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Abstract
A variety of metabolic disorders, including complications experienced by diabetic patients,

have been linked to altered neural activity in the dorsal vagal complex. This study tested the

hypothesis that augmentation of N-Methyl-D-Aspartate (NMDA) receptor-mediated re-

sponses in the vagal complex contributes to increased glutamate release in the dorsal

motor nucleus of the vagus nerve (DMV) in mice with streptozotocin-induced chronic hyper-

glycemia (i.e., hyperglycemic mice), a model of type 1 diabetes. Antagonism of NMDA re-

ceptors with AP-5 (100 μM) suppressed sEPSC frequency in vagal motor neurons recorded

in vitro, confirming that constitutively active NMDA receptors regulate glutamate release in

the DMV. There was a greater relative effect of NMDA receptor antagonism in hyperglyce-

mic mice, suggesting that augmented NMDA effects occur in neurons presynaptic to the

DMV. Effects of NMDA receptor blockade on mEPSC frequency were equivalent in control

and diabetic mice, suggesting that differential effects on glutamate release were due to al-

tered NMDA function in the soma-dendritic membrane of intact afferent neurons. Applica-

tion of NMDA (300 μM) resulted in greater inward current and current density in NTS

neurons recorded from hyperglycemic than control mice, particularly in glutamatergic NTS

neurons identified by single-cell RT-PCR for VGLUT2. Overall expression of NR1 protein

and message in the dorsal vagal complex were not different between the two groups. En-

hanced postsynaptic NMDA responsiveness of glutamatergic NTS neurons is consistent

with tonically-increased glutamate release in the DMV in mice with chronic hyperglycemia.

Functional augmentation of NMDA-mediated responses may serve as a physiological

counter-regulatory mechanism to control pathological disturbances of homeostatic auto-

nomic function in type 1 diabetes.
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Introduction
The dorsal vagal complex of the caudal brainstem, including the nucleus of the solitary tract
(NTS) and the dorsal motor nucleus of the vagus nerve (DMV), is a center for integrating neu-
ral and humoral signals regulating parasympathetic output to the viscera, including the diges-
tive system. Primary viscerosensory afferents from peripheral organs and neural inputs from
various brain regions synapse in the NTS. Neurons in the NTS integrate these various signals
and transmit information to preganglionic parasympathetic motor neurons in the DMV,
whose axons form the efferent limb of the vagus nerve [1–5]. By virtue of a network of fenes-
trated capillaries in the vagal complex, neurons in the NTS and DMV are also exposed to circu-
lating molecules, including glucose, that can rapidly modulate neural activity [6–8].
Correspondingly, chronic hyperglycemia, as occurs in type 1 or type 2 diabetes, can alter vagal
function and contribute to diabetes-associated visceral dysfunction [9–11].

Glutamate, the principal excitatory neurotransmitter in the vagal complex, activates iono-
tropic N-Methyl-D-Aspartate (NMDA) as well as both ionotropic and metabotropic non-
NMDA receptors [12–15]. Upon activation by glutamate (in the presence of glycine), NMDA
receptors typically contribute to membrane depolarization and Ca2+-dependent signaling cas-
cades by increasing the conductance of Na+ and Ca2+ [16]. NMDA receptors are typically lo-
cated on neuronal postsynaptic membranes, but they have also been identified on presynaptic
terminals, where they modulate the release of GABA and glutamate [17–19]. NMDA receptors
located on synaptic terminals (i.e., preNMDA receptors) are activated constitutively by ambi-
ent glutamate [17] and tonically-facilitate the release of glutamate, but not GABA, in the DMV
[20]. Physiological consequences of activating NMDA receptors in the dorsal vagal complex in
vivo include decreased hepatic gluconeogenesis, while their inhibition suppresses food intake
[21, 22]. NMDA receptor function in the dorsal vagal complex is therefore critical for homeo-
static regulation of vagal activity and visceral function.

The NTS contains a heterogeneous population of cells, comprised mainly of GABAergic
and glutamatergic neurons, whose activity leads to synaptic inhibition and excitation, respec-
tively, of DMV neurons and modulation of vagal motor function [23–25]. Increasing glucose
concentration enhances glutamate release from viscerosensory vagal afferent terminals in the
NTS [26] and inhibits DMV neurons[27]. Paradoxically, and separately from inhibitory effects,
a sustained increase in glutamatergic EPSCs was observed in DMV neurons from hyperglyce-
mic mice [28] in vitro, suggesting a chronic alteration in the synaptic regulation of vagal activi-
ty. The underlying mechanism(s) leading to this increased synaptic release of glutamate
remain to be elucidated. NMDA receptors have been studied extensively for their role in modu-
lating excitatory neurotransmission and synaptic plasticity under physiologic as well as patho-
logic states, in part by enhancing glutamate release from presynaptic terminals [16, 29, 30]. We
hypothesized that changes in NMDA receptor function in central vagal circuitry contribute to
persistently elevated glutamate release in the DMV and subsequent modulation of visceral
function associated with systemic glucose dysregulation, a hallmark of diabetes.

Methods

Animals
All procedures were approved by the University of Kentucky Animal Care and Use Committee
(Animal Welfare Assurance Number A3336–01) and were treated and cared for in accordance
with National Institutes of Health guidelines. Euthanasia was accomplished by anesthesia with
isoflurane to effect, followed by decapitation while anesthetized. Juvenile and young adult (24–
65 days) female and male CD-1 (Harlan Laboratories, Indianapolis, IN) or GIN mice (FVB-Tg
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(GadGFP) 4570Swn/J; The Jackson Laboratory, Bar Harbor, ME) were used for all experiments
and housed under a standard 14-h light-10-h dark cycle, with food and water provided without
restriction. The GIN mice express EGFP in the somatostatinergic subset of GABA neurons in
the NTS, which comprise a large proportion of NTS neurons [31]. The strategy of targeting re-
cordings to non-EGFP labeled NTS cells in these mice was used to increase the probability of
recording from VGLUT2+, glutamatergic neurons (NTS neuron phenotype was verified by
RT-PCR, as described below).

Animal Injections
Intra-peritoneal injections of streptozotocin (STZ; 200mg/kg in 0.9% NaCl; either a single dose
or in 5 doses of 40 mg/kg each over 5 days), which kills insulin-secreting pancreatic β cells, was
used to induce chronic hyperglycemia in mice. For single STZ injections, mice were fasted (4–6
h) prior to injection. Prior to STZ injections, blood glucose concentration (tail puncture) was
measured using a Nova Max PLUS glucometer. Control mice were either injected with saline
(0.9% NaCl) or untreated. No differences in electrophysiological parameters were observed be-
tween normoglycemic saline-injected and untreated mice; they were therefore pooled and con-
sidered as a single control group. Regression analysis of all parameters measured in the study
showed no correlation between either drug effects or EPSC frequency with animal age
(R2<0.25 for all measurements). Systemic glucose levels were measured daily. Onset of hyper-
glycemia (i.e., blood glucose level of above 300mg/dl) varied between animals, but occurred be-
tween 1 and 7 days post-STZ injection and remained elevated until the day of the experiment
(Fig. 1A). Animals were used for electrophysiological recordings and molecular analyses after
7–10 days of continuous hyperglycemia. To determine potential neurotoxicity in the NTS of
peripherally-injected STZ, a separate cohort of mice was injected with STZ as above (200 mg/
kg; i.p.) and brainstem sections (30μm) were stained after 24 h using Fluoro-Jade B to label de-
generating neurons, as described [32, 33]; no cellular labeling was detected (Fig. 1B). STZ-treat-
ed, hyperglycemic animals are referred to as hyperglycemic mice or identified as STZ-treated
in graphical data depictions; normoglycemic animals are termed control mice.

Brain stem slice preparation
Whole cell patch-clamp recordings were made using brainstem slices prepared from mice as
described previously [20, 28, 31, 34]. Mice were anesthetized deeply by isoflurane inhalation to
effect and then decapitated while anesthetized. The brain was removed and blocked on an ice-
cold stand and the brainstem was glued to a stage for sectioning. Transverse (i.e. coronal)
brainstem slices (300 μm) containing the dorsal vagal complex (from ~300 μm rostral to area
postrema to the caudal edge of area postrema) were made in cold (0–2°C), oxygenated (95%
O2–5% CO2) artificial cerebrospinal fluid (ACSF) using a vibrating microtome (Vibratome Se-
ries 1000; Technical Products, St. Louis, MO). These brainstem slices contain both the NTS
and DMV, and preserve many intact synaptic connections between the two nuclei [25]. The
ACSF contained (in mM): 124 NaCl, 3 KCl, 2 CaCl2, 1.3 MgCl2, 1.4 NaH2PO4, 26 NaHCO3, 11
glucose (pH 7.2–7.4; osmolality 290–315 mOsm/kg). For recordings, a single brain slice was
transferred to a chamber mounted on a fixed stage under an upright microscope (BX51WI;
Olympus, Melville, NY), where it was superfused continuously with warmed (30–33°C), oxy-
genated ACSF. Tetrodotoxin (TTX; 1–2 μM; Tocris Bioscience, Minneapolis, MN) was bath
applied to record action potential-independent (i.e., miniature) excitatory postsynaptic cur-
rents (i.e., mEPSCs). Picrotoxin (100 μM; Sigma-Aldrich, St. Louis, MO) was added to the
ACSF to block GABAA receptors in all experiments. For specific experiments, DL-2-Amino-
5-phosphonopentanoic acid (AP-5; 100 μM), NMDA (300 μM), and 6-Cyano-
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7-nitroquinoxaline-2,3-dion e (CNQX; 10 μM; all from Sigma-Aldrich) were added to ACSF.
Since nicotinic receptors are abundant in the vagal complex and can interact directly with
NMDA receptors [35–37], d-tubocurarine (DTC; 20 μM; Sigma) was also added in some ex-
periments. Concentrations for receptor antagonists were derived from previous studies;
300 μMNMDA yielded maximal responses in preliminary studies in NTS neurons from con-
trol mice (data not shown). To avoid potential complications stemming from incomplete an-
tagonist washout, AP-5 was applied to one cell per slice.

Electrophysiological recording
Whole-cell voltage-clamp recordings were obtained in the DMV or NTS using recording pi-
pettes pulled from borosilicate glass (open tip resistance of 3–5 MO; King Precision Glass Co.,
Claremont, CA). The pipette solution for most recordings contained (in mM): 130–140 Cs-

Fig 1. Effects of streptozotocin (STZ) injection on the time course of plasma glucose concentration
and Fluoro-Jade B staining in the dorsal vagal complex. A. Time course of plasma glucose concentration
(± standard deviation) in control and STZ-treated mice. Numbers in parenthesis indicate the number of mice
maintained up to each day post injection.B. Fluoro-Jade B staining in the dorsal vagal complex 24 h after
intraperitoneal injection of saline (left) or STZ (200 mg/kg; right). Cellular Fluoro-Jade labeling, an indicator of
necrotic cell death, was not observed in the vagal complex after peripheral STZ injection. AP, area postrema;
NTS, nucleus tractus solitarius; DMV, dorsal motor nucleus of the vagus; cc, central canal; scale
bar = 100 μm.

doi:10.1371/journal.pone.0121022.g001
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gluconate, 10 HEPES, 1 NaCl, 1 CaCl2, 3 CsOH, 5 EGTA, and 2 Mg2+-ATP. Intracellular Cs+

was used as the primary cation carrier in voltage-clamp recordings to block K+ currents, in-
cluding postsynaptic GABAB receptor-mediated currents, in the recorded neuron. Neurons in
the DMV and medial NTS were targeted for recording under a 40x water-immersion objective
(numerical aperture = 0.8) with infrared-differential interference contrast (IR-DIC) optics, as
described previously [28, 31, 34]. Electrophysiological signals were obtained using a Multi-
clamp 700B amplifier (Molecular Devices, Union City, CA), low-pass filtered at 2 or 3 kHz,
digitized at 20kHz, and recorded onto a computer (Digidata 1440A, Molecular Devices) using
pClamp 10.2 or 10.3 software (Molecular Devices). Seal resistance was typically 2–5 GO and se-
ries resistance, measured from brief voltage steps applied through the recording pipette (5 mV,
5 ms), was<25 MO (mean = 14.6±0.4 MO; n = 156) and was monitored periodically during
the recording. Recordings were discarded if series resistance changed by>20% over the course
of the experiment. Each recorded neuron represented an individual data point (n); recordings
were made from at least four mice for each experimental group.

RNA isolation
Two to three brainstem slices (300–600 μm) were isolated as described for electrophysiological
recordings. The dorsal vagal complex, including most of both the DMV and NTS, was visual-
ized under a dissecting microscope and excised from the rest of the brainstem with a razor
blade. Resulting mini-slices were then suspended in 400–500 μL of TRIzol and gently shaken
periodically for 5–25 min. Chloroform (100–250 μl) was added and tubes were vortexed for 15
s and then maintained at 4°C for 20 min and subsequently centrifuged at 12,000 rpm for 15
min at 4°C. The pellet was discarded and the RNA supernatant was transferred into fresh 1.5
ml centrifuge tubes, mixed with 500 μL of ice-cold propanol, incubated at room temperature
for 10 min, and centrifuged at 12,000 rpm for 10 min at 4°C. Propanol was decanted and RNA
was washed by re-suspension in 500 μL 75% ethanol followed by centrifugation at 7500–12,000
rpm for 10 min at 4°C. The wash step was repeated, the ethanol decanted, and RNA samples
were air-dried for 10–20 min. RNA samples were re-suspended in 8–10 μL RNAse-free water
and stored at -80°C or immediately reverse transcribed into cDNA. When obtaining single-cell
mRNA from NTS neurons, the cytosol of the cell was aspirated into the recording pipette. The
recording pipette carefully pulled away from the cell and its contents were expelled into a sterile
centrifuge tube. RNA was stored at -80°C or immediately reverse transcribed into cDNA.

TaqMan PCR
RNA samples were reverse transcribed in reverse-transcription master mix containing: 1 μl
random nonamers (50 μM; Sigma-Aldrich), 5 μl MMLV RT buffer (5x) (Fisher Scientific, Pitts-
burgh, PA), 5 μl dNTPs (10 mM; Fisher), 2 μl DEPC-treated H2O (Fisher), 1 μl reverse tran-
scriptase (Fisher), and RNAse inhibitor (1 μl; Fisher). For single-cell RT-PCR experiments, the
cytosol of recorded NTS neurons was aspirated into the recording pipette at the conclusion of
the electrophysiological recording and suspended in reverse-transcription master mix without
enzymes and stored at -80°C until further use. Groups of cells were reverse transcribed after
the addition of 1 μl reverse transcriptase (Fisher), and 1 μl RNAse inhibitor (Fisher) in a ther-
mocycler (Mastercycler, Eppendorf) at 42°C for 90 min followed by 5 min at 95°C. For pheno-
type identification, positive controls (brainstem tissue samples) and single cells were probed
for the presence of β-actin and vesicular glutamate transporter 2 (VGLUT2). Negative controls
included ACSF or the contents of recording pipettes that contained extracellular constituents
obtained after placing the recording pipet tip on the cell surface without breaking the mem-
brane. No RNA was detected in these controls. Primers and probes for β-actin were: forward,
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CAGCAGGTACAGCATCACGG; reverse, GCCATGTACGTAGCCATCC; probe,
CTGGTCGTACCACAGGCATTGTG; and for VGLUT2: forward, CCCGTCTACGCGA-
TAATTGTT; reverse, GTCATGACAAGGTGAGGGACT; probe, ACTGCTCATCAGC-
CAGCTT. Master mix containing 1.5 μl MgCl2 (25 mM), 1.2 μl PCR buffer (10x), 0.5 μl
dNTPs (10 mM), 0.5 μl each of forward primers, reverse primers, and probes (10 uM), 0.25
DNA polymerase, and 7.05 μl RNAse-free sterile H2O. 3 μl of single cell or positive control
cDNA or RNAse free sterile H2O (for non-template control) was added to 12 μl master mix
and loaded into optical tubes or a 96-well plate (Bio-Rad, Hercules, CA). Samples were centri-
fuged for 2 min at 1000 RPM and placed in an Applied Biosystems thermocylcer (ABI 7500;
Life Technologies, Grand Island, NY) for PCR analysis. Samples were held at 95°C 2 min and
cycled 50 times at 95°C for 30 s, 60°C for 15 s and at 72°C 15 s.

NanoString
To quantify mRNA abundance in vagal complex mini-slices between control and hyperglyce-
mic mice, the NanoString nCounter system was used. A custom designed codeset was designed
by and purchased from NanoString Technologies (Seattle WA). This codeset included the
seven known NMDA receptor subunits (NR1, NR2A-D and NR3A-B) as well as three house-
keeping genes (β-actin, GAPDH, Hprt1). The isolated RNA quality assessment and concentra-
tion determination was made at the University of Kentucky Microarray Core Facility using the
Agilent Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA). Average RNA integrity
number (RIN) for samples used in this study was 9.4 ± 0.07 (Range: 8.9–9.7). 100 ng of total
RNA was used from each sample. The hybridization reaction using the custom designed code-
set, and nCounter master mix, was performed according to protocol by the Microarray Core
Facility at the University of Kentucky using the nCounter (NanoString Technologies). The
NanoString probe identifiers for genes analyzed were: For NR1, NM_008169.2:492; for NR2A,
NM_008170.2:4080; for NR2B, NM_008171.3:6340; for NR2C, NM_010350.2:2720; for NR2D,
NM_008172.2:1201; for NR3A, NM_001033351.1:1332; for NR3B, NM_130455.2:2030; for β-
actin, NM_007393.3:1138; for GAPDH, NM_001001303.1:890; and for Hprt1,
NM_013556.2:30. Normalization was performed using the nSolver software (NanoString Tech-
nologies). The nSolver software normalizes to negative and positive controls to eliminate back-
ground noise and variability unrelated to samples. All genes were subsequently normalized to
the geometric mean of the three housekeeping genes to assess mRNA abundance for genes
of interest.

Western Blots
Brainstem slices (300–600 μm) were cut as described for electrophysiological recordings, the
dorsal vagal complex was isolated from the slice, and mini-slices containing the DMV and
NTS were immediately transferred to 40–60 μl of lysis buffer consisting of 0.15M NaCl, 5mM
EDTA (pH 8), 1% Triton X-100, 10mM Tris-HCl (pH 7.4), 10μl/ml of 100mM PMSF (174.2
mg/10ml in methanol), and 100μl/ml of 0.5M NaF (pH 10). Each sample was sonicated and
centrifuged immediately at 12,000 RPM for 3 min. Supernatant was aspirated, aliquoted, and
stored at -80°C until further use. Protein concentration was measured using a Bradford Protein
Assay. For Western blots, 20 μg of protein was loaded per lane. The appropriate volume of
sample together with equal amounts of loading buffer was boiled in water for 2 min. Samples
and ladder were loaded into precast SDS polyacrylamide gels and electrophoresed at 50 mA for
45–80 min. Proteins were then transferred at 200 mA for 2 hours onto polyvinylidene difluor-
ide membranes for Western blot analysis. Membranes were blocked in 1:1 Odyssey blocking
buffer/TBS/0.1% Tween 20 for 1 hr at room temperature. Due to well-separated molecular
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weights of the NR1 (band at 105–120 kD) and β-actin (band at 40–45 kD) protein membranes
could be cut in half to be incubated over-night at 4°C, with a rabbit monoclonal anti-
NMDAR1 (1:1000; Abcam, Cambridge, MA) and a rabbit monoclonal anti-β-actin (1:10000;
Abcam) antibody in Odyssey blocking buffer/TBS/0.1% Tween 20. Membranes were washed 4
times (5 min) with TBS on a shaker and treated for 1 hr with fluorescence-conjugated anti-
rabbit IgG (IRDye 680RD; Li-Cor Biosciences, Lincoln, NE). Membranes were then washed
(4 x 5 min) and scanned on a densitometer (Odyssey model 9120, Li-Cor Biosciences) to quan-
tify band density. Background density was subtracted from the NMDAR1 band density and
normalized to β-actin, which was used as a loading control.

Data analysis
Spontaneous and miniature EPSCs (typically 2-min continuous recording per condition) were
analyzed with MiniAnalysis (Synaptosoft, Decatur, GA) to measure peak amplitude, frequency,
and decay time constant. To measure current responses at membrane potentials between -80
and +30 mV, voltage steps were applied at 10 mV increments. Steps were of 1 second duration
to reach saturating current responses for each voltage measured. Incremental current steps
were made at inter-step intervals of 400 ms. Current measurements were made from averages
of four runs and were measured at each potential at the end of the voltage step. Current-voltage
response relationships were extrapolated from these measurements and compared between
control and hyperglycemic mice.

Effects of drug application on sEPSC and mEPSC parameters within a recording were as-
sessed using the non-parametric, intra-assay Kolmogorov-Smirnov (K-S) test. Grouped results
of single comparisons of drug effects (i.e., before and after a single drug treatment) were tested
for normality with the Shapiro-Wilk normality test and analyzed using a paired, two-tailed Stu-
dent’s t-test when data were normally distributed or the Wilcoxon signed rank test for paired
samples when normally-distributed population responses could not be established. When com-
paring pooled effects of a single variable between two animal groups (comparison between con-
trols and STZ-injected mice) a homoscedastic two-tailed Student’s t-test or, in the absence of
normally-distributed populations, the Mann-Whitney U test was used. The nature of responses
fromWestern blot and Nanostring analyses did not produce normally distributed responses
and the non-parametric Mann-Whitney U test was used to test for statistical significance. Sta-
tistical significance for all measures was set at p<0.05. Statistical measurements were per-
formed with Microsoft Excel (Microsoft, Redmond, WA) or Prism (GraphPad Software, La
Jolla, CA). Numbers were expressed as means ± SE.

Results

Increased glutamate release in the DMV of hyperglycemic mice
Whole-cell patch-clamp recordings were made from DMV neurons in slices from control and
hyperglycemic mice, voltage-clamped at -80 mV in the presence of the GABAA receptor block-
er PTX (100 μM) to assess AMPA-mediated spontaneous and miniature EPSCs (i.e., sEPSCs
and mEPSCs). Consistent with previous findings comparing relatively large populations of
neurons [28], the frequency of sEPSCs was greater in hyperglycemic mice when compared to
control animals (control: 11.80 ± 1.46 Hz, n = 16; hyperglycemic: 26.05 ± 5.44 Hz, n = 20;
p<0.05; Fig. 2). In a separate cohort of neurons, tetrodotoxin (TTX; 1–2 μM) was added to the
ACSF to record mEPSC frequency and amplitude. TTX blocks Na+ channels and the recorded
mEPSCs are consequently action potential-independent events, representing the stochastic re-
lease of preterminal glutamate release. Similar to effects on sEPSCs, the frequency of mEPSCs
(control: 13.33 ± 1.43 Hz, n = 58; hyperglycemic: 24.34 ± 4.65 Hz; n = 20) was also greater in
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hyperglycemic mice when compared to control animals (p<0.05; Fig. 2C). No difference in
amplitude was observed for sEPSCs (control: 19.67 ± 1.29; hyperglycemic: 22.04 ± 1.01) or for
mEPSCs (control: 18.36 ± 0.73 pA; hyperglycemic: 19.96 ± 1.16 pA; Fig. 2D). Consistent with
previous reports [28], glutamate release was enhanced in the DMV of chronically hyperglyce-
mic mice.

NMDA receptor-mediated modulation of glutamate release in the DMV is
enhanced in hperglycemic mice
The hypothesis that the function of tonically-active NMDA receptors is enhanced in the vagal
complex of hyperglycemic mice, contributing to increased glutamate release in the DMV, was
tested by assessing the effects of NMDA receptor blockade on AMPA receptor-mediated
sEPSCs (i.e., no TTX) in recorded DMV neurons [20]. The response to application of the

Fig 2. Comparison of sEPSCs andmEPSCs in dorsal motor nucleus of the vagus (DMV) neurons from control and STZ-treated, hyperglycemic
mice. A. Representative traces showing sEPSCs in DMV cells from control (left) and hyperglycemic (STZ; right) mice.B. Representative traces of mEPSCs
in neurons from control (left) and hyperglycemic (STZ; right) mice. Arrows point to expanded sections of traces indicated in A andB; picrotoxin (100 μM) was
present in all recordings.C.Group frequency and amplitude graphs for sEPSCs and mEPSCs in control and hyperglycemic (STZ) mice (asterisk indicates
significant difference from control; p<0.05; Mann-Whitney U test; numbers of replicates are indicated above each bar).

doi:10.1371/journal.pone.0121022.g002
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NMDA receptor antagonist AP-5 was compared between normoglycemic and hyperglycemic
mice to reveal tonically-activated NMDA receptors. Randomly-selected DMV neurons were
voltage clamped at -80 mV to diminish effects of postsynaptic NMDA receptor activation in
the recorded DMV neuron and concentrate resultant effects on mechanisms mediated by re-
ceptors located on the somadendritic or synaptic terminal compartments of afferent neurons.
Application of AP-5 in a subgroup of the cells presented in Fig. 2 resulted in a significant de-
crease in the frequency of sEPSCs in normoglycemic mice (Fig. 3A), reducing sEPSC frequency
from a baseline of 13.42 ± 2.81 Hz to 10.08 ± 1.89 Hz during application of AP-5 (n = 5;
p<0.05). Within-cell analysis using the K-S test showed a significant decrease in sEPSC fre-
quency in each of the 5 cells (p<0.05). Application of AP-5 also diminished sEPSC frequency
in DMV neurons from hyperglycemic, hyperglycemic mice (Fig. 3B) from a baseline of
16.85 ± 4.68 Hz to 10.42 ± 3.46 Hz during application of AP-5 (n = 6; p<0.05). A significant
decrease was detected (K-S test) in each of 6 neurons from hyperglycemic mice (p<0.05). The
relative change in sEPSC frequency in DMV neurons from hyperglycemic mice (40.65 ± 1.98%

Fig 3. Effects of AP-5 application on EPSCs in control and hyperglycemic mice. A. Representative trace showing sEPSCs in a DMV neuron from a
control mouse in control ACSF and during application of AP-5 (100 μM). B. Representative trace showing sEPSCs in a DMV neuron from a hyperglycemic
mouse (STZ) before and during application of AP-5. Arrows point to expanded sections of traces indicated in A andB. C.Mean percent decrease in sEPSC
frequency following application of AP-5 in control (n = 5) and hyperglycemic (n = 6) mice (asterisk indicates significant difference from control mice; p<0.05,
Mann-Whitney U test). D.Mean percent decrease in mEPSC frequency following application of AP-5 in control (n = 9) and hyperglycemic (n = 10) mice. No
difference was detected in the effect of AP-5 on mEPSC frequency in neurons from hyperglycemic and control mice (p = 0.97, Mann-Whitney U test).

doi:10.1371/journal.pone.0121022.g003
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decrease; n = 6) was significantly greater than in cells from control mice (23.78 ± 1.74%; n = 5;
p<0.05; Mann-Whitney U test; Fig. 3C). No change in sEPSC amplitude was observed in con-
trol (baseline 18.82 ± 1.93 pA and 18.83 ± 1.59 pA during application of AP-5; p>0.05) or hy-
perglycemic mice (baseline 20.46 ± 2.02 pA and 18.47 ± 2.11 pA during the application of AP-
5; p>0.05). This result suggested that NMDA receptors exert a greater effect on glutamate re-
lease in the DMV of hyperglycemic than in normoglycemic mice.

Preterminal NMDA receptors modulate glutamate release in both
normoglyemic and hyperglycemic mice
Since sEPSCs reflect both action potential-dependent and -independent glutamate release, the
NMDA receptor-mediated differences in sEPSC frequency observed between control and hy-
perglycemic mice could result from changes in receptors located on terminals contacting DMV
neurons and/or soma-dendritic receptors on presynaptic neurons. Preterminal NMDA (i.e.,
preNMDA) receptors were previously identified in normoglycemic mice, which function to en-
hance glutamate release tonically in the DMV [20]. To assess preNMDA receptor involvement
in tonic glutamate release, the effects of AP-5 (100 μM) were assessed in randomly-selected
subgroups of the neurons from control and hyperglycemic mice. Neurons were recorded in the
presence of TTX (1–2 μM) to block action potential-dependent synaptic activity and isolate ef-
fects on NMDA receptors located at synaptic terminals. Application of AP-5 decreased mEPSC
frequency in DMV neurons of normoglycemic, control mice from a baseline of 12.84 ± 3.58 Hz
to 8.97 ± 2.48 Hz in AP-5 (n = 10; p<0.05; Wilcoxon signed rank test; Fig. 3D). A significant
decrease in mEPSC frequency in the presence of AP-5 was observed in each of 9 neurons from
control mice (p<0.05; K-S test). No change in amplitude (19.75 ± 1.83 pA versus 19.23 ± 1.51
pA; p>0.05; Wilcoxon signed rank test) or decay time constant (1.74 ± 0.13 ms versus
1.68 ± 0.15 ms in AP-5; p>0.05; Wilcoxon signed rank test) was observed. In DMV neurons
from hyperglycemic mice, application of AP-5 also resulted in a significant decrease in the fre-
quency of mEPSCs (15.53 ± 4.96 Hz baseline and 9.70 ± 3.28 Hz during the application of AP-
5; n = 10; p<0.05; Wilcoxon signed rank test). A significant decrease in response to AP-5
(p<0.05; K-S test) was observed in 9 of 10 neurons from hyperglycemic mice. Neither mEPSC
amplitude (20.04 ± 1.74 pA versus 19.28 ± 1.43 pA in AP-5; p>0.05; Wilcoxon signed rank
test) nor decay time (1.58 ± 0.12 ms versus 1.62 ± 0.09 ms in AP-5; p>0.05; Wilcoxon signed
rank test) was altered. The relative effect of AP-5 on mEPSC frequency in neurons from control
mice (31.12 ± 5.67% decrease; n = 9) was not different from that observed in neurons from hy-
perglycemic mice (31.90 ± 6.04% decrease; n = 10; p>0.05; Fig. 3D). These results indicated
that preNMDA receptors modulate glutamate release in the DMV to a similar degree in both
control and hyperglycemic mice. These results, therefore, were not consistent with altered
function of preNMDA receptors in mediating the observed differences in NMDA receptor-
mediated modulation of glutamate release in the DMV of hyperglycemic mice, but suggested
altered NMDA receptor function on upstream glutamatergic neurons with intact projections
to the DMV.

Although the numbers of cells in the subgroups used for intra-recording analysis of AP-5
treatment was too low to discern the statistical differences in EPSC frequency that were detected
when the larger numbers of neurons were compared between groups (i.e., inter-recording analy-
sis), baseline sEPSC and mEPSC frequency tended to be higher in the DMV of hyperglycemic
mice, so the effect of AP-5 as a function of baseline mEPSC frequency was determined in the
subsets of recordings in which effects of AP-5 were assessed. No correlation was detected be-
tween baseline frequency and relative AP-5-mediated response for sEPSCs (control mice,
R2 = 0.12; hyperglycemic mice, R2 = 0.14) or mEPSCs (control mice, R2 = 0.02; hyperglycemic
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mice, R2 = 0.09). Thus, the relative effect of AP-5 was not a function of baseline EPSC frequency,
consistent with altered NMDA receptor responses in hyperglycemic mice.

Enhanced NMDA receptor-mediated whole-cell currents in NTS neurons
from hyperglycemic mice
Since NMDA receptor responses in DMV neurons from control and hyperglycemic mice were
different for sEPSCs, but not for mEPSCs, this suggested altered function of NMDA receptors
located on the soma/dendritic region of intact, afferent glutamatergic neurons in hyperglyce-
mic mice, but not of receptors located on glutamatergic terminals contacting DMV neurons.
Glutamatergic NTS neurons form abundant intact, functional connections to DMV neurons in
the coronal slice [25, 38], representing a candidate for effects of NMDA receptor-dependent
modulation of glutamate release in the DMV. To determine if NMDA receptor-mediated func-
tion in upstream glutamatergic NTS neurons was increased in hyperglycemic mice, whole-cell
currents were recorded from medial NTS neurons in response to applied NMDA (Fig. 4). Re-
cordings were made from medial NTS neurons in GIN mice, targeting neurons that did not ex-
press EGFP (i.e., potentially non-GABAergic cells) in order to increase the likelihood of
recording from glutamatergic neurons. To isolate NMDA receptor-mediated responses, all re-
cordings were made with a Cs+-gluconate-based internal solution to block K+ currents and in
the presence of TTX (1–2 μM), PTX (100 μM), strychnine (1–2 μM), DTC (20 μM), and
CNQX (10 μM) to block action potentials and GABAA, nicotinic, and AMPA/kainate recep-
tors, respectively. When applying 300 μMNMDA to NTS neurons recorded while voltage-
clamped at a holding potential of -30 mV, significantly greater inward whole-cell current re-
sponses were observed in NTS neurons from hyperglycemic mice (259 ± 31 pA; n = 22) than
controls (175 ± 25 pA; n = 21; p<0.05; Fig. 4A and B). To account for cell size, current density
was calculated by normalizing individual responses to cell capacitance, which did not differ be-
tween animal groups (14.2 ± 0.8 pF controls, 13.2 ± 1.1 pF T1-diabetic; p = 0.45). When nor-
malized to cell capacitance, NTS neurons from mice with chronic hyperglycemia had
significantly greater NMDA-evoked current density (21.4 ± 3.2 pA/pF) than controls
(12.5 ± 1.2 pA/pF; p<0.01; Fig. 4C).

Using TaqMan based single cell RT-PCR, a subset of NTS neurons recorded from both con-
trol and hyperglycemic groups was identified as glutamatergic (i.e., expressed VGLUT2;
Fig. 4D). In this glutamatergic subpopulation of NTS cells, both NMDA-evoked whole-cell cur-
rent (75.4 ± 24.3 pA controls; 258.0 ± 18.6 pA hyperglycemic; p<0.01) and current density
(6.7 ± 2.2 pA/pF controls, 18.1 ± 2.4 pA/pF hyperglycemic mice; p<0.01) were significantly
greater in neurons from hyperglycemic (n = 6) than normoglycemic control (n = 5) mice
(Fig. 4B and C). Another subset of neurons expressed the housekeeping gene, β-actin, but ex-
pression of VGLUT2 was not detected (i.e., VGLUT2-negative; Fig. 4D). Current and current
density responses to NMDA were not different between groups in VGLU2-negative neurons
(p>0.05; n = 4 control and n = 5 hyperglycemic; Fig. 4B and C). This result suggests that
NMDA receptor sensitivity was enhanced in glutamatergic NTS neurons from diabetic mice,
consistent with the greater relative increase in glutamate release in the DMV of diabetic mice
in response to AP-5 application.

Voltage-dependence of soma-dendritic NMDA Receptors in NTS
neurons
Responses to NMDA were determined in neurons voltage-clamped at -30 mV, a potential pre-
sumed to reveal maximal NMDA receptor-mediated responses [13, 39]. To determine if the
voltage-dependence of the NMDA-induced responses differed between NTS neurons of
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control and hyperglycemic mice, a voltage step protocol was applied in a subset of neurons and
currents evoked by NMDA application (300 μM) were examined at multiple voltages.
NMDAR responses were recorded in the presence of PTX, TTX, strychnine, DTC and CNQX.
The current-voltage relationship was determined during the maximal NMDA receptor-

Fig 4. NMDA-mediated whole-cell current amplitude and current density in NTS neurons of control
and hyperglycemic mice. A. Representative traces depicting whole cell current responses to application of
NMDA (300 μM) in control and hyperglycemic mice (STZ). B. Average NMDA-mediated whole-cell current in
control and hyperglycemic mice of the overall NTS neuron population sampled (n = 21 controls, n = 22
hyperglycemic), VGLUT2-positive neurons (VGLUT2+; n = 5 controls, n = 6 hyperglycemic) and
VGLUT2-negative neurons (VGLUT2-; n = 4 controls, n = 5 hyperglycemic). * indicates significant difference
from control (all cells; p<0.05; Mann-Whitney U test); # indicates significant difference from VGLUT2
+ neurons in control mice (p<0.05; Mann-Whitney U test). C. Average NMDA-mediated current density in
control and hyperglycemic conditions of VGLUT2+, and VGLUT2- NTS neuron populations. * indicates
significant difference from NTS neurons from control mice (all cells; p<0.05); #, significant difference from
control VGLUT2+ neurons (p<0.05).D. Examples of transcript detection using single-cell qRT-PCR for
recorded VGLUT2+ and VLGUT2- neurons.

doi:10.1371/journal.pone.0121022.g004
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mediated response. When comparing the NMDA receptor-mediated current, calculated as the
current density at each voltage in NMDAminus the current density at each respective baseline
voltage, there was a significant increase in the current density in NTS neurons from hypergly-
cemic (n = 21) versus control (n = 12) mice at all voltages between -40 and 0 mV (p<0.05;
Fig. 5A).

Maximal activation of the NMDA receptor is thought to occur near -30 mV due to Mg2+

-dependent channel block [39], and our experimental results are therefore in agreement with
this response being NMDA-mediated. The current-voltage (I-V) curves exhibited a nonlinear
relationship, consistent with a voltage-sensitive response to NMDA (Fig. 5). The NMDA

Fig 5. Current-voltage response relationships in NTS neurons from control and hyperglycemic mice.
A. NMDA (300 μM) mediated current-voltage responses in control (n = 12 at -80 to 0 mV; n = 7 at -80 to 30
mV) and hyperglycemic mice (STZ; n = 21 at -80 to 0 mV; n = 9 at -80 to 30 mV). Asterisk indicates significant
difference from control (p<0.05; Mann-Whitney U test).B. Current-voltage responses confirming AP-5
sensitivity of NMDA-mediated current-voltage responses (n = 3; 2 control and 1 hyperglycemic).

doi:10.1371/journal.pone.0121022.g005
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response was reversible (n = 8 controls; n = 11 hyperglycemic; not shown), and NMDA receptor
specificity was confirmed using AP-5 in a subset of cells (2 control and 1 hyperglycemic), which
blocked the response (n = 3; Fig. 5B).

NMDA receptor subunit expression
The NR1 subunit is an obligatory NMDAR subunit [16]. An NR1 antibody raised against this
subunit was used to examine protein levels (normalized to β-actin) as a measure of differences
in the number of NMDA receptors in dorsal vagal complex mini-slices from control (n = 6)
and hyperglycemic (n = 6) mice (Fig. 6A and B). There was no statistical difference detected

Fig 6. NMDA receptor subunit expression in control and hyperglycemic mice. A. Representative examples of NR1 subunit and β-actin protein
expression in the dorsal vagal complex of control (n = 6) and hyperglycemic (STZ; n = 6) mice (bands to the left represent the protein ladder).B. Average
NR1 protein expression in the dorsal vagal complex of control and hyperglycemic mice. C. NMDA receptor subunit mRNA abundance in control (n = 6) and
hyperglycemic mice (n = 5), normalized to the three endogenous control genes β-actin, GAPDH and Hprt1.

doi:10.1371/journal.pone.0121022.g006
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between NR1 protein expression levels in normoglycemic control versus hyperglycemic mice
(P>0.05).

The mRNA expression of the seven known NMDA receptor subunits was quantitatively as-
sessed using nCounter NanoString technology. All genes were normalized to positive and nega-
tive internal controls. Genes of interest were subsequently normalized to the geometric mean
of the three endogenous control genes, β-actin, GAPDH and Hprt1. No differences in mRNA
expression were detected in any of the seven NMDA receptor subunits between control and hy-
perglycemic mice (Fig. 6C).

Discussion
In this study, potential mechanisms underlying persistently enhanced glutamate release in the
DMV of hyperglycemic mice were investigated. The EPSC frequencies reported here were ob-
served in the presence of a GABAA receptor antagonist to mitigate against possible GABA-
mediated network interactions [13, 38, 40, 41] and potential hyperglycemia-induced GABA re-
lease [27] that might influence glutamate release in the DMV. Animals were maintained in a
hyperglycemic state (i.e.,�300 mg/dl blood glucose) for at least seven and up to 10 days before
being used for electrophysiological and/or molecular experiments. Sustained hyperglycemia
seems likely to play a role in inducing receptor plasticity, as it does in the hippocampus [42,
43]. Alternatively, insulin tends to inhibit glutamate release in the DMV[44], so the removal of
insulin in this model by destruction of pancreatic β cells with STZ may also contribute to in-
ducing changes in NMDA receptor function. It is also conceivable that STZ could alter neural
function in the vagal complex through rapid neurotoxic effects of the drug, as occurs when it is
injected intracerebroventricularly [32, 45, 46]. However, Fluoro-JadeB labeling did not reveal
neuronal damage in the NTS in STZ-treated mice, implying that STZ-induced neurotoxicity
did not contribute to functional NMDA response changes. Further, any direct, non-neurotoxic
effect of STZ would have to be sustained (>10 days) if drug effects were responsible for the al-
teration in glutamate release and NMDA receptor function. Thus, altered NMDA receptor re-
sponsiveness in the mouse vagal complex seems likely to result from prolonged hyperglycemia/
hypoinsulemia in this model of type 1 diabetes, although other possibilities exist due to poten-
tially unappreciated effects of STZ.

The present results confirm the increase in mEPSC and sEPSC frequency in DMV neurons
from hyperglycemic mice reported previously [28], consistent with the conclusion that gluta-
mate release is enhanced in the DMV of mice after several days of chronic hyperglycemia, inde-
pendent of potential changes in synaptic inhibition. Variability of EPSC frequency is
inherently great between neurons in vitro, so detecting differences between groups required
relatively large numbers of samples from each treatment group to identify statistically signifi-
cant differences. The altered EPSC frequency, in the absence of a change in synaptic amplitude,
is consistent with the hypothesis that excitatory neurotransmission is enhanced presynaptical-
ly, either at the level of the glutamatergic synaptic terminal or the soma-dendritic region of pre-
synaptic glutamate cells contacting the DMV neuron. The increase in glutamate release
persisted after the relative glycemic levels in slices between normo-and hyperglycemic mice
were standardized to the levels in the ACSF used for recordings, suggesting that neural function
in this region is fundamentally altered after several days of hyperglycemia/hypoinsulemia in
STZ- treated mice.

Neurons in the vagal complex respond to acutely altered glucose concentration and their ac-
tivity can also influence blood glucose content. Subsets of dorsal vagal complex neurons and
primary viscerosensory synaptic terminals are glucose-sensitive [26, 27, 47, 48], consistent with
longstanding evidence that glucose-sensing neurons in this region regulate both feeding and
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blood glucose concentrations [49, 50]. Acutely, injection of glucose into the vagal complex in-
hibits gastric motility and increases intragastric pressure, most likely by inhibiting activity of
DMV neurons [27]. Acute changes in glucose concentration can also induce trafficking of sero-
tonin 5-HT3 receptors on gastrointestinal primary vagal afferent neurons—but not those in-
nervating the heart—to allow for rapid modification of primary gastric vagal afferent signals
[51]. Many neurons recorded here were likely related to gastrointestinal function, but afferents
relaying other types of visceral information also impinge on NTS neurons. Identifying the vis-
ceral association of neurons in which NMDA receptor responses are modified will be useful in
identifying central effects of hyperglycemia with regard to specific parasympathetic functions.
The glucose concentration used for the present experiments (11 mM) corresponds to ~198 mg/
dl, which is within the normal blood glucose concentration range for fed control mice, but is
lower than that for hyperglycemic mice. Notably, this is higher than the glucose concentration
measured by microdialysis in other glucose-sensitive brain regions, like the ventromedial hypo-
thalamus, in vivo (~1.4 mM) [52]. The dorsal vagal complex is inundated with fenestrated
capillaries, and there is ample evidence to indicate that the blood brain barrier is permeable to
large circulating molecules, including glucose, in this region [6–8]. This implies that glucose
levels in the vagal complex may more closely reflect those found in the blood. Since the glucose
concentration in the ACSF was identical in experiments from control and hyperglycemic mice
(i.e., it was standardized), enhanced NMDA receptor-mediated responses probably reflect cel-
lular changes that are maintained, even after glucose is normalized. Experiments to determine
acute effects of glucose concentration on NMDA-mediated responses in hyperglycemic mice
were not performed, but might yield information about temporal aspects of hyperglycemia-re-
lated NMDA receptor plasticity.

NMDA receptors have been studied extensively for their involvement in enhancing excit-
atory neurotransmission under pathological conditions [53, 54]. Activation of NMDA recep-
tors located on glutamatergic synaptic terminals was identified previously as a means of
modulating glutamate release tonically in the DMV [20]. Responses recorded in the presence
of TTX indicated that preNMDA receptors were active tonically in both control and diabetic
mice. The relative contribution of preNMDA receptors to tonic glutamate facilitation, however,
was similar between cells from diabetic and control mice. This result argues against altered pre-
NMDA receptor function contributing directly to the enhanced mEPSC frequency observed in
hyperglycemic mice. When action potentials were not blocked, however, antagonism of
NMDA receptors resulted in a greater decrease in sEPSC frequency in DMV neurons from hy-
perglycemic mice relative to normoglycemic controls, suggesting effects at soma-dendritic re-
ceptors of neurons with intact projections to the DMV.

The activity of DMVmotor neurons is tightly regulated by synaptic inputs, largely arising
from GABA and glutamate neurons of the adjacent NTS [23, 31, 38, 55], and functional, intact
glutamatergic synaptic connections from NTS neurons to DMVmotorneurons are maintained
in the brainstem slice preparation used in this study [25, 55]. NMDA-mediated whole-cell cur-
rent amplitude and current density was greater in NTS neurons of hyperglycemic mice relative
to controls. The differences between groups were consistent in VGLUT2-expressing NTS neu-
rons, indicating that increased NMDA receptor-mediated responses in glutamatergic NTS neu-
rons represent a hallmark of altered dorsal vagal complex function in hyperglycemic mice.
Further examination is required to determine if other endogenous properties of NTS glutamate
neurons (e.g., membrane potential, input resistance, action potentials, etc.) are altered in mice
with hyperglycemic.

Differences in response to NMDA between groups were also detected across the broader
NTS neuronal population. The NTS includes a number of prominent phenotypes in addition
to glutamate, including GABAergic, catecholeminergic, and peptidergic cell types. Using GIN
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mice, somatostatin-expressing GABAergic neurons could be identified in slices and were pur-
posefully not targeted for recording in order to enhance the probability of recording from
VGLUT2+ neurons. Consequently, the broader NTS population sampled represents a biased
population in these studies, which omitted a large subset of inhibitory neurons. Whereas re-
sponses in this unidentified NTS neuron population exhibited significant differences between
cells from normo- and hyperglycemic mice, the response amplitude in identified VGLUT2
+ subset of neurons in hyperglycemic mice was less variable. In neurons identified as
VGLUT2-negative (β-actin positive), a wide range of responses to NMDA application was ob-
served and the overall NMDA effect was not different in VGLUT2-negative cells from hyper-
glycemic and control mice. Although NMDA response differences in other cell phenotypes
cannot be disregarded, NMDA sensitivity in identified glutamatergic NTS neurons was signifi-
cantly and consistently enhanced in mice with chronic hyperglycemia.

The possible mechanisms underlying the observed differences in NMDA receptor modula-
tion of whole-cell current responses in NTS neurons from hyperglycemic mice are manifold.
Metabolically-induced structural reorganization of glutamatergic synapses increases sEPSC fre-
quency in hypothalamic neurons [56], and similar structural changes could contribute to the
increased glutamate release observed in DMV neurons of hyperglycemic mice. The total num-
ber of NMDA receptors should be reflected by the expression of the NR1 subunit, since incor-
poration of this subunit is obligatory for functional NMDA receptor assembly [54]. But protein
expression of the NR1 subunit was not statistically different between control and hyperglyce-
mic mice, suggesting that large-scale increases in NMDA receptor-containing synapses did not
occur. Likewise, receptor subunit reorganization on NTS neurons, which could affect channel
conductance or Mg2+-sensitivity, should reflect altered mRNA levels for the respective sub-
units, which was also not detected. As a caveat to these findings, mini-slices of the dorsal vagal
complex used for this analysis contained the entire dorsal vagal complex and parts of other
dorsal brainstem regions. The lack of significant differences in NR1 protein or subunit mRNA
expression between mini-slices from hyperglycemic and control mice may reflect, at least in
part, the heterogeneous phenotype of the cell population included in mini-slices, especially if
changes were restricted to the glutamatergic subpopulation.

Other factors, including posttranslational modification or trafficking of receptors could also
be involved [16, 30]. NMDA receptor conductance is regulated by the activity of various ki-
nases and phosphatase that alter receptor phosphorylation state, leading to a diverse array of
functional changes in NMDA receptors, including prolonged open probability, increased con-
ductance, and trafficking between membrane and intracellular compartments [57–59] and
could likewise contribute to enhanced NMDA-mediated responses observed in NTS neurons
from hyperglycemic animals. Receptor trafficking can occur relatively rapidly in the dorsal
vagal complex [5, 28], and occurs in this model of type 1 diabetes, where TRPV1 receptors are
internalized after several days of hyperglycemia/hypoinsulemia and can be trafficked to the
membrane of synaptic terminals by exposure to insulin [28]. Enhanced responses to NMDA
could likewise involve trafficking of NMDA receptors as a result of metabolic changes in
hyperglycemic mice.

Vagally-mediated visceral function can be compromised in chronically hyperglycemic ani-
mal models or human patients with either type 1 or type 2 diabetes [9–11, 60]. Decreased para-
sympathetic visceral tone resulting from vagal atonia leads to a number of outcomes
detrimental to maintenance of metabolic homeostasis, including elevated hepatic gluconeogen-
esis and diabetic gastroparesis (diabetic gastropathy). Normally, GABAergic input from the
NTS to DMV neurons dominates the tonic regulation of vagal output, whereas glutamatergic
regulation is thought to be more phasic in nature, being associated with specific viscerosensory
stimuli [5]. Significant, sustained modulation of excitatory synaptic function in the DMV after
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several days of chronic hyperglycemia thus implies a fundamental change in the balance of syn-
aptic input to vagal motor neurons, at least a portion of which is due to tonically-enhanced
NMDA receptor function in glutamatergic NTS neurons that project to the DMV. NMDA re-
ceptor plasticity might therefore represent a homeostatic compensatory response to chronic
hyperglycemia associated with type 1 diabetes. A sustained increase in glutamatergic, excitatory
synaptic drive to DMVmotor neurons in diabetic mice would be expected to enhance the tonic
influence of glutamate in the DMV and increase vagal output, leading to diminished hepatic
gluconeogenesis and/or enhanced output to the exocrine pancreas, as well as attenuation of di-
abetic gastroparesis [10, 11]. The persistent upregulation of glutamate release probably outlasts
hyperglycemic periods and could contribute to continued visceral dysregulation after normali-
zation of glucose levels in patients (e.g., by insulin). Chronic dysregulation of visceral autonom-
ic control may contribute to development of insulin resistance and type 2 diabetes [61],
underscoring the importance of understanding how to regulate vagal output when systemic
glucose levels fluctuate. A better understanding of the mechanisms involved in potentiating
NMDA receptor mediated function may provide clues to re-establishing autonomic control in
diabetic patients.
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