal bioavailability has been achieved when
applying nanostructured emulsions of isopropyl myristate and caproyl 90 as oil phases
and the dendrimer-resveratrol complex [19–21]. Clinical studies are needed to investigate
this further.

2.3.3. Buccal

Resveratrol-loaded mucoadhesive formulations have been proposed for the preven-
tion and treatment of inflammatory conditions of the oral cavity [22]. RES-loaded mucoad-
hesive tablets were reported to exert a local effect, rather than a systemic one, in a porcine
model which was deemed more desirable for local inflammatory conditions such as oral
mucositis, lichen planus, erythema multiforme, nicotinic stomatitis, and recurrent aphthous
stomatitis [22]. Mucoadhesive cyclodextrin and xanthan gum-based buccal formulations
have also been investigated as potential RES delivery systems. RES release was found to
be delayed and controlled by diffusion when administered by this route [23]. This buccal
delivery system was found promising and was therefore recommended to improve the
effectiveness of treatment of various oral diseases (particularly periodontitis) [23].

2.3.4. Nose-to-Brain

Chitosan-coated lipid microparticles loaded with RES showed promise as a direct
nose-to-brain delivery system [24]. In an in vivo rat model, nasal administration of the
microparticulate carrier system resulted in a marked increase in cerebrospinal fluid bioavail-
ability with no systemic distribution [24]. This direct and specific nose-to-brain delivery
system has great potential for neurotherapeutic applications which should be pursued in
clinical studies.

2.4. Nanotechnology

Various nano-based delivery systems have been investigated to improve the bioavail-
ability of encapsulated pharmaceuticals and nutraceuticals, as illustrated in Figure 1 [25,26].
Nanotechnology has been recognized for its promising and superior delivery of natural
products for chemoprevention and chemotherapy compared to traditional formulations [2].
The focus on nanotechnology and its various applications in RES delivery systems for
potential therapeutic use has expanded since 2017 [27–31]. Lagoa et al. [32] summarized
advances in phytochemical delivery systems in an effort to improve anticancer activity.
The ability of glyceryl monooleate liquid crystalline nanoparticles to act as a delivery
system for RES in urethane-induced lung cancer was determined in mice [33]. Intravenous
administration of the loaded nanoparticles resulted in a reduction of tumor mass and
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malignant surface lesions, the activation of caspase-3, and the inhibition of angiogenesis
with greater efficacy than the free drug [33]. Furthermore, the encapsulated formulations
improved survival rates and liver and renal safety assessments [33].
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Zein nanoparticles have been proposed as potentially safe and effective carrier sys-
tems to improve the oral bioavailability of RES [34,35]. RES-loaded zein nanoparticles
demonstrated low cytotoxicity in human colorectal Caco-2 and HT29-MTX cell lines, with
some additional capability to shield RES from metabolism [34].

Nanotechnology holds the key to organ targeted therapeutics. Brain targeting was
demonstrated by Katekar et al. [36] in an in vivo rat study where trans-resveratrol-loaded
mixed micelles were administered intravenously. Although organ targeted therapeutics
is regarded as a major advancement, the boundaries have been pushed further to or-
ganelle targeted therapy. Following systemic administration of RES-loaded dual-modified
novel biometric nanosystems, compounds cross the blood-brain barrier and target neuron
cells, specifically by concentrating in the mitochondria [37]. These intravenously admin-
istered, neuronal mitochondria-targeted dual-modified novel biomimetic nanosystems
may be potential therapeutic candidates for reactive oxygen species-induced mitochon-
drial dysfunction in Alzheimer’s disease [37]. Organelle targeted nanotherapeutics appear
promising and should be studied further.

A review of the potential adverse effects of RES, stresses the need for studies that
determine the long-term and adverse effects of RES in humans [38]. Nanotechnology
carrier delivery systems are expected to lead to a reduction in the potentially harmful
effects of high doses of RES by enhancing its bioavailability, stability, tolerability, safety,
and efficacy in humans [38]. For this reason, further research is recommended.

2.5. Metabolites

Due to its rapid metabolism, there has been uncertainty about whether or not RES
effects are due to its parent compound or to its active metabolites, which include RES-
monosulfate (RES-MS) [39]. Yang et al. determined the metabolic profile of RES in two
human bladder cancer (HBC) cell lines, T24 and EJ [29]. Although the T24 cells were more
sensitive to RES, both cell lines produced the same metabolite, RES-MS and RES-associated
metabolic enzyme, SULT1A1 upregulation was noted [39]. RES showed greater anti-tumor
effects than RES-MS and produced a better safety profile in vitro [39]. Although RES was
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found to be more active than RES-MS in HBC cell lines, studies in other cell lines are
recommended.

The intestinal pharmacokinetics of RES and its metabolites, as well as their effect
on gut barrier and microbiota was assessed in a CD-1 mouse model [40]. Mice were
fasted for 16 h (with access to water ad libitum), after which 50 mg/kg of RES was
administered orally. Mice were sacrificed at 0, 0.5, 1, 2, 3, 4, 6, 8, 12, and 24 h after RES
ingestion. Then, the gastrointestinal contents were collected and separated into stomach,
duodenum, jejunum, ileum, cecum, and colon, and were analysed quantitatively for RES
and RES metabolites. Additionally, faeces were collected prior to and at 30 min intervals
after RES ingestion. High concentrations of RES and its metabolites were present in the
gastrointestinal tract. Although RES and its sulfation metabolites were detected in the
intestines and faeces, glucuronidated metabolites were confined to the small intestine [40].
Resveratrol-3-O-sulfate was found to better regulate gut microbial growth and provide
superior gut barrier function than RES [40]. This research has provided significant insight
into the intestinal metabolism of RES. Further comparative studies to ascertain whether or
not RES metabolites are more beneficial than RES would be of value.

2.6. Dose-Manipulation

Dose-escalation studies prior to 2018 demonstrated poor results with respect to
bioavailability enhancement, with RES displaying linear pharmacokinetics, even at high
dosages [2]. No articles matched the set search criteria, implying that no dose-escalation
studies have been conducted since the first review. This may be attributed to inter-
individual genomic variations in metabolism [41]. In addition, the focus has mainly
been on nanotechnology delivery systems, which have indicated more promising re-
sults with respect to bioavailability enhancement, safety, efficacy, and RES’s targeted
therapeutic potential.

2.7. Naturally Occurring Resveratrol Analogues

Various RES analogues, all of which have a more favourable pharmacokinetic pro-
file than RES, have been investigated. These include resveratrol trimethyl ether (trans-
3,5,4′-trimethoxystilbene, RTE), pterostilbene (trans-3,5-dimethoxy-4′-hydroxystilbene,
PTS), oxyresveratrol (trans-3,5,2′,4′-tetrahydroxystilbene, OXY), isorhapontigenin (trans-
3,5,4′trihydroxy-3′-methoxystilbene, ISO), trans-4-4′-dihydrostilbene (DHS), and, more
recently, (-)-hopeaphenol and its (dihydro)benzofuran dimers.

Although OXY possesses a better pharmacokinetic profile compared to RES, it is
unstable in an aqueous solution and has poor bioavailability. This limitation was addressed
by increasing OXY solubility via encapsulation with cyclodextrins [42]. Unfortunately,
the release was too rapid, which is a well-known characteristic of cyclodextrins [43]. In
an attempt to increase solubility and modulate drug release, OXY was complexed with
cycodextrin-based nanosponges [44]. Although the objectives of this strategy were not
achieved, encapsulation afforded protection of OXY and resulted in an increase in bioac-
tivity, specifically in anticancer activity [44]. To further enhance its pharmacokinetics,
Junsaeng et al. [45] combined OXY with piperine. This complex was administered either
intravenously or via oral gavage to male Wistar rats, resulting in a higher OXY plasma con-
centration as well as a 2-fold increase in oral bioavailability [45]. Furthermore, intravenous
administration of the combination resulted in a reduction in OXY glucuronidation as well
as an increase in brain tissue concentrations.

Yeo et al. [46] compared the pharmacokinetic profile of ISO to RES, and reported
that ISO was approximately 50% more orally bioavailable than RES. Unfortunately, the
concentrations of ISO and RES used in these studies were dissimilar. Dai et al. [47] used
similar doses of OXY and RES (90 µmol/kg intravenous and 200 µmol/kg orally), and eight
additional daily repeated oral doses (100 µmol/kg) in Sprague-Dawley rats. Compared to
RES, ISO’s more favourable pharmacokinetic characteristics, long systemic residence, and
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unaltered exposure after repeated oral dosing was confirmed [47], indicating that ISO is
the preferred candidate for drug development and future clinical studies.

(-)-Hopeaphenol, a dihydobenzofuran based resveratrol tetramer, has antibacterial
activity [48]. However, due to the complex core structure of this compound (i.e., multiple
fused rings and various stereocenters) synthetic synthesis of the compound is challenging.
Sundin et al. [49] investigated the inhibitory effects of natural (dihydro)benzofuran RES
dimers of T3SS that target Yersinia pseudotuberculosis and Pseudomonas aeruginosa and
compared it to (-)-hopeaphenol. The dimers were found to have superior activity compared
to the parent compound and were thus recommended as leads for drug discovery and
potential clinical development.

3. Materials and Methods

A literature search was conducted to extract all articles published after 2017, pertain-
ing to the aspects addressed in a previous review. The databases search included PubMed,
Scopus, Science Direct and Google Scholar. Specific keywords included: ‘resveratrol and
clinical trials’ and ‘piperine’; ‘3,5,4′tri-O-acetylresveratrol (TARES)’; ‘routes of administra-
tion’; ‘nanotechnology’; ‘metabolites’; ‘red grape cells (RGC)’; ‘dose-escalation’; ‘analogues’;
‘Resveratrol trimethyl ether’; ‘Pterostilbene’; ‘Oxyresveratrol’; ‘Isorhapontigenin’; ‘Trans-4-
4′-dihydrostilbene’; and ‘resveratrol and synergism’.

4. Conclusions

This updated brief review on advances in enhancing the bioavailability of resveratrol
showed that RES has continued to demonstrate promising activity, either alone or in
combination with other agents, across various therapeutic areas in pre-clinical studies
including in cancer, cardiac, lung injury, SARS-CoV-2, and neurodegeneration models.
However, clinical efficacy and safety data (as well as dose escalation studies) are still
lacking. Although the RES parent compound appears more pharmacologically active than
its metabolites, novel approaches to RES administration have increased its suboptimal
bioavailability. In addition, various exciting nanotechnology applications that provide
targeted RES delivery mechanisms, including to cellular organelles, appear promising. RES
analogues may have improved bioavailability, and should be explored as alternatives to
RES. Importantly, the need for clinical trials remains paramount in order to validate the
clinical efficacy and safety of RES, its metabolites, and various analogues.
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