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Introduction
Rheumatoid arthritis (RA) is a chronic autoimmune
disease characterized by a relapsing and remitting course
of joint inflammation. The chronic inflammation process
leads to an excessive hyperplasia of the synovium with
proliferation of the synovial lining cells, the generation of
new blood vessels, and diffusely scattered or nodular
mononuclear cell infiltrates. The proliferation and invasive
growth of fibroblast-like cells of the synovium (fibroblast-
like synoviocytes; SFCs) results ultimately in the destruc-
tion of the joint [1,2]. Cytokines such as interleukin
(IL)-1β or tumour necrosis factor-α (TNF-α) are known to
be involved in the perpetuation of the chronic inflamma-
tion in RA [3–6]. Overproduction of the proinflammatory
cytokine IL-17 was detected in the RA synovium com-
pared with patients with osteoarthritis [7,8]. IL-17 is a
20–30 kDa glycosylated, homodimeric polypeptide
secreted by CD4+ activated memory (CD45RO+) T cells

[9,10]. In the context of arthritis, the effects of IL-17 were
associated with joint inflammation and destruction
because of the IL-17-stimulated production of MMP-1
and MMP-9 and degradation of proteoglycan, and the
IL-17-increased expression of IL-6 and leukemia inhibitory
factor in SFCs [11–14]. Recently we showed the
increased expression of CXC chemokines such as IL-8,
GRO-α and GRO-β after stimulation of SFCs with IL-17
[15]. A blockade of IL-17 in vivo by treatment with a
fusion protein of IL-17 receptor with human IgG1 Fc in
adjuvant-induced arthritis decreased joint inflammation
and bone erosion [16].

To gain knowledge about the effects of IL-17 in SFCs of
patients with RA, we studied the expression and modula-
tion of selected genes differentially expressed after stimu-
lation with IL-17. Our results show that IL-17 is an
important member of the cytokine network involved in RA.

BMP-6 = bone morphogenetic protein-6; IL-17 = interleukin-17; MAPK = mitogen-activated protein kinase; RT–PCR = reverse transcriptase–
polymerase chain reaction; RA = rheumatoid arthritis; SFC = fibroblast-like synoviocytes; TBST = tris-buffered saline containing Tween 20; 
TNF-α = tumour necrosis factor-α; TSG-6 = product of TNF-stimulated gene-6.
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Abstract

Interleukin-17 (IL-17) has been characterized as a
proinflammatory cytokine produced by CD4+ CD45RO+

memory T cells. Overproduction of IL-17 was detected in the
synovium of patients with rheumatoid arthritis (RA) compared
with patients with osteoarthritis. This study examines
differentially expressed genes after the stimulation of fibroblast-
like synoviocytes of RA patients by IL-17. Among these genes
we identified the following: tumor necrosis factor-stimulated
gene-6 (TSG-6), IL-6, IL-8, GRO-β, and bone morphogenetic
protein-6 with an expression 3.6–10.6-fold that in the

unstimulated control. IL-17 augmented the expression of
TSG-6, a hyaluronan-binding protein, in a time- and dose-
dependent manner. IL-17 showed additive effects with IL-1β
and tumour necrosis factor-α on the expression of TSG-6, IL-6
and IL-8. The mitogen-activated protein kinase p38 seems to
be necessary for the regulation of TSG-6 expression by IL-17,
as shown by inhibition with SB203580. Our results support the
hypothesis that IL-17 is important in the pathogenesis of RA,
contributing to an unbalanced production of cytokines as well
as participating in connective tissue remodeling.
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Materials and methods
Cell culture
SFCs were obtained from nine patients with classical or
definite RA (range of ages 27–71 years, with a mean age
(± SEM) of 51.9 ± 16.4 years) undergoing surgical syn-
ovectomy, by dissociating the minced tissue enzymati-
cally with HBSS (Hank’s buffered saline solution)
containing 0.5 mg/ml collagenase type II (Sigma, Deisen-
hofen, Germany), 0.15 mg/ml DNase I (Boehringer
Mannheim, Germany) and 5 mM Ca2+. The cells were cul-
tured in RPMI 1640 medium containing 10% fetal calf
serum, antibiotics and glutamine, as described previously
[17]. Cells were used at confluence at the third to fifth
passage. The inhibitors calphostin C (20 µg/ml; Sigma,
Deisenhofen, Germany), PD98059 (10 µM; Alexis, Grün-
berg, Germany), SB203580 (1 µM; Calbiochem, Schwal-
bach, Germany) and genistein (10 µg/ml; Gibco BRL,
Karlsruhe, Germany) were added to the cultures 30 min
before incubation with IL-17. Rabbit neutralizing poly-
clonal anti-hIL-17 antibody (2 µg/ml; Cell Concepts) was
co-incubated for 30 min with recombinant IL-17 and
added to the cultures.

cDNA synthesis and cDNA array
Isolation of total cellular RNA was described previously
[18]. RNA was treated with DNase I (Qiagen) and resus-
pended in water. The first strand of DNA was synthesized
(after a 10 min incubation at 20°C) at 42°C for 50 min by
using 500 ng of total RNA in 5.5 µl of diethyl pyrocarbon-
ate water (0.1% diethyl pyrocarbonate-treated water), 2 µl
of 5 × first-strand buffer (250 mM Tris/HCl pH 8.3,
375 mM KCl, 15 mM MgCl2), 0.5 µl of dNTP mix (10 mM
of each of dATP, dCTP, dGTP, and dTTP), 1 µl of 0.1 M
dithiothreitol, 0.5 µl (50 pmol) of random primer (Roche,
Mannheim, Germany), and 0.5 µl of Superscript™ II-RT
(200 U/µl; Invitrogen, Karlsruhe, Germany). For quantita-
tive RT–PCR, standard RNA and total RNA were con-
verted into cDNA in separate tubes in triplicate.

Total RNA (4-µg, pooled from cultured SFCs of a female
RA patient 41 years old) served as starting material for
the preparation of a [α-32P]dCTP-labeled cDNA with the
cDNA Synthesis Primer Mix (Clontech). For investigating
differential gene expression, cDNA was hybridized to the
Atlas™ Human 1.2 Array (Clontech) in accordance with
the user manual. This array includes 1176 human
cDNAs, housekeeping genes and negative controls
immobilized on a nylon membrane. After hybridization
and washing, the array membrane was exposed to a
phosphorimaging screen. Data analysis was performed
with AtlasImage Software 1.0. Expression values of tran-
scripts were normalized to the total signal intensity on
the membrane. In agreement with the indications of the
manufacturers, transcripts with a ratio of normalized
expression levels of more than 2 or less than 0.5 were
regarded as modulated.

Construction of RNA standards
The standards were constructed by previously described
procedures [15]. In brief, for the construction of standard
RNA, a composite primer was synthesized (see Table 1 for
primer sequences). Primer 1 contained a sequence for the
SP6 RNA polymerase and also one of the specific
sequences of the appropriate gene. The product of the
PCR amplification with primers 1 and 2 was gel-purified
(QIA quick Gel Extraction Kit; Qiagen, Hilden, Germany)
followed by transcription in vitro by the SP6 promoter with
the Roche transcription system. The recombinant RNA
was quantified by the measurement of A260 and used as a
standard (after cDNA synthesis) in the quantitative
RT–PCR reaction.

Quantitative PCR analysis
For quantification, 1 µl of the reverse transcriptase reac-
tion mixture was added to 25 µl of reaction mixture con-
sisting of 1 × reaction buffer, 1.5 U of Taq polymerase
(Qiagen), 1.8 mM MgCl2, 0.1 × SYBR Green (Biozym,
Hess. Oldendorf, Germany), dNTPs (each at 200 µM), and
primers 3 and 2 (each at 0.5 µM) (Table 1). A negative
control without template was included. Samples of six
dilutions of the standard cDNA and of the target cDNA
were run in triplicate in a Rotor-Gene 2000 (LTF, Wasser-
burg, Germany). Initial denaturation at 95°C for 300 s was
followed by 40 cycles denaturation at 95°C for 15 s,
annealing at 60°C for 30 s, and elongation at 72°C for
20 s. The fluorescence intensity of the double-strand-spe-
cific SYBR Green, reflecting the amount of PCR product
formed, was read after each elongation step at 82°C. RNA
amounts were determined with the software Rotor-Gene
version 4.04 in quantitation mode.

Western blotting
Supernatants of IL-17-treated SFCs (20 ng/ml) were col-
lected and, after being washed twice with ice-cold PBS,
cells were harvested by scraping into ice-cold RIPA buffer
(1 × PBS, 1% Nonidet P40, 0.5% sodium deoxycholate).
Inhibitors were added in the following concentrations:
1 mM PMSF, 1 µg/ml aprotinin, 1 µg/ml leupeptin, 1 µg/ml
pepstatin, 1 mM Na3VO4, and 1 mM NaF (Sigma). The cell
lysate was transferred to microcentrifuge tubes and incu-
bated on ice for 60 min; centrifugation was for 20 min at
14,000 r.p.m. and 4°C. Protein concentration in the super-
natant was quantified with the BCA (bicinchoninic acid)
Protein Assay Reagent Kit (KMF, Leipzig, Germany), and
40 µg of cell lysate protein or cell culture supernatant was
used for Western blot analysis. Proteins were electroblot-
ted from NuPAGE gels (NOVEX, Frankfurt-Hoechst,
Germany) onto Hybond ECL (enhanced chemilumines-
cence) membrane (Amersham, Freiburg, Germany). The
membrane was blocked for 1 hour with 5% milk in Tris-
buffered saline containing Tween 20 (TBST; pH 7.5, 0.1%
Tween 20) at 23 ± 2°C. Blots were incubated with the
primary antibody (against TNF-stimulated gene-6
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[anti-TSG-6], 1:1000 dilution; kindly provided by Dr MT
Bayliss, Oxford, UK) in TBST with 5% milk at 23 ± 2°C for
2 hours. Blots were washed three times and then incu-
bated for 1 hour with the secondary antibody (1:1000
dilution; Dianova, Hamburg, Germany) coupled with
horseradish peroxidase. Immunodetection was accom-
plished with ECL Western blotting detection reagents
(Amersham) for chemiluminescent detection. Immunoreac-
tivity was quantified by scanning densitometry with the
software Scan Pack version 3.0 (Biometra).

Measurement of IL-6 and IL-8
SFCs were cultured for 72 hours in the presence of
20 ng/ml IL-17. Supernatants were collected and assayed
for IL-6 and IL-8 with the Chemiluminescence-Enzyme
Immunoassay System, Immulite (DPC Biermann, Bad
Nauheim, Germany).

Statistical analysis
Data are expressed as means ± SEM. The Wilcoxon rank
sum test was used to determine whether two experimental
values were significantly different.

Results
Transcriptional activation by IL-17
Cultured SFCs were stimulated for 24 hours with
20 ng/ml IL-17 and differentially expressed genes were
analyzed with cDNA array technology. As expected, a set
of stimulated transcripts was represented by cytokines
and growth factors, including IL-6, IL-8, GRO-β, and bone
morphogenetic protein-6 (BMP-6). For the first time we
identified the gene of hyaluronan-binding protein TSG-6

as an IL-17-target gene. The expression of the oncogene
c-myc was downregulated. The differential expression of
the genes was verified by real-time RT–PCR. As shown in
Figure 1, we confirmed the upregulation of transcripts of
IL-6 (4.2-fold), IL-8 (7.06-fold), GRO-β (10.6-fold), and
BMP-6 (3.67-fold) in SFCs obtained from six different RA
patients. The mRNA expression of TSG-6 was 4.08-fold
higher after stimulation with IL-17 in SFCs of nine different
patients with RA. Furthermore, we confirmed the inhibition
of c-myc expression.

IL-17 shows additive effects with IL-1ββ and TNF-αα on the
expression of IL-6 and IL-8
To confirm the array data and the results of real-time
RT–PCR on the protein level, we measured the secretion
of IL-6 and IL-8 in SFCs after stimulation with IL-17
(20 ng/ml). After 72 hours, the secreted IL-6 and IL-8
amounts were 40.4-fold and 27.7-fold, respectively, those
of the untreated control SFCs. We detected an increase
in IL-6 level after stimulation with IL-1β (10 ng/ml) and
TNF-α (10 ng/ml) to 372-fold and 109-fold, respectively,
and in combination with IL-17 to 434-fold and 432-fold,
respectively. We also found an augmentation of IL-8
protein secretion after treatment with IL-1β or TNF-α to
1185-fold and 295-fold, respectively. Combinations of
IL-1β and IL-17, or TNF-α and IL-17, showed additive
effects on IL-8 secretion of 1654-fold and 1593-fold,
respectively (Fig. 2).

Upregulation of hyaluronan-binding protein TSG-6 by IL-17
To learn more about the IL-17-stimulated expression of
TSG-6, we studied the effect of different IL-17 concentra-

Table 1

Sequences of primers used for standard construction and PCR amplification

Gene Number Sequence 5′→3′

TSG-6 1 GAT TTA GGT GAC ACT ATA GAA TAC CCA GGC TTC CCA AAT GAG TA

2 TTG ATT TGG AAA CCT CCA GC

3 CCA GGC TTC CCA AAT GAG TA

GRO-β 2 GGC CAT TTT CTT GGA TTC CT

3 CCG AAG TCA TAG CCA CAC TC

IL-6 2 GAA GAG CCC TCA GGC TGG ACT G

3 AGT AAC TCC TTC TCC ACA AGC GC

IL-8 2 TCT CAG CCC TCT TCA AAA ACT TCT C

3 ATG ACT TCC AAG CTG GCC GTG GCT

BMP-6 2 CAC CAT GAA GGG CTG CTT AT

3 GGA CAC CCG TGT AGT ATG GG

c-myc 2 GCT GCT ATG GGC AAA GTT TC

3 AGT AAT TCC AGC GAG AGG CA

BMP-6, bone morphogenetic protein-6; IL, interleukin; TSG-6, product of tumour necrosis factor-stimulated gene-6.



tions (1–100 ng/ml) and of different incubation times
(3–48 hours). After 24 hours of IL-17 incubation, signifi-
cantly higher TSG-6 mRNA levels were observed at IL-17
concentrations between 20 and 100 ng/ml (Fig. 3). We
also quantified the transcript level of TSG-6 after IL-17
stimulation with combinations of the cytokines IL-1β and
TNF-α. As shown in Figure 4, we detected an upregulation
of TSG-6 expression with IL-1β (11.1-fold) as well as with
TNF-α (12.9-fold), whereas with IL-17 (20 ng/ml) alone
the increase in TSG-6 amount was 4.08-fold. Combina-
tions of IL-1β and IL-17, or TNF-α and IL-17, showed addi-
tive effects on TSG-6 expression of 13.6-fold and

16.6-fold, respectively. An IL-17 concentration of 50 ng/ml
also synergized with IL-1β and TNF-α to induce the
TSG-6 transcript levels. Co-incubation with an anti-IL-17
antibody markedly decreased the IL-17-induced expres-
sion of TSG-6 mRNA.

Having observed IL-17-mediated TSG-6 transcript stimula-
tion, it was important to assess whether protein production
was, in fact, stimulated. As shown in Figure5, and in agree-
ment with mRNA data, exposure of SFCs to 20ng/ml IL-17
for 48 hours was a potent inducer of TSG-6 protein
secreted in the cell culture supernatant (shown in Fig.5) as
well as in the cell extract (data not shown). TSG-6 was
detected in both its 35 and 120kDa forms; the latter was
identified as a complex of TSG-6 with the serum protein
inter-α-inhibitor. The concentrations of both forms were

Available online http://arthritis-research.com/content/5/4/R186

R189

Figure 2

Combined effects of IL-17 (20ng/ml) plus IL-1β (10ng/ml) or IL-17 plus
TNF-α (10ng/ml) on the expression of IL-6 and IL-8. Fibroblast-like
synoviocytes were cultured for 72 hours in the presence of cytokines,
and the concentrations of IL-6 or IL-8 in supernatants were determined.
Measurements were made on synoviocytes from four different patients.
*P<0.05 in comparison with the results of IL-17 stimulation.
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Figure 3

IL-17 stimulates the expression of TSG-6 mRNA. (a) Time course of
TSG-6 mRNA expression after stimulation with 20 ng/ml IL-17.
(b) Dose-dependent stimulation of TSG-6 mRNA expression after
stimulation with IL-17 for 24 hours. Results of quantitative RT–PCR are
given as percentages of the basal control (culture without IL-17 set at
100%). Results are from four different patients, each measured in
duplicate. *P < 0.05 in comparison with the unstimulated control.
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Figure 1

IL-17-induced gene expression. Fibroblast-like synoviocytes were
cultured for 24 hours in the presence of IL-17 (20 ng/ml). Results of
quantitative RT–PCR. Six different patients were measured each in
duplicate, apart from nine different patients for TSG-6 measurements.
*P < 0.05 in comparison with the unstimulated control.
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increased in response to IL-17. Additive effects of IL-17
and IL-1β were observed for all patients tested, whereas
with TNF-α we detected in four of six patients additive
effects in TSG-6 protein expression (Fig.5).

To investigate further the intracellular signaling pathways
activated by IL-17 (20 ng/ml) and responsible for inducing

TSG-6 expression, SFCs were preincubated separately
with cell-permeable inhibitors of MAP kinase/ERK
kinase-1/2 (PD98059), p38 (SB203580), protein
kinase C (calphostin C), and tyrosine kinase (genistein),
followed by the addition of IL-17 and then an analysis of
TSG-6 mRNA concentration. Only the inhibitor
SB203580 significantly decreased the mRNA expression
of TSG-6 stimulated by IL-17 in SFCs; with genistein,
calphostin C, and PD98059 we measured no significant
decrease in the amount of TSG-6 mRNA (Fig. 6).

Discussion
IL-17 was found at high levels in the RA synovium, and the
concentration of this cytokine in synovial fluid of RA
patients is elevated [7,8]. For the first time we identified an
increase in TSG-6 after stimulation of SFCs with IL-17.
TSG-6 is a hyaluronan-binding protein found in the syn-
ovial fluids of arthritis patients. TSG-6 has a significant
homology to the hyaluronan-binding regions present in
cartilage link protein, aggrecan, and the adhesion receptor
CD44 [19]. The 35 kDa glycoprotein has a role in extracel-
lular matrix remodeling, leucocyte migration, and cell prolif-
eration [20–22]. TSG-6 forms a covalent complex with the
serine protease inhibitor inter-α-inhibitor, and thereby
increases its anti-plasmin activity. This suggests a role for
TSG-6 in the regulation of the plasmin/plasminogen acti-
vator system and therefore the control of growth factor
and matrix metalloproteinase activation [23,24]. In TSG-6
transgenic mice with an antigen-induced arthritis, TSG-6
shows a cartilage-specific constitutive expression and pro-
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Figure 5

Combined effects of IL-17 (20 ng/ml) plus IL-1β (10 ng/ml) or IL-17
(20 ng/ml) plus TNF-α (10 ng/ml) on the expression of TSG-6 protein.
Fibroblast-like synoviocytes (SFCs) were cultured for 48 hours with the
cytokines indicated below. Cells were lysed, separated, blotted, and
probed with a TSG-6 antibody as described in Materials and methods.
Lanes 1–6, SFCs of patient 1; lanes 7–12, SFCs of patient 2. Lanes 1
and 7, control; lane 2, IL-17; lanes 3 and 8, IL-1β; lanes 4 and 9, IL-17
plus IL-1β; lanes 5 and 10, TNF-α; lanes 6 and 11, IL-17 plus TNF-α;
lane 12, IL-17 plus anti-IL-17 antibody. The intensity was analyzed
densitometrically and normalized to the intensity of the appropriate
control.
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Figure 6

Effects of protein kinase inhibitors on the expression of TSG-6 mRNA.
Fibroblast-like synoviocytes were cultured for 24 hours with or without
IL-17 (20 ng/ml) and the appropriate inhibitor. Total RNA (0.5 µg) was
used for cDNA synthesis in a volume of 10 µl; 1.5 µl of the synthesized
cDNA was used for real-time PCR as described. Results are given as a
percentage of the basal control (culture without cytokine set at 100%).
Results are from four different patients, each measured in duplicate.
*P < 0.05 in comparison with the results of IL-17 stimulation.
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TSG-6 mRNA. Results of quantitative RT–PCR are given as
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Results are from six different patients, each measured in duplicate.
*P < 0.05 in comparison with the results of IL-1 stimulation.
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vides chondroprotective, but not anti-inflammatory, effects
[25]. Similar results were obtained in TSG-6 transgenic
mice with collagen type II-induced arthritis. TSG-6 was
locally expressed at sites of inflammation and joint
destruction, and resulted in potent inhibition of joint
destruction [26]. These findings support the hypothesis
that endogenously produced TSG-6 can be part of a neg-
ative feedback loop in the inflammatory response [21].
IL-17 most probably has a dual role at sites of inflamma-
tion, supporting the local inflammatory response but simul-
taneously delivering the anti-inflammatory TSG-6 protein.

Among the set of upregulated genes after treatment with
IL-17, as expected we found IL-6 and the CXC
chemokines IL-8 and GRO-β. IL-6, a pleiotropic cytokine
in rheumatoid joints produced predominantly by SFCs and
synovial macrophages, has a major role in cellular activa-
tion [27,28]. CXC chemokines are potent neutrophil
chemoattractants and have been detected in synovial
fluids, synovial tissues, and sera of RA patients (reviewed
in [29]). With the use of cDNA microarray technology in
RA tissue, high chemokine expression has been verified,
including that of the CXC chemokines IL-8 and GRO-α
[30]. IL-8 induces synovial inflammation [31], might be
involved in the regulation of collagen turnover in SFCs
[32], and can stimulate angiogenesis [29].

Furthermore, we identified the BMP-6 gene as a gene
upregulated by IL-17. BMP-6 is a member of the trans-
forming growth factor-β superfamily with a role in chondro-
genesis and the osteoblastic diffentiation process and
also serves as a mediator of estrogen’s osteogenic action
[33–35]. The expression of the proto-oncogene c-myc is
not disease-specific in synovial cells because equal levels
in samples of patients with RA or osteoarthritis have been
reported [36]. Interestingly, antisense oligonucleotides of
c-myc can induce apoptosis and downregulation of Fas
expression in synoviocytes [37].

The present study demonstrates the potency of IL-17, IL-1β,
and TNF-α alone and also in combination to induce the syn-
thesis of IL-6, IL-8, and TSG-6 by SFCs. The three cytokines
activate the common transcription factor NF-κB in SFCs and
in a variety of other cell types [15]. Indeed, combination of
IL-17 with IL-1β often leads to synergistic or additive effects
[9,11,38,39]. In contrast, Lubberts et al. reported an IL-1-
independent role of IL-17 in synovial inflammation and joint
destruction in the autoimmune collagen-induced arthritis
model. Local overexpression of IL-17 in the knee joint of mice
immunized with collagen type II resulted in elevated levels of
IL-1β in the synovium. Blocking IL-1 with neutralizing antibod-
ies had no effect on the IL-17-induced inflammation and joint
damage, implying a pathway independent of IL-1 [40]. The
interaction of the cytokines IL-1β, IL-17, and TNF-α sus-
tained inflammatory processes within the joint and amplified
the involvement of T cells in the pathogenesis of RA.

We and others have found that IL-17 is capable of stimu-
lating the mitogen-activated protein kinase (MAPK) signal-
ing pathways ERK1/2 and p38 as well as the NF-κB
pathway [41–43]. However, with the inhibitors genistein,
calphostin C, or PD98059 we observed no significant
decrease in the amounts of TSG-6 mRNA. MAPK p38
seems necessary for the expression of TSG-6, shown by
inhibition with SB203580, and is involved in the IL-17-
enhanced production of inducible nitric oxide synthase
and secretion of chemokines [15,42], and has a role in the
MMP-9 expression induced by IL-17 [14].

Conclusion
Our results support the hypothesis that IL-17 might have a
significant role in the pathogenesis of RA and might con-
tribute to an unbalanced production of cytokines as well
as participating in connective tissue remodeling. However,
a deeper understanding of the effects of the IL-17 seems
necessary for the understanding of its functions as well as
for a development of therapeutic approaches including
IL-17 and IL-17 receptor as a target.
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