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Abstract

Molecular and cell biology have revolutionized not only diagnosis, therapy and prevention of human diseases but also greatly contributed
to the understanding of their pathogenesis. Based on modern molecular and biochemical methods it is possible to identify on the one
hand point mutations and single nucleotide polymorphisms. On the other hand, using high throughput array technologies, it is possible
to analyse thousands of genes or gene products simultaneously, resulting in an individual gene or gene expression profile (signature).
These data increasingly allow to define the individual risk for a given disease and to predict the individual prognosis of a disease as well
as the efficacy of therapeutic strategies (individualized medicine). In the following sections some of the recent advances of predictive
medicine and their clinical relevance will be addressed.
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Molecular analyses

The basic aspects of molecular and cell biology are not only inte-
gral part of biomedical research but are increasingly becoming
also relevant for patient care. The genetic material of all living
organisms is made up of DNA that in its entirety makes up the
individual’s genome. Genomics aim at the unravelling of the
complete genetic information of an individual’s genome [1]. 
In the context of the human genome organization project the
complete sequence of the human genome was established
almost 10 years ago [2, 3].

In order to utilize the sequence information from the human
genome organization project for research as well as for clinical
applications and to define the function(s) of newly identified genes,
strategies were developed to globally analyse genomic DNA
sequences as well as their cell-, tissue- or organ-specific expres-
sion profile that are collectively termed ‘functional genomics’.

An important instrument of functional genomics are array
analyses which are based on the complementary base-pairing of
single-stranded DNA or RNA (genes) to form a double-stranded
hybrid (hybridization). This principle has been successfully utilized
for several decades for the analysis and characterization of DNA
(Southern Blot) und RNA (Northern Blot). Different from these pri-
marily research tools which allow the simultaneous analysis of a
limited number of genes only, the more recently developed
chip/array technologies now make the simultaneous analysis of
large numbers of genes possible.

Using chips, also termed ‘microarrays’ with a surface of in
general about 0.5 cm2, thousands or ten thousands of single-
stranded DNA species, reverse transcribed RNA or oligonu-
cleotides of known sequence can be placed in a highly ordered
pattern. These array analyses provide a global gene or gene
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expression profile (signature) and allow identifying and character-
izing complex genomic polymorphisms.

Mutations – polymorphisms – HapMap

Mutations

Mutations are alterations of DNA or RNA sequences, e.g. of human
genes. Apart from deletions, insertions, loss of heterozygosity and
other genetic alterations point mutations are of major biological
and clinical importance. Apart from the start codon (ATG) and three
stop codons (TAA/TAG/TGA) a defined base triplet codes for an
amino acid (genetic code), e.g. AAA codes for lysine. At the same
time, a given amino acid can be encoded by two or more base
triplets, e.g. lysine is encoded by AAA and AAG (degeneracy of the
genetic code). It follows from this that a mutation does not neces-
sarily result in an amino acid substitution (silent mutations).
Mutations resulting in an amino acid substitution can have differ-
ent consequences: conservative mutations result in the replace-
ment of an amino acid by a similar amino acid, e.g. the mutation
GCC to GGC results in the replacement of alanine by glycine.
Missense mutations, by comparison, result in a biologically signif-
icant amino acid substitution, e.g. the mutation GCC to cholangio-
cellular carcinoma (CCC) results in the replacement of alanine by
proline that is frequently associated with a change of the conforma-
tion of the protein, resulting in functional consequences. The most
severe mutations are non-sense mutations, i.e. the replacement of
an amino acid by a stop codon. This results in the termination of
transcription and a C-terminal truncation of the protein that is gen-
erally associated with a loss of function. Mutations are frequent but
are usually recognized and corrected by the cellular DNA repair
system. If the repair system is not functional, mutations may be
fixed and then cause severe diseases, including malignancies.

Mutations and diseases

Mutational analyses have in recent years increasingly become part
of the clinical patient management, especially, for patients with

malignant diseases. In colorectal cancer (CRC) tissues, for exam-
ple, genetic markers have been identified that allow to predict the
prognosis of the individual patient as well as the response to a 5-
fluorouracil based therapy [4–6] Also for irinotecan, another
chemotherapeutic agent used to treat patients with advanced CRC,
a molecular marker was identified that predicts the response to
therapy: only patients with a microsatellite instability in the tumour
that results in a DNA repair defect benefit from this treatment [7].
Alternatively, the expression level of topoisomerase in the individ-
ual patient’s CRC allows selecting patients who may benefit from
irinotecan [8].

In recent years, the ‘targeted therapy’ of malignant diseases
with monoclonal antibodies and low molecular weight tyrosine
kinase inhibitors (TKI, nibs) alone or in combination with conven-
tional chemotherapeutic strategies resulted for several tumour
entities in a significantly improved overall or recurrence-free
patient survival. For patients with metastasized CRC the mono-
clonal antibodies bevacizumab, cetuximab and panitumumab have
already become part of the standard treatment in clinical practice
[9, 10]. In this context it was recently shown that only patients
with wild-type KRAS or wild-type BRAF tumours benefit from
cetuximab or panitumumab [11–15]. Therefore, by determining
the KRAS status before therapy allows predicting whether the
patient will benefit from cetuximab (Fig. 1). For patients with a
mutated KRAS or BRAF gene this mab therapy will, therefore, not
be recommended, saving costs and not unnecessarily exposing
patients to potential adverse events.

Another molecular marker was identified in patients with
non-small lung cancer: a mutation of the epidermal growth
factor receptor gene predicts a response to treatment with the
TKI gefitinib [16]. Further, patients with a human epidermal
growth factor receptor-2 (HER2)� metastasized gastric can-
cer, found in about 20% of the patients with this malignancy,
benefit from treatment with the mab trastuzumab [17, 18],
similar to patients with HER2� breast cancer. These examples
make it likely that through the molecular characterization of
tumours, it will increasingly be possible to identify subgroups
of patients for whom the efficacy of a given drug can be pre-
dicted (individualized medicine). Studies addressing these
predictive aspects are presently under way for many human
tumours [19, 20].

Fig. 1 Prognostic (patient survival) and predictive
relevance (therapeutic efficacy of cetuximab) of
the KRAS mutation in colorectal carcinoma [14].
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Polymorphisms

A single nucleotide polymorphism (SNP) is a mutation/ base sub-
stitution in a defined locus of the human genome that occurs in
the population at a frequency of �1%. A practical example of sig-
nificant epidemiological and clinical interest is the interleukin (IL)-
28B gene that codes for interferon �. For this gene 3 variants/
genotypes have been identified (haplotypes for alleles 1 and 2):
T/T, C/C and T/C. The frequency of these genotypes in the general
population depends among others from the individual’s ethnic
background: T/T is most frequent in Africans (60–80%) while in
Asians genotype C/C predominates (about 90%).

Polymorphisms and diseases or disease 
predispositions

Staying with the example of the polymorphisms of the IL-28B
gene it was found that it has a major impact in patients with a
hepatitis C virus (HCV) infection. Patients with the IL-28B geno-
type C/C eliminate the HCV infection spontaneously or during
antiviral therapy much more frequently than patients with geno-
type T/T. Patients with genotype T/C have an intermediary fre-
quency of spontaneous elimination or response to therapy
[21–24]. In another study it was shown that a specific polymor-
phism resulting in a inosine triphosphatase deficiency protects
from ribavirin induced haemolysis that presents a frequent prob-
lem in patients with chronic hepatitis C undergoing antiviral
treatment [25].

HapMap project

In the context of the international HapMap consortium there is a
genome-wide search for polymorphisms of four ethnically differ-
ent populations and their association with human diseases
[26–29]. Through these genome-wide association [3] studies
more than 150 gene loci have been identified that are associated
with more than 60 frequent human traits, such as hair colour, eye
colour and height or with the individual’s disease-specific risk 
(Fig. 2) [28, 29]. GWA studies revealed gene loci that, for exam-
ple, predict the individual’s risk to develop coronary heart disease
[30, 31], restless legs syndrome [32], sporadic amyotrophic 
lateral sclerosis [33] or multiple sclerosis [34]. Further, a 
polymorphism in the apolipoprotein C3 gene has recently been
identified that is associated with non-alcoholic steatohepatitis and
insulin resistance [35]. For hepatocellular carcinoma (HCC) a
polymorphism in the epidermal growth factor gene was identified
(genotype G/G) that is associated with a 4-fold increased risk in
the development of an HCC [36]. Also with respect to the individ-
ual’s breast cancer risk, several gene loci have been identified by
GWA studies [28].

GWA studies, therefore, allow an increasingly better under-
standing of the pathogenesis of human diseases that potentially
translates into improved diagnosis, therapy and prevention. In
addition, the identification of defined polymorphisms may con-
tribute to assess the individual disease-specific risk. However, the
contribution of genetic polymorphisms to the risk assessment for
a given disease must, for each disease entity, be carefully weighed
against established clinical parameters. In this context, a recently

Fig. 2 HapMap for chromosomes 13, 14 and 15
(modified from [28]).
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published study found an only marginal contribution of genetic
data to the assessment of the individual’s risk to develop breast
cancer as compared to the clinically established Gail model [37].
Thus, there are also reservations regarding the clinical relevance
of polymorphisms to predict different human traits or disease
risks [38, 39].

Signature analyses – omics

With the determination of the complete sequence of the human
genome [2, 3], the identification and characterization of human
genes and the regulation of gene expression became of para-
mount interest. For these projects methods were developed that
allow the high-throughput analysis of the human genome
(genomics), messenger RNAs (transcriptomics), proteins (pro-
teomics) or metabolites (metabolomics) in cells, tissues or organs
(omics). Since the start of the human metabolom project in 2005
more than 8000 metabolites have been identified/ characterized
and deposited in a data bank that is freely accessible. Since the
function of a given protein largely depends on its secondary and
tertiary structure (folding) structural genomics aim at the defini-
tion of the complete folding inventory of a newly identified protein
in order to define its potential functions. These methodologies
increasingly allow an insight into cellular pathways and biological
networks that are collectively termed ‘systems biology’ [1]. This
approach should allow to further optimize the diagnosis, therapy
and prevention of human diseases and to contribute to the predic-
tion of the individual’s prognosis and response to therapy [40].

The array technologies allow to simultaneously analyse tens of
thousands of genes and their expression at the mRNA and/or pro-
tein level. It is thus possible to identify an individual gene or gene
expression signature in malignant tumours or tumour-associated
cells or tissues (microenvironment) that permits to predict the
individual patient’s prognosis and/or the response to a specific
drug. In addition, pharmacogenetic analyses based on the individ-
ual’s genomic DNA (pharmacogenetics) increasingly allow to pre-
dict the efficacy as well as potential side effects of drugs (individ-
ualized pharmacotherapy) [41].

In the following text, the contribution of signature analyses to
the understanding of the pathogenesis, the prediction of the natu-
ral course and the clinical management of patients will be illus-
trated for selected clinical examples.

Lymphoma

One of the very first clinical applications of the DNA chip technol-
ogy was in patients with a diffuse large cell B cell lymphoma
(DLBCL). The gene expression signatures allowed to defining two
molecular subgroups with different prognosis and clinical risk
score [42]: patients with a ‘germinal’ centre B- signature who have
a good prognosis and patients with an ‘activated B-like’ DLBCL

signature with a poor prognosis. More recently, it was shown that
patient survival after chemotherapy is not only dependent on
tumour cell characteristics but also on the microenvironment of
the tumour [43]: patients with a good prognosis have a so-called
‘stromal 1’ signature characterized by the presence of histiocytes
and connective tissue. By comparison, patients with an
unfavourable prognosis have a ‘stromal-2’ signature characterized
by a high density of blood vessels (angiogenesis).

Also for the classic Hodgkin’s lymphoma, a microenvironment
signature of tumour-associated CD68� macrophages was identified
that predicts a poor prognosis [44]. By comparison, 100% of
patients with Hodgkin’s lymphoma survive if the microenvironment
signature of tumour-associated CD68� macrophages was negative.

Breast cancer

Based on a signature of RAS and other dysregulated genes in
tumour tissues, a new classification of breast cancer was recently
proposed [45]. Further, DNA microarray analyses of 70 genes
defined two different gene expression profiles [46]. These allow
predicting the prognosis of the disease (‘good prognosis signa-
ture’ versus ‘poor-prognosis signature’), also with respect to the
risk of lymph node metastases and tumour recurrence [47], as
well as the response to chemotherapy [48]. In another study it
could be shown that the amplification of HER2 in the breast can-
cer predicts the therapeutic efficacy of anthracyclines [49].
Further, Liu et al. [50] defined an ‘invasiveness gene signature’
(IGS) based on 186 different genes: 100% of patients with a
favourable IGS had a 10 year overall survival and 81% had a 
10 year metastasis-free survival, respectively, as compared to
60% and 57% of patients, respectively, with an unfavourable IGS.
Importantly, the prognostic contribution of the IGS was independ-
ent from established clinical and histopathological parameters.

The identification of IGS, for example, and of pathogenesis net-
works may become relevant also for therapeutic decisions.
Signatures predicting a poor prognosis may be an indication for a
more aggressive chemotherapy. Conversely, signatures predicting
a favourable prognosis may justify not recommending an adjuvant
chemotherapy [51]. Array signatures thus reflect a major advance
of medicine from a more empirical clinical management to an indi-
vidually ‘tailored’ medicine based on the individual patient’s
genetic profile [52].

Lung cancer

Based on proteome analyses it became possible to more precisely
categorize the histology of lung tumours and to clearly distinguish
between primary lung tumours and lung metastases [53].
Additional studies recently revealed that the individual prognosis
of patients with non-small cell lung cancer (NSCLC) can be pre-
dicted by a 5-gene signature [54, 55]. Further, in a recent case
report metabolomics could predict the response to treatment with
the TKI erlotinib in a patient with a subtype of NSCLC [56].
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Prostate cancer

Metabolomic profiles were able to distinguish between benign
prostate, localized prostate cancer and metastatic disease and iden-
tified sarcosine as an important metabolic intermediary involved in
prostate cancer cell invasion and aggressiveness [57]. Further,
metabolomics allowed predicting the risk of recurrence [58].

Hepatocellular carcinoma

The HCC is world-wide frequent malignancy with an epidemiolog-
ically and genetically very heterogeneous background [59–61].
The gene and gene expression profiles of HCCs and their relevance
for the patients’ prognosis were analysed in numerous studies
[62–64]. Depending on the etiological background of the underly-
ing chronic liver disease a 3-gene and a 120-gene signature,
respectively, were identified that allow distinguishing between
dysplasia and neoplasia [61]. In addition, transcriptome analyses
of HCCs identified several genes which suggest a novel HCC clas-
sification with therapeutic implications [65]. Further, microarray
analyses of 6000 genes in completely resected HCCs showed that
12 genes predict a high risk for an early intrahepatic recurrence
[66]. If validated by additional studies, it thus may become 
possible to preoperatively distinguish patients with a high risk of
recurrence from those with a low risk of recurrence. This HCC
sub-categorization may contribute to further optimize the thera-
peutic strategy for the individual patient.

Apart from clinical parameters and the gene or gene expres-
sion profiles of tumour-associated genes, such as glycipan-3, heat
shock protein 70, survivin, LYVE1 and microRNA (miR) species
(see below) in the tumour (tumour profiling), there is increasing
evidence that the gene or gene expression signature in cells or tis-
sues adjacent to the (later developing) HCC contributes to the risk
of HCC development and the risk of HCC metastases, respectively
(adjacent tumour profiling).

In cell biology and disease pathogenesis, miR species are
increasingly attracting attention. The miR species are non-coding
RNA molecules of 20–25 nucleotides length which suppress gene
expression in the cell nucleus by complementary base-pairing with
the 3�-non-translated region of mRNAs, thereby blocking transla-
tion. Based on this principle action, miR can function, among oth-
ers, as tumour suppressors or oncogenes. Analyses addressing
the role of miR in HCC development revealed that females have a
higher expression of miR-26a and miR-26b in the non-tumourous
liver tissue adjacent to the HCC than males. Further, the expression
of these miR species is lower in the HCC as compared to the adja-
cent non-tumourous liver and patients with a low miR expression
in the HCC have a poorer prognosis but respond better to inter-
feron treatment than patients with a high miR expression in the
tumour [67]. Other miR species have recently been identified that
are involved in HCC development (miR221; [68]), HCC invasion
and metastasis (miR-30d; [69]) as well as the prognosis of patients
with this malignancy (miR-29; [70]).

Cholangiocellular carcinoma

The early detection of CCCs is a major clinical challenge and is
currently based on imaging analyses, brush cytology, histology
and tumour markers in serum. Conceptually based on the fact that
bile contains numerous metabolites, bile from healthy individuals
as well as from CCC patients was analysed by nuclear magnetic
resonance spectra, followed by orthogonal partial least square dis-
criminating analyses, in order to detect and characterize the full
complement of metabolites in bile (metabolomics). Metabolomics
analyses indeed identified CCC patients with a sensitivity of 88%
and a specificity of 81% [71]. If validated by additional studies,
‘metabolomics’ may indeed complement the (limited) diagnostic
tools presently available in clinical practice.

Non-malignant diseases

Recently it was discovered that specific miR species affect the biol-
ogy of HCV, i.e. miR199a effectively suppresses HCV replication
and thus may represent a novel antiviral strategy for patients with
chronic HCV infection [72, 73]. Further, in patients with chronic
hepatitis C a specific gene signature in liver tissue seems to predict
the progression of chronic hepatitis C to liver fibrosis and cirrhosis
[74, 75]. Metabolomics was also shown to have an impact on the
diagnosis of celiac disease using serum or urine [76].

Conclusions and perspectives

Recent advances in cell and molecular biology allow an increas-
ingly detailed understanding of the pathogenesis of human 
diseases. With the rapid development of novel molecular and 
biochemical analyses it is now on the one hand possible to iden-
tify disease-related point mutations and SNPs and on the other
hand, based on array technologies tens of thousands of genes or
proteins can be analysed simultaneously.

In addition to malignant diseases, there are more and more
examples of the predictive power of molecular and biochemical
analyses for other disease entities. In this context, a recent study in
patients after heart transplantation defined a gene expression pro-
file in peripheral blood that closely correlates with the histological
findings in endomyocardial biopsies [77]. If validated by further
studies, such profiles may contribute to the non-invasive manage-
ment of patients after heart transplantation. Further, genetic 
variants of the cytokine-inducible SRC homology 2 domain protein
gene have been shown to be associated with an increased suscep-
tibility to bacteremia, malaria and tuberculosis [78]. Another recent
advance in the field of molecular analyses is the sequencing of the
complete genome of an individual with a family history of vascular
disease and sudden death. The interpretation of the sequence data
obtained identified a genetic risk for myocardial infarction, diabetes
mellitus type 2 and several malignancies [79, 80].
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Based on recent advances in most fields of medicine we can
expect an increasing number of clinically relevant applications of
molecular analyses, including specific point mutations or SNPs
as well as individual gene or gene expression profiles. These
analyses should allow predicting the individual risk to develop a
disease (HapMap project) and to assess the individual prognosis
as well as the efficacy of therapeutic strategies in patients 

suffering from malignant or non-malignant diseases (individual-
ized medicine).
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