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Learning (from) the errors of a 
systems biology model
Benjamin Engelhardt1, Holger Frőhlich1 & Maik Kschischo2

Mathematical modelling is a labour intensive process involving several iterations of testing on real data 
and manual model modifications. In biology, the domain knowledge guiding model development is in 
many cases itself incomplete and uncertain. A major problem in this context is that biological systems 
are open. Missed or unknown external influences as well as erroneous interactions in the model could 
thus lead to severely misleading results. Here we introduce the dynamic elastic-net, a data driven 
mathematical method which automatically detects such model errors in ordinary differential equation 
(ODE) models. We demonstrate for real and simulated data, how the dynamic elastic-net approach can 
be used to automatically (i) reconstruct the error signal, (ii) identify the target variables of model error, 
and (iii) reconstruct the true system state even for incomplete or preliminary models. Our work provides 
a systematic computational method facilitating modelling of open biological systems under uncertain 
knowledge.

Mathematical models of living systems are increasingly used in systems biology to gain important biological 
insights and to make testable predictions1–3. Ideally, a good model covers the essential features of the system 
whilst still being simple enough for interpretation and mechanistic understanding. Developing a good model is 
usually a labour intensive manual effort. In biology, the system to be modelled is often only partially known and 
the distinction of relevant and irrelevant features and variables can be difficult4–8. But, even if the major compo-
nents of a biological system are well known, the sheer complexity of the system might prevent the development 
of an accurate mathematical model, either because the quantitative data necessary for modelling are not available 
or because the model is itself too complex to be useful. Thus, researchers in systems biology are frequently con-
fronted with a paradoxical situation: A model is needed to better understand the system and to design informa-
tive experiments, but the system is too large and complex for mathematical modelling given the limited amount 
of knowledge, data and time.

One strategy for modelling is to start with a simple model, which incorporates the most interesting variables 
and interactions as well as the known input stimuli to the system (Fig. 1a). For example, to model a biochemical 
reaction network, we might incorporate the concentrations of a few interesting proteins as dynamic state variables 
and integrate the knowledge about the reactions into simplified assumptions about the interactions between these 
states. We refer to this simple draft model as the nominal system.

There are two reasons, why the nominal model might not be in sufficient agreement with the experimental 
data (Fig. 1b): First, some interactions between the nominal state variables could be missing or misspecified. For 
a reaction network that means there are missing biochemical reactions, incorrect assumptions about the reac-
tion kinetics or inaccurate parameter estimates. Second, the nominal system is in fact—opposed to the typical 
situation in many areas of physics—open and embedded into a larger dynamic system9. Exogenous variables, 
which are not incorporated, but interact with the nominal model might act as hidden inputs and thereby alter the 
dynamics of the nominal system. It is the task of the modeller to first identify the most relevant errors in the nom-
inal model and then compare different model versions in order to achieve a better fit to the available experimental 
data. This process is labour intensive and in many cases a trial and error exercise, even with the help of innovative 
software and algorithms assisting modelling and model comparison5–7,10–14.

Here, we introduce a computational method for ordinary differential equations (ODEs), which automatically 
estimates the model error from the data. ODEs are frequently used in different areas of biology including bio-
chemical reaction networks, pharmacokinetics, pharmacodynamics and population dynamics.
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The basic idea of the method is to represent errors in the nominal model as hidden inputs to the state varia-
bles (Fig. 1c) and to estimate these inputs from the experimental data8,15–17. Since this is an inverse problem with 
potentially many different solutions, we propose a regularised method which provides parsimonious error esti-
mates. Due to its formal similarity to the elastic-net regression approach18, we term our algorithm the dynamic 
elastic-net.

The dynamic elastic-net provides important information about the variables in the nominal model, which 
are targeted by model errors. In addition, the dynamic elastic-net removes the bias in the nominal state variables 
induced by the model error. This is important for the frequent situation, that not all nominal states (e.g. protein 
concentrations) can directly be measured. The utility of the dynamic elastic-net is demonstrated here for two 
established models of the EPO receptor4 and of the photomorphogenic UV-B signalling network19. Further exam-
ples including a model for G protein signalling and models for several network motifs as well as some technical 
details are given in Supplementary text.

Results
The nominal model. We assume that a nominal ODE model

( ) = ( ( ), ( )) ( )
∼



 x f x ut t t 1a

( ) = ( ( )) ( )y h xt t 1b

( ) = ( ) x x0 1c0

has been proposed to describe the dynamics of the system of consideration. The state vector 
( ) = ( ( ), …, ( ))  x t x t x tn

T
1  contains the n dynamic variables ( )x tk , and ( )

x t  is the derivative with respect to time t. 
The initial value of the state vector is x0. For a biochemical reaction network, xk is often the concentration or 
abundance of the k-th species. The function ( ) = ( ( ), …, ( ))u t u t u tm

T
1  represents a known external input to the 

system. The dynamics of the state variables is determined by the function = ( , …, )
∼

 f f f n
T

1  and encodes the 
model assumptions made in the nominal model. This can be represented as a graph20, where each node corre-
sponds to one variable and a directed edge from l to k indicates, that the time derivative of xk depends on xl 
(Fig. 1a). If ��xk is directly influenced by a known input, we illustrate this by a green zigzag arrow. Typically, not all 
state variables x can directly be measured. The variables ( )( ) = ( ), …, ( )  y t y t y tp

T

1  represent all outputs which 

Figure 1. (a) The nominal model represents the current assumptions about the true system. The systems model 
is specified by its dynamic state variables and their interactions, here represented as vertices and edges of a 
graph. The systems border defines the distinction between internal states and exogenous inputs. The exogenous 
inputs u are assumed to be known. (b) In reality, the nominal model is embedded in a larger network outside  
the nominal systems border. The hidden dynamics of the exosystem interacts with the nominal system. In 
addition, some interactions between nominal state variables might be missing or misspecified in the nominal 
model. These model errors can potentially lead to discrepancies between model and experimental data.  
(c) Representation of model errors as hidden inputs to the nominal model. The dynamic elastic-net approach 
infers the hidden inputs from data and thereby corrects for the bias in the nominal state variables induced by 
model errors.
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are experimentally accessible. In equation (1b), we assume that the mapping h from the state x to the output y is 
known. We use a tilde to highlight, that ∼f  and thus ( )x t  are usually not perfectly known due to limited or uncer-
tain knowledge about the true underlying dynamics.

Representation of the model error. The response of the real natural system to a known input stimulus 
( )u t  is usually measured at discrete time points ≤ … ≤t tN1  and provides experimental observations for the 

output ( )y tk . A part of these data is usually used to estimate the parameters of the model. We consider the initial 
parameter estimates as part of the nominal model specification ∼f  in equation (1a).

The nominal model is unsatisfactory, when its output ( ), …, ( ) y yt tn1  is not in sufficient agreement with the 
data ( ), …, ( )y yt tN1 . One source of model error comes from hidden inputs to the nominal system, which are 
caused by dynamical processes exogenous to the nominal system (Fig. 1b). In addition, there might be missing or 
erroneous interactions between the state variables x in the nominal model itself. Both types of model error can be 
represented by hidden inputs ( ) = ( ( ), …, ( ))w t w t w tn

T
1  acting on the nodes of the nominal model (Fig. 1c). The 

“true” dynamics ( )x t  of the real system can be described by

( ) = ( ( ), ( )) + ( ) ( )
∼


x f x u wt t t t 2a

( ) = ( ( )) ( )y h xt t 2b

( ) = . ( )x x0 2c0

Here, the state ( ) = ( ( ), …, ( ))x t x t x tn
T

1  represents the same variables as the nominal state ( )x t , but we sup-
press the tilde to distinguish solutions of (2) from that of the the nominal model. The model error is the difference 
( ) = ( ) − ( ( ), ( ))

∼


w x f x ut t t t  between the rate of change of the true system ( )

x t  and the nominal system 

( ( ), ( ))
∼f x ut t , evaluated along the true state trajectory ( )x t . Thus, it incorporates any discrepancy between the 
true system and the nominal system. The known input u and the output function h are assumed to be identical to 
the nominal model (1). However, we will also discuss the impact of measurement noise below.

The typical approach to model improvement is to compensate for the model error ( )w t  by explicit mathemat-
ical expressions, often additional differential equations. This increases the number of variables and parameters in 
the model. Here, we proceed differently by estimating the model error w from the data, what also enables us to 
correct for the bias ( ) − ( )x xt t  of the state estimate incurred by the nominal model.

Estimating the unmodelled dynamics. To estimate the model error ( )w t , we use the observer system

= ( ( ), ( )) + ( ) ( )
∼

 ˆ ˆx̂ f x u wt t t 3a

( ) = ( ( )), ( )ˆ ˆy h xt t 3b

which is a copy of equations (2a) and (2b). The hat marks estimates of the state ( )x̂ t , of the output ( )ŷ t  and of the 
model error ( )ˆ tw . The latter is obtained by minimising the error functional

∑= ( ) − ( ) + .
( )=

( )
ˆ ˆ ˆRw y y wJ t t[ ] [ ]

3ck

N

k k Q t
1

2
k

The first term in equation (3c) is the weighted mean square error between the measured outputs ( )y tk  and the 
outputs ( )ŷ tk  of the observer system in equations (3a) and (3b). The weighted square norm

( ) − ( ) = ( ( ) − ( )) ( )( ( ) − ( )) ( )( )
ˆ ˆ ˆy y y y y yt t t t Q t t t 3dk k Q t k k

T
k k k

2
k

contains the symmetric weighting matrix ( )Q tk , which is often chosen to be diagonal and can be used to trans-
form outputs of very different magnitude to a common scale or to incorporate precision estimates of the measure-
ments at the different time points tk. The regularisation term

α
α

= + ( )ˆ ˆ ˆR w w w[ ]
2 3e1 1

2
2
2

∫ ∑= ( )
( )=

ˆ ˆw w t dt
3ft

t

i

n

i1
1

N

1

∫ ∑= ( ) .
( )=

ˆ ˆw w t dt
3gt

t

i

n

i2
2

1

2N

1

is necessary to avoid overfitting of the data ( )y tk  by overly complex estimates ( )ŵ t . The nonnegative parameters 
α1 and α2 determine the relative contributions of the L1 norm in equation (3f) and of the L2 norm in (3g). 
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Minimisation of equation (3c) under the constraints in equations (3a) and (3b) is an optimal control problem21–23, 
which needs be solved numerically (see Methods and Supplementary Text).

The combined −L L1 2 regularisation in equation (3e) is reminiscent of the elastic-net penalty used in regres-
sion models18. Therefore, we termed our approach the dynamic elastic-net. In analogy to regression, the L1 term 
causes some components ( )ŵ tk  of the estimated model error to shrink to zero (Supplementary text). The amount 
of shrinkage is determined by α1, which can be chosen to suppress small error signals or noise distributed over 
many components of the estimate ŵ. The resulting sparse estimate is useful, because it provides information about 
the states of the system which are targeted by systematic model errors, as represented by hidden inputs.

In contrast to regression, a pure L1 or Lasso type24 regularisation is not useful in the dynamic setting, because 
the solution for α = 02  can result in unbounded estimates of ( )ŵ t . Even when additional constraints on ( )ŵ t  are 
imposed, the resulting solution is not smooth and either zero or at the boundaries of the constraints25. These 
insights about the optimal control problem can be obtained from Pontryagin’s minimum principle21,22, as it is 
detailed in the Supplementary text together with some strategies to chose suitable regularisation parameters α1 
and α2. In addition to sparse but smooth estimates of the model error, the dynamic elastic-net automatically pro-
vides a state estimate ( )x̂ t . Often this is very interesting information, when not all state variables are experimen-
tally accessible.

The optimal control problem in equations (3a–c) for ( )ŵ t  requires the specification of an initial condition 
( ) =x̂ x0 0, which is often not known or uncertain. Alternatively, one can add the additional constraint

( ) − ( ) ≤ ∆ ( )( )
ˆy yt t 3hQ t1 1 1

1

to (3a–c), where ∆1 is a preset tolerance given for the fit of ( )ŷ t1  to ( )y t1  at time t1. Similarly, a tolerance ∆1 can be 
prescribed to the fit at the last data point by

( ) − ( ) ≤ ∆ . ( )( )
ˆy yt t 3iN N Q t N

N

The tolerance parameters ∆1 and ∆N  of these optional constraints can often be obtained from error bars of the 
measurements.

Validation of the dynamic elastic-net. JAK-STAT signalling example. To illustrate the dynamic 
elastic-net estimator for a small and comprehensible model we used established experimental data for the 
JAK-STAT signal transduction pathway4. The four state variables of the system represent unphosporylated cyto-
plasmatic STAT5 ( )x1 , phosphorylated monomeric STAT5 ( )x2 , phosphorylated dimeric STAT5 ( )x3  and nuclear 
dimeric STAT5 ( )x4 . The nominal model4
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describes the phosphorylation of cytoplasmatic STAT5 upon activation of the erythropoietin receptor (known 
input u), the dimerisation of phosphorylated STAT5 and the export to the nucleus (Fig. 2). Time course data4 for 
the amount of cytoplasmatic phosphorylated STAT5 ( )y1  and total cytoplasmatic STAT5 ( )y2  were used to cali-
brate the parameters θ θ, …,1 5. However, the presence of systematic model error is apparent from the inalterable 
discrepancy between the experimental data and the nominal model incorporating optimised parameter values 
(Fig. 2b,c).

To estimate this model error ( )w t , we numerically fitted the dynamic elastic-net (3) with the nominal model 
(4) to the output measurements. To quantify the magnitude of the different components, we numerically com-
puted the area under the curve (AUC) of each ( )ŵ tk , i.e. ∫= ( )ŵ t dtAUCk t

t
k

N

1
. The AUC and the estimated 

time course ( ) = ( ( ), …, ( ))ˆ ˆ ˆw t w t w tn
T

1  of the model error indicate (Fig. 2e), that the dominant contributions 
( )ŵ t1  and ( )ŵ t4  of the model error target the states x1 and x4, representing the amount of unphosphorylated cyto-

splasmatic STAT5 and nuclear STAT5. The second component ( )ŵ t2  of the dynamic elastic-net estimate is identi-
cally zero for the whole time interval (Fig. 2e). Apart from the small signal ( )ŵ t3  initiated after approximately 
40 mins, this is consistent with the improved nucleocytoplasmatic cycling model reported in26, which is based on 
the same data4 and incorporates the relocation of dephosphorylated nuclear STAT5 molecules into the cytoplasm. 
Importantly, the dynamic elastic-net also provides modified estimates for the four STAT5 state variables (Fig. 2f), 
which are also in good agreement with the nucleocytoplasmatic cycling model (Supplementary Text).

An important problem with regularisation approaches is the choice of the regularisation parameters α1 and α2. 
We used α = 101  and α = .0 22  in Fig. 2, but we found empirically, that the AUC values clearly indicate the target 
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points of the model error for a wide range of α1-values (Supplementary Fig. S2). The L2 parameter α2 was chosen 
to balance the smoothness of ŵ  and the accuracy of the fit to the output measurements. In addition, the bias 
induced by the double regularisation18 can be compensated by a simple thresholding strategy: Given an initial 
estimate ( ) = ( ( ), …, ( ))ˆ ˆ ˆw t w t w tn

T
1  of the model error, we refit the dynamic elastic-net by constraining all the 

components with small AUC to zero. Thresholding is known in the regression context27 and we found it to 
improve the state estimates as well as the time course estimates of the remaining model errors (Supplementary 
Fig. S3).

The impact of measurement noise and parameter uncertainties. To explore the robustness of the dynamic 
elastic-net against measurement noise, we added random perturbations to the experimental data4. For a given 
noise level, we generated 500 perturbed data sets by adding Gaussian random numbers with mean zero and 
standard deviation scaled by a multiple of the empirical standard deviation (see the error bars in Fig. 2b,c) to each 
experimental data point. Thus, the noise level is defined as a multiple of the empirical standard deviation. The 
dynamic elastic-net was then fitted to each output sample and the corresponding area under the curve ( )w tk  for 
each component of the estimated model error ( )ŵ t  was computed. The plots for these AUC values versus the noise 
level are shown in Fig. 3a. The median values of the AUC for the components , …ˆ ˆw w1 4 are largely independent 
of the noise level, but the variability of the AUC estimates increases with measurement noise. Nevertheless, the 
AUC values for ŵ1 and ŵ4 are always much larger than zero, whereas the AUC of ŵ2 and ŵ3 is close or even equal 
to zero for many samples with higher noise level. This increases the confidence that the nodes x1 and x4 (Fig. 2d) 
of the nominal JAK-STAT model (4) are the main target points of the model error.

The impact of parameter uncertainty in the nominal model was assessed in a similar way. Parameter estima-
tion algorithms4,10,26 applied to the nominal model using the experimental data (Fig. 2b,c) provide point estimates 
and confidence intervals for each component of the parameter vector. These confidence intervals were again 
scaled by the noise level, yielding an interval for each parameter from which uniform random samples were 
drawn. Again, we generated 500 modified parameter vectors per noise level. For each parameter sample, the sys-
tem (4) was taken as the nominal model and the AUC of the resulting estimates , …ˆ ˆw w1 4 was recorded (Fig. 3b). 
Again, there is no systematic trend for the AUC of the different components of the estimated error ŵ. However, 
the variation of the AUC increases much faster than in Fig. 3a. Apart from the different sampling distributions 

Figure 2. Estimating the model error for the JAK-STAT pathway. (a) The known input ( )u t  is given by 
linearly interpolated phosphorylation measurements for the erythropoietin receptor4. (b,c) The output 
measurements4 (black) for phosphorylated STAT5 ( )y1  and total STAT5 ( )y2  in the cytoplasm compared to the 
outputs of the nominal model (blue) and the fit of the dynamic elastic-net (red). (d) Graph of the nominal 
model (blue) and of the observer system (red) with the state variables cytoplasmatic STAT5 ( )x1 , phosphorylated 
monomeric STAT5 ( )x2 , phosphorylated dimeric STAT5 ( )x3  and nuclear STAT5 ( )x4 . (e) Dynamic elastic-net 
estimates ( ) = ( ( ), …, ( ))ˆ ˆ ˆw t w t w t T

1 4  of the model error and the area under the curve (AUC) for the magnitude 
of each component ( )ŵ tk . (f) The state estimates , … x x1 4 obtained from the nominal model (blue) and the 
dynamic elastic-net observer (see , …ˆ ˆx x1 4 in red).
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used, this effect is related to the definition of the model error w, which is always defined with respect to the nom-
inal model (confer eqution 2a). Hence, the estimated model error ŵ contains contributions from both structural 
and parameter misspecifications in the nominal model. Nevertheless, it is still possible to infer the dominant 
components ŵ1 and ŵ4 with high confidence. Similar results were found for the sensitivity against the number of 
measurement time points (Supplementary text, Fig. S6).

Photomorphogenic UV-B signalling example. As a test case for a larger system, we used a recent model for the 
coordination of photomorphogenic UV-B signalling in plants19. The model consists of 11 ODEs describing the 
dynamics of protein concentrations = ( , …, )  x x x T

1 11  coupled by 10 chemical reactions (Fig. 4). We considered 
this model as the nominal model in order to test the dynamic elastic-net method for a situation, where the ground 
truth is known. The model error was simulated by adding the hidden inputs ( ) = ( ) = ⋅ − /w t w t 1000 [1 13 9
( + )t1 ] to the nodes x3 and x9. The output function ( )h x  is a linear combination of 7 different state variables (see 
Supplementary text for all equations). Synthetic data were sampled at discrete time points from the outputs of the 
true model and Gaussian random perturbations were added to simulate measurement noise (Fig. 4b–f). The 
dynamic elastic-net with the nominal model was used to reconstruct the model error ( )w t  and the true state ( )x t  
from these simulated data. The absolute area under the curve for each component of the model error estimate 
( )ŵ t  clearly indicates that the states x3 and x9 are targeted by hidden inputs (Fig. 4g), whereas all other compo-

nents are either very small ( )ŵ6  or even zero. This illustrates the sparsity of the dynamic elastic-net estimate, 
which is a clear advantage over pure L2 regularisation. The discrepancy ( ) − ( )ˆw wt t  between the model error and 
the corresponding estimate relative to the amplitude = ( )∈( ,…, ) ,A w tmaxt t t 3 9N1

 of the true model error is at most 
10% (Fig. 4h) and mainly caused by numerical inaccuracies. Most importantly, the discrepancy ( ) − ( )ˆx xt t  
between the true and the estimated state trajectory is almost zero (Fig. 4i), indicating the excellent performance 
of the dynamic elastic-net as a state observer.

Testing the limitations. As for any inverse method, there are limitations of the dynamic elastic-net method. Some 
model errors ( )w t  are unobservable, because there exists a different hidden input function ( )†w t  which generates 
an output ( )y t  which is identical to the output obtained for ( )w t , see the Supplementary text for a simple example. 
Other model errors might be practically unobservable, because the output for another hidden input function 
might not be distinguishable within the measurement errors. A special case are model errors which have no or 
almost no effect on the output at all. These will not be noticed during modelling and the nominal model will be 
accepted.

To further test the ability of the dynamic elastic-net to infer the states targeted by the model error, i.e. the 
non-zero components of the true model error ( )w t , we systematically simulated perturbations to different nodes 
and node pairs. First, we simulated model errors ( ) = ⋅ − /( + ) , ( ) = ≠w t t w t l k1000 [1 1 1 ] 0 fork l  targeting 
a single node k in the same way as before. For the nodes = , =k k2 10 and =k 11 there was no effect on the 
output (see again Fig. 4b–f) and thus these nodes were omitted from further analysis. In addition, we simulated 
hidden inputs for all remaining two node combinations. For each of these 36 simulated true models we tested the 
ability of the dynamic elastic-net to recover the correct target nodes from the AUC of the estimated ( )ŵ ti . We 
considered a node or a node pair to be correctly recovered, if their AUC was at least 85% of the total AUC over all 
nodes. By this stringent criterion, we found that two single node errors targeting x1 or x4 were not correctly 
detected and another single node was predicted to be the target of the model error (Fig. 5a). This indicates, that 
these model errors are unobservable and the observed output data can be explained by different inputs to different 

Figure 3. The impact of simulated measurement noise and parameter uncertainty to the dynamic elastic-
net estimate in the JAK-STAT model. (a) Box plots visualising the variation of the AUC of ( ) , … ( )ˆ ˆw t w t1 4  
for the dynamic elastic-net estimates caused by measurement noise (see main text for details). To ease 
visualisation, box plots at a given noise level are slightly offset. (b) The variation of the AUC caused by 
parameter uncertainty.
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nodes. With two exceptions ((8, 3) and (7, 6)), the mistakes made by the algorithm for simulated pairwise model 
errors involve these two state nodes 1 and 4. However, with exception of the combination (1, 4), at least one node 
is correctly predicted.

These results demonstrate the inherent limitations of any attempt to recover the model error from observed 
outputs. For an unobservable model error, the true model error ( )w t  might correspond to a slightly larger value 
of the error functional (3c) than the minimum ( )ŵ t  obtained by the dynamic elastic-net. A heuristic approach to 
explore some of these slightly suboptimal solutions is to rerun the dynamic elastic-net with some of the estimated 
target nodes (from the first run) excluded and to check, whether the output data can satisfactory be fitted with the 
same level of sparsity. This is illustrated in Fig. 5b for the node pair (9, 1), which was predicted to be (9, 3) by our 
criterion. Refitting the dynamic elastic under the constraint =ŵ 03  identifies the correct nodes (9, 1), see Fig. 5c. 
The two other combinations =ŵ 09  and = =ˆ ˆw w 03 9  do not provide a satisfactory fit to the data (Supplemental 
Fig. S9). For the UVB-signaling network we find, that the slightly suboptimal solutions identified by this heuris-
tics always contain the correct target node configuration. The combinatorial explosion of this strategy should 

Figure 4. The Photomorphogenic UV-B signalling example. (a) The graph (without self loops) of the model 
states19. The target points of the simulated model errors are indicated by the red arrows. (b–f) The simulated 
output , …,y y1 5 with error bars (black), the output of the nominal model (blue) and the output of the dynamic 
elastic-net (red). (g) The AUC of the absolute model errors ( ) , …, ( )ˆ ˆw t w t1 11 . (h) The components of − ˆw w 
relative to the amplitude A of the true model error. (i) The discrepancy ( ) − ( )x xt t  between the true state and 
the nominal model state (blue) compared to the discrepancy ( ) − ( )ˆx xt t  of the dynamic elastic-net (red).

Figure 5. Detecting the target nodes of simulated model errors in the UV-B signalling network. (a) All 
nodes and all pairs of nodes were perturbed by a simulated model error. Nodes ,x x2 10 and x11 are omitted, since 
the simulated error signal had no effect on the output. The rows and the columns correspond to the true target 
nodes of the model error and the numbers in the cells are the nodes found by the dynamic elastic-net (NA 
means that no second node was assigned). Gray cells indicate errors made by the dynamic elastic-net for 
unobservable model errors. (b) An example for an unobservable model error. The true target nodes of the 
model error are ( , )9 1 , but the dynamic elastic-net predicts the target nodes ( , )9 3 . (c) Refitting the dynamic 
elastic-net under the constraint =ŵ 03  provides an alternative solution. The other two combinations =ŵ 09  
and = =ˆ ˆw w 03 9  of the nodes ( , )9 3  did not fit the output data.
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typically not be a problem, thanks to the sparsity of the dynamic elastic-net predictions. The decision, which of 
the predicted target node sets, ( , )9 3  or ( , )9 1 , is the correct one can in practice only be made when additional states 
are measured. However, this example shows, how the dynamic elastic-net provides useful information to select 
further states for experimental observation20,28.

Discussion
Efficient computational methods to learn from incomplete model drafts and to direct model improvement are 
urgently needed. Our proposed dynamic elastic-net approach provides suggestions for the location of these model 
errors in the network and estimates their dynamic time courses from measured output data. The sparsity of the 
proposed target points for the model error promotes model improvements in the most parsimonious way. Even 
for an incomplete nominal model the algorithm can provide estimates for the system states which are not experi-
mentally accessible. This is in stark contrast to many other state estimators including the Kalman Filter29 for linear 
systems and its various extensions for nonlinear systems30,31, which usually require a correctly specified model.

Not all model errors can uniquely be determined from the output. For such unobservable model errors, our 
strategy to explore alternative, slightly suboptimal solutions might indicate alternative explanations for observed 
discrepancies between the data and the nominal model. In addition, this approach can also be informative for 
selecting additional nodes required for observing the state from output measurements20,28. Further research is 
needed to establish the relationship between the network topology and the observability of a model error.

Model errors arising in kinetic reaction systems can originate from erroneous rate equations or lacking reac-
tions. The dynamic elastic-net can detect both types of errors as hidden inputs to the corresponding nodes of the 
network, but it can not discriminate between these errors. However, knowing the nodes affected by a model error 
might already be very informative for systematic model improvement.

In view of the rapid progress of technologies to monitor biological dynamics, our approach could have impli-
cations for many fields including metabolic engineering, synthetic biology and and pharmacokinetics/pharma-
codynamics. As our method is designed for generic ODE models, it can also be applied to challenging modelling 
tasks in engineering, robotics and in the earth sciences. Our work also raises fundamental questions regarding 
successful modelling strategies. The approach to manually include more and more details into the model to com-
pensate the initial model errors is often not practical or at least very time consuming. The dynamic elastic-net 
hence paves the way towards a more principled and systematic way, in which models could be adapted based on 
experimental data.

Methods
Software. Simulations were performed in MATLAB (R2014a, The MathWorks, Inc.) using TOMLAB v8.0 
with SQOPT 7.2–5 QP and SNOPT 7.2–5 NLP (Tomlab Optimization AB) for solving the optimal control prob-
lems. MATLAB scripts are provided as Supplementary material. The computing time for a single run of the 
dynamic elastic-net on a laptop (Intel CoreTM i5-4200M CPU with 4 ×  2.50 GHz and 16 GB RAM) was between 
3 seconds and 1 min.

Data and models. Data for the JAK-STAT system4 were downloaded from http://webber.physik.
uni-freiburg.de/~jeti/PNAS_Swameye_Data. Model equations for the UV-B signaling network19 were obtained 
from the Biomodels data base3, see BIOMD0000000545. For parameter values and mathematical details see the 
Supplementary text.
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