
930  |   wileyonlinelibrary.com/journal/jnc Journal of Neurochemistry. 2021;157:930–943.© 2020 International Society for Neurochemistry

1  | INTRODUC TION

A series of epidemiological studies have now confirmed the initial 
anecdotal observation that dysfunction of olfaction is a significant 
COVID-19 symptom. In one study, the symptoms of more than 2 mil-
lion individuals from Europe and USA were evaluated using a mobile 
application-based symptom tracker (Menni et al., 2020). Of these, 
65% of the subjects who tested positive for COVID-19 reported 
loss of taste or smell, compared to 21.7% who tested negative for 
COVID-19. A worldwide study conducted by the Global Consortium 
for Chemosensory Research (GCCR) included 4,039 participants 
from 41 different countries, who reported a COVID-19 diagnosis 
(Parma et al., 2020). In this study, 89% of the participants reported 
loss of smell. Interestingly, nasal obstruction was not associated with 
smell loss, as commonly observed in other upper respiratory infec-
tions. In addition, 76% of the participants reported loss of taste and 

46% had a reduction of chemesthesis (detection of chemicals that 
evoke tingling and burning sensations), indicating that the chemo-
sensory impairment is not restricted to smell (Parma et al., 2020).

The incidence of anosmia in COVID-19 patients however varies in 
different studies, ranging from 34% to 68% (Meng et al., 2020). This 
variability could be due to genetic factors, viral load, specificities of 
the different evaluated populations or methods used in the analy-
sis. For example, in one study where 202 patients were analyzed 
64.4% reported altered sense of smell or taste, and of these, only 
34.6% also reported having a congested nose (Spinato et al., 2020). 
In another study where 417 mild to moderate COVID-19 European 
patients were analyzed, 85.6% were anosmic or hyposmic (Lechien 
et al., 2020). In this case, only 76 patients did not suffer from nose 
obstruction or rhinorrhea, and among these, 66.2% suffered from 
anosmia and 13.5% from hyposmia (Lechien et al., 2020). In some 
cases, impairment of the sense of smell appeared before other 
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Abstract
Olfactory disorders have been increasingly reported in individuals infected with 
SARS-CoV-2, the virus causing the coronavirus disease 2019 (COVID-19). Losing the 
sense of smell has a strong impact on the quality of life, since it may lead to malnutri-
tion, weight loss, food poisoning, depression, and exposure to dangerous chemicals. 
Individuals who suffer from anosmia (inability to smell) also cannot sense the flavor 
of food, which is a combination of taste and smell. Interestingly, infected individuals 
have reported sudden loss of smell with no congested nose, as is frequently observed 
in common colds or other upper respiratory tract infections. These observations sug-
gest that SARS-CoV-2 infection leads to olfactory loss through a distinct mechanism, 
which is still unclear. This article provides an overview of olfactory loss and the re-
cent findings relating to COVID-19. Possible mechanisms of SARS-CoV-2-induced ol-
factory loss are also discussed.
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clinical manifestations such as cough and fever, suggesting that it 
can serve as a clinical diagnosis for SARS-CoV-2 infection (Hopkins 
et al., 2020; Lechien et al., 2020). In most cases the sense of smell is 
recovered in average after two weeks or after the resolution of the 
other symptoms (Hopkins et al., 2020; Lechien et al., 2020). Also, 
only less than 10% of the participants in the GCCR study reported 
quality distortions in smell (parosmia) or smelling of an odorant that 
is not present (phantosmia) (Parma et al., 2020). Together, these ob-
servations suggest that in the majority of the cases the viral damage 
occurs peripherally rather than in the central nervous system (CNS). 
However, longer rates of recovery of the sense of smell and taste, 
that could be due to effects of the virus at the CNS, have also been 
observed, and should be further investigated (Hopkins et al., 2020).

Although there is now compelling clinical and epidemiological 
evidence that loss of the sense of smell is a marker of COVID-19, 
there are still little data showing how SARS-CoV-2 can enter and 
efficiently replicate in cells of the olfactory tissues, causing smell 
loss. These points are addressed below, based both on published ar-
ticles, and on a selected group of recent pre-prints which have not 
yet passed through peer review. We will begin by describing how 

the olfactory system is anatomically organized. We will also describe 
some of the known examples of how the sense of smell can be per-
turbed or destroyed.

2  | GENER AL ORGANIZ ATION OF THE 
OLFAC TORY SYSTEM

Two different types of epithelia are found in the nasal cavity: the 
respiratory epithelium and the olfactory epithelium (OE). Most of 
the nasal cavity area is lined with the respiratory epithelium, a pseu-
dostratified columnar epithelium composed of ciliated cells, secret-
ing (goblet) cells and basal cells (Durante et al., 2020); (Reznik, 1990). 
The goblet cells secrete mucus that moistens the epithelium and the 
ciliated cells move the mucus (together with inhaled pathogens and 
irritants) up and away for expulsion from the body. The basal cells 
are small progenitor cells that can differentiate into all the cell types 
of the respiratory epithelium.

Odorant sensing initiates in the OE, which is located in the high-
est recesses of the nose (Morrison & Constanzo, 1990) (Figure 1a). 

F I G U R E  1   The olfactory system. (a) Odorants are detected by OSNs present in the olfactory epithelium (OE), a specialized 
neuroepithelium located in the highest recesses of the nose. The olfactory sensory neurons (OSNs) project a single unmyelinated axon to the 
olfactory bulb (OB). The axons of the OSNs and their associated olfactory ensheathing cells (OECs) form bundles that project through the 
perforations of the cribriform plate to the OB, where they synapse with the mitral and tufted cells, forming the glomeruli. The axons of these 
cells form the olfactory tract, which transmits the sensory information into the brain. (b) The different cell types that compose the olfactory 
epithelium are represented. Odorants are recognized by odorant receptors located in the cilia of the OSNs.
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The OE is also a pseudostratified columnar epithelium, but it con-
tains highly specialized neuronal cells, the olfactory sensory neurons 
(OSNs), which are responsible for odorant detection. The odorants, 
small volatile molecules with varied chemical structures, are recog-
nized by a large family of odorant receptors, expressed in the cilia 
of the OSNs (Buck & Axel, 1991). They enter the nasal cavity, reach 
the OE, and activate the OSNs. These neurons then transmit the 
sensory information to the olfactory bulb (OB), which relays it to the 
olfactory cortex and other higher brain centers, leading to odorant 
perception, emotions and behaviors.

2.1 | The olfactory epithelium

The OE is composed of different cell types: the supporting cells, the 
OSNs (mature and immature), the basal cells (globose and horizon-
tal stem cells), microvillous cells, and Bowman's gland cells (Choi & 
Goldstein, 2018; Glezer & Malnic, 2019) (Figure 1b).

The supporting cells, also known as sustentacular cells, are 
attached to the basal lamina but their cell bodies are located 
more apically in the epithelium. They have a columnar shape 
and their apical region is covered with microvilli (Morrison & 
Costanzo, 1992). These cells provide support and insulation to the 
OSNs, in a similar manner to glial cells (Jafek, 1983; Liang, 2018; 
Morrison & Constanzo, 1990). The supporting cells express cyto-
chrome P450 and other enzymes involved in metabolizing xeno-
biotic compounds, suggesting a role in detoxifying toxic inhaled 
substances to which the OE is exposed, and they also play a 
phagocytic role, to remove dead OSNs (Dahl et al., 1982; Suzuki 
et al., 1996; Thornton-Manning et al., 1997).

The apical region of the OE also contains different types of mi-
crovillous cells. These non-neuronal cells resemble the brush cells 
of the upper and lower airways, and like the supporting cells have 
a tuft of microvilli on their apical surface, extending into the nasal 
cavity (Moran et al., 1982). The microvillous cells are in general less 
numerous in the OE, when compared to the other cell types, and 
their function is still not well understood.

The OSNs are the predominant cell type in the OE. They are 
specialized bipolar cells whose cell bodies occupy a broad region 
in the middle of the epithelium (Figure 1b) (Glezer & Malnic, 2019). 
Each olfactory sensory neuron has one single dendrite from which 
cilia protrude into the mucus layer of the epithelium surface, and 
one unmyelinated axon that projects to the OB. The axons of the 
OSNs form the olfactory nerve bundles that cross through the 
openings of the cribriform plate to reach the OB, where they syn-
apse with the mitral and tufted cells forming the glomeruli. The 
bundles of unmyelinated olfactory axons are surrounded by the 
olfactory ensheathing cells all the way from the OE to the OB (Li 
et al., 2005). These glial-like cells provide protection and guidance 
to the olfactory axons during neuronal regeneration. A distinctive 
characteristic of the olfactory system is therefore that it has a di-
rect access to the brain.

Another remarkable feature of the OE is its capability to 
generate new OSNs throughout life (Child et al., 2018; Fletcher 
et al., 2017; Schwob et al., 2017).The basal cells are small cells 
located in the basal region of the epithelium that can divide 
and differentiate to replace OSNs and all other cell types of the 
OE, during normal turnover or injury (Calof & Chikaraishi, 1989; 
Graziadei & Monti-Graziadei, 1979). The basal cells can be sub-
divided into two different cell types: the horizontal basal cells 
(HBCs), which are located more basally in the OE, in direct con-
tact with the basal lamina, and the globose basal cells (GBCs), 
which are located above the HBC layer (Holbrook et al., 2011). The 
HBCs proliferate at a low rate and show a multipotent progenitor 
phenotype, that can be massively recruited upon severe injury to 
regenerate all cell types in the OE (Carter et al., 2004; Herrick 
et al., 2017; Iwai et al., 2008; Leung et al., 2007).The GBCs are 
the actively proliferating stem cells that are responsible for the 
constant regeneration of the OSNs and of all the other cell types 
in the OE (Chen et al., 2004; Graziadei & Monti-Graziadei, 1979; 
Huard et al., 1998).

In addition to these major cell types, olfactory glands, known 
as the Bowman's glands, are distributed throughout the mucosa 
(Getchell et al., 1984). These glands are located beneath the OE, 
and project narrow ducts onto the epithelial surface, through which 
they secrete the mucus that coats the epithelium. The mucus con-
tains water, mucin glycoproteins, enzymes, antibodies, salts, and 
odorant-binding proteins (OBPs). The OBPs carry the hydrophobic 
odorant molecules through the mucus to the cilia of the OSNs, the 
site of odorant detection (Bignetti et al., 1985; Heydel et al., 2013; 
Pelosi et al., 1982). The functions of the Bowman's glands are still not 
totally clear. Possible roles include transport of odorants, preven-
tion of infection by microorganisms, protection against xenobiotic 
compounds through the secretion of biotransformation enzymes, 
and protection of the cilia from the OSNs (Heydel et al., 2001, 2013; 
Mellert et al., 1992; Solbu & Holen, 2012).

The OE is also populated with resident macrophages and den-
dritic cells, which surveil the neuroepithelium and sense patho-
gens and cell damage (Nan et al., 2001; Ruitenberg et al., 2008). 
Interestingly, these macrophages express receptors for the chemo-
kine CX3CL1, also known as fractalkine, which is expressed by 
OSNs located in the intermediate neuronal layer of the epithelium 
(Ruitenberg et al., 2008). CX3CL1 modulates macrophage mor-
phology and recruitment (Ruitenberg et al., 2008). Macrophages 
play important roles in the repair of the damaged OE, by removing 
pathogens, phagocytosing dead OSNs, and promoting neurogenesis 
(Borders et al., 2007).

Recent single-cell transcriptome analysis of OE from healthy 
adult humans have identified, based on known olfactory marker 
genes, the presence of most of the cell types described above, in-
cluding the basal stem cells and progenitors, immature and mature 
OSNs (Durante et al., 2020). These cells represent various stages of 
olfactory neuronal differentiation and confirm that adult olfactory 
neurogenesis occurs in the human OE. In this way, in circumstances 
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where the OE is severely damaged, regeneration of the epithelium 
can occur and the sense of smell can be recovered.

3  | OLFAC TORY DISORDERS

Olfactory disorders can result from pathological processes at any 
point in the olfactory pathway, from the OE to the central brain re-
gions. For example, anosmia is one of the first clinical signs of some 
neurodegenerative diseases, such as Parkinson's and Alzheimer's 
diseases (Doty & Hawkes, 2019). It is believed that neurodegenera-
tion of central brain regions involved in olfactory processing may 
contribute to the disorder (Averback, 1983; Doty, 2007; Hyman 
et al., 1984). Nevertheless, the precise mechanisms that con-
nect these diseases with olfactory loss are still unclear (Dibattista 
et al., 2020).

Smell loss can also be a consequence of genetic disorders, such 
as the ones that lead to ciliary defects, called olfactory ciliopathies 
(Jenkins et al., 2009; McEwen et al., 2008). These are human ge-
netic disorders that affect ciliary assembly and/or protein trans-
port to the cilia, which is the site of odorant signal transduction. 
Individuals with the Bardet–Biedl Syndrome, a pleiotropic ciliop-
athy which includes several different phenotypes such as retinal 
degeneration, obesity, renal and limb malformations, have partial 
or complete anosmia (Iannaccone et al., 2005; Kulaga et al., 2004; 
Reiter & Leroux, 2017). The Kallmann syndrome is another genetic 
disorder which causes olfactory deficits (Hardelin et al., 2000). In 
this case, individuals show defects in gonadal development asso-
ciated with anosmia. The anosmia is a consequence of the absence 
or poor development of the OBs and olfactory tracts, and the 
gonadal defects are a consequence of hypothalamic gonadotro-
pin-releasing hormone (GnRH) deficiency (MacColl et al., 2002; 
Young et al., 2012).

More frequent causes of anosmia are however the presence of 
nasal polyps, allergies, head trauma, and other factors that lead to 
injury to the olfactory nerve. Viral infection of the upper respiratory 
tract is also one of the most common causes of olfactory dysfunction 
(denominated as post-viral olfactory disorder) (Doty, 2019). Chronic 
inflammation of the nasal airways caused by the infection usually 
blocks the nasal passage and may also destroy the OSNs of the nose.

4  | VIR AL INFEC TION AND 
INFL AMMATION OF THE OLFAC TORY 
EPITHELIUM

Different types of viruses were shown to infect the OE in animal 
models. In mice, the neurotropic vesicular stomatitis virus (VSV), a 
rhabdovirus, preferentially infects the OE compared to the nasal 
respiratory epithelium, and causes early inflammatory infiltration 
(Lundh et al., 1987). In ferrets and mice inoculated intranasally with 
the highly pathogenic avian influenza H5N1 virus, lesions were more 
severe in the olfactory than in the respiratory epithelium, and the 

virus antigen was found in OSNs, Bowman's glands and olfactory 
ensheathing cells (Iwasaki et al., 2004; Schrauwen et al., 2012). A re-
cent study that modeled airborne transmission of the viruses in fer-
rets showed that while more cells of the OE were infected by the A/
H5N1 virus than cells of the respiratory epithelium, the OE was less 
infected by the influenza A/H1N1, and A/H3N2 viruses, than the 
nasal respiratory epithelium (Richard et al., 2020). Mice infected with 
the Sendai virus, a murine counterpart of the human Parainfluenza 
virus, suffer from olfactory dysfunction (Tian et al., 2016). In this 
case, both apoptosis and proliferation of progenitor cells in the OE 
were decreased by viral infection (Tian et al., 2016). A different study 
showed that intranasal inoculation of the mouse hepatitis virus 
(MHV; a strain of murine coronavirus M-CoV) that is destructive to 
the OB but not to the OE, promotes increase in the turnover of the 
epithelium cells, resulting in a higher proportion of immature OSNs 
compared to non-infected mice (Schwob et al., 2001). These studies 
show that direct viral lesion to the OE is not an obligatory mecha-
nism for post-viral olfactory disorder development, however striking 
modifications can result due to viral infection in terms of neuronal 
renewal and function. Infection by the sialodacryoadenitis virus, a 
coronavirus, is associated with upper respiratory tract inflamma-
tion in rats and provokes lesions in the OE (Bihun & Percy, 1995). 
The Middle East respiratory syndrome coronavirus (MERS-CoV) was 
shown to be able to infect the OE in inoculated dromedary camels 
(Adney et al., 2014). In humans, infection by coronaviruses was al-
ready known to cause mild upper respiratory tract infections, such 
as common cold (Zumla et al., 2016). Infections by the more patho-
genic coronaviruses responsible for the severe acute respiratory 
syndrome (SARS) and Middle East respiratory syndrome (MERS), are 
however more severe.

The inflammatory responses in the OE in response to lesions 
caused by viral infection are still not well understood. It is interest-
ing to note that the OE is highly damaged by intranasal infusion of 
pathogen components, or designed mimetic molecules, that trig-
ger pro-inflammatory gene expression through Toll-like receptor 
(TLR) activation (Crisafulli et al., 2018; Hasegawa-Ishii et al., 2017; 
Imamura & Hasegawa-Ishii, 2016). It was shown that transgenic over-
expression of the pro-inflammatory cytokine TNF-α promotes death 
of OSNs (Lane et al. 2010). One should also expect that viral infec-
tion in the OE would induce the innate immune system through the 
activation of receptors (such as endosome TLRs and cytoplasmatic 
viral receptors) that sense the presence of the foreign nucleic acid 
(ssRNA, in the case of coronaviruses), resulting in appropriate antivi-
ral responses (Jensen & Thomsen, 2012; Schlee & Hartmann, 2016). 
Thus, viral infection may activate leukocytes and recruit immune 
cells to the OE, and possibly promote indirect cell death and com-
plete disorganization of the epithelium architecture.

5  | CELL INFEC TION BY SARS- COV-2

The high incidence of smell loss in individuals infected by SARS-
CoV-2 suggests that this virus may be able to infect the OE. One way 
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to address this possibility is to analyze whether cells in the olfactory 
system are susceptible to SARS-CoV-2 entry and replication.

Since the original SARS outbreak in 2003, much has been learnt 
about the main mechanisms of coronaviruses (CoVs) entry and rep-
lication in the host cells. Like other CoVs, SARS-CoV-2 expresses in 
its membrane the spike protein (S protein), a glycosylated viral sur-
face protein that anchors the virus to the host cell, mainly through 
binding to the human Angiotensin Converting Enzyme-2 (ACE2) 
(Hoffmann, et al., 2020; Walls et al., 2020; Zhou et al., 2020). The 
S protein, which is assembled in a homotrimer, can be subdivided 
in two subunits, the S1 (head) subunit and S2 (stalk) subunit. The S1 
subunit contains the binding site for the host cell receptor (receptor 
binding site, RBD). The S2 subunit harbors a transmembrane domain 
and is required for the fusion of the viral and cellular membranes. 
SARS-CoV attaches to the surface of the host cell through the bind-
ing of the RBD in its S protein to ACE2. Entry into the cell depends 
on the priming of the S protein by cellular proteases, that cleave 
the S protein at the S1/S2 domain boundary and at the S2’ site, so 
that S1 dissociates and S2 undergoes a dramatic structural change 
causing the fusion of the virus and host cell membranes (Hoffmann, 
et al., 2020; Shang et al., 2020). An alternative mechanism for acti-
vation of the S protein after binding to ACE2, is through endocytosis 
and cleavage by the pH-dependent cysteine protease cathepsin L 
(Simmons et al., 2005).

Therefore, for a cell to be infected by SARS-CoV-2 it would have 
to both, express a receptor for the S protein, and express at its sur-
face (or in a cell in close proximity) proteases that are able to proteo-
lytically activate the S protein. One of the best-known SARS-CoV 
and SARS-CoV-2 activating proteases is the cell surface protease 
TMPRSS2 (Hoffmann, et al., 2020). Single-cell RNA-sequencing data 
from several human organs have shown that cells in the nasal cavity 
respiratory epithelium (ciliated and goblet cells) express higher levels 
of both ACE2 and TMPRSS2 in comparison to lung and bronchiolar 
cells (Sungnak et al., 2020). Consistent with this, a more recent study 
demonstrated that SARS-CoV-2 displays an infectivity gradient in 
human primary cells from the upper to the lower respiratory tract 
(Hou et al., 2020). That was paralleled by the highest expression of 
ACE2 in the nasal cavity with decreasing expression throughout the 
lower respiratory tract, as measured by a very sensitive single-cell 
RNA in situ analysis (Hou et al., 2020). TMPRSS2, however showed 
lower mRNA expression levels in the nasal mucosa than in all other 
respiratory tract regions (Hou et al., 2020). These results show not 
only that the nasal cavity is the main gate for SARS-CoV-2 entry to 
the lungs, but also, that it may serve as a viral reservoir enhancing 
virus dissemination.

6  | SARS- COV2 AND THE OLFAC TORY 
EPITHELIUM

The studies described above did however not include analysis of 
the OE. Do OSNs express the SARS-CoV-2 entry factors? Extensive 
transcriptome analysis indicated that while ACE2 and TMPRSS2 are 

expressed in the bulk mouse and human olfactory epithelia, analy-
sis of the transcriptomes from single cells indicated that expression 
of these genes in OSNs is very low. Instead, they are expressed in 
non-neuronal cell types, namely in the supporting cells, Bowman's 
glands and HBCs (Brann et al., 2020; Fodoulian et al., 2020). Co-
expression of ACE2 and TMPRSS2 was also detected in microvillous 
cells, though at lower levels (Fodoulian et al., 2020). Immunostaining 
experiments confirmed the transcriptomic analysis, and showed 
that the ACE2 protein is expressed in the supporting cells mostly 
localized in the dorsal region of the mouse OE (Brann et al., 2020; 
Fodoulian et al., 2020). Immunostaining of human nasal mucosa 
showed intense staining to ACE2 in supporting cells and Bowman's 
glands in the OE, and interestingly, while in the adjacent respiratory 
epithelium staining for ACE2 was also observed on the apical surface 
of the epithelium, the intensity of the staining was highly reduced 
compared to that of the OE (Chen et al. 2020). Increased expression 
of ACE2 in the OE relative to the respiratory epithelium was also 
observed in the mouse nasal mucosa (Bilinska et al., 2020). These 
results suggest the possibility that, within the nasal cavity, SARS-
Cov-2 may show a higher tropism for cells in the OE when compared 
to cells in the respiratory epithelium.

Noteworthy, respiratory epithelium MUC5B secretory cells that 
express detectable levels of ACE2 and TMPRSS2 were not infected 
by SARS-CoV-2 in cell culture experiments (Hou et al., 2020), sug-
gesting that co-expression of ACE2 and TMPPRSS2 does not nec-
essarily guarantee infection. Cells expressing ACE2 may be close to 
cells expressing the activating proteases so that the S protein can 
still be activated. Thus, it is possible that ACE2 and its activating pro-
tease do not necessarily need be expressed in the same cell to foster 
virus entry. Also, it is important to note that in some cases ACE2 
expression can be induced by SARS-CoV-2 infection and inflamma-
tory cytokines released in response to the virus (Codo et al., 2020; 
Ziegler et al., 2020).

6.1 | Possible mechanisms of SARS-CoV-2 infection 
in the olfactory epithelium

The findings described above indicate that viral infection and repli-
cation might occur in the apical region of the OE, rather than in the 
layer containing the OSNs. An attractive hypothesis is that infection 
in non-neuronal cells of the OE would indirectly impact the capac-
ity of OSNs to sense odorants. A recent work showed that instilla-
tion of SARS-CoV-2 in the nasal cavity of golden Syrian hamsters, 
an animal model which has been successfully used for studying 
SARS-CoV and SARS-CoV-2 infection, resulted in transient destruc-
tion of the OE (Bryche et al., 2020). The tissue injury was associated 
with infection of supporting cells but not of OSNs. Importantly, a 
major loss of the olfactory cilia was observed, indicating that even 
though the OSNs were not directly targeted, they were also seri-
ously damaged. Furthermore, the authors observed massive infiltra-
tion of immune cells in the OE and lamina propria associated with 
the SARS-CoV-2 infection (Bryche et al., 2020). These results agree 



     |  935GLEZER Et aL.

with the expression profiles of SARS-CoV-2 entry factors in the ol-
factory system and support a mechanism for SARS-CoV-2 induced 
anosmia where the virus would initially invade the supporting cells 
and other non-neuronal cells that are essential for olfactory sensory 
neuron function, and also recruit inflammatory cells that would con-
tribute to further damage to the OE (Figure 2). It is important to note 
though that more recent experiments have detected the presence 
of the virus in the OSNs from intranasally infected Syrian hamsters 
(Chan et al., 2020; Sia et al., 2020), suggesting the possibility that the 
OSNs could be directly infected by SARS-CoV-2.

Supporting cells are crucial for proper odor sensing since they 
provide neurotrophic signaling and physical support to the OSNs. 
Contacts and cell junctions between the dendrites of the OSNs and 
the apical region of supporting cells have been observed in several 
vertebrate species (Breipohl et al., 1974; Menco, 1980; Steinke 
et al., 2008). In the rat OE, a large fraction of the OSN dendrites 
were actually shown to be enwrapped by the supporting cells 
(Liang, 2018), however the exact functional consequences of this 
wrapping are still not clear (Liang, 2020). One would expect there-
fore, that loss of the supporting cells would not only destroy OSN 
function, but also disorganize the whole epithelium. In fact, treat-
ment of the OE with methimazole, an antithyroid drug that induces 
loss of smell in humans and preferentially targets supporting cells, 
is well known to cause severe damage to the whole epithelium 
(Bergstrom et al., 2003).

Interestingly, the toll receptor TLR3, which detects double 
stranded RNA and activates the pro-inflammatory transcription fac-
tor NF-κB, was shown to be preferentially expressed in the support-
ing cells of the mouse OE (Kanaya et al., 2014). Intranasal infusion 
of poly(I:C), a synthetic analog of virus double stranded RNA, lead 
to activation of NF-κB in the supporting cells (Kanaya et al., 2014). 
These results indicate that these cells can trigger important events 
in innate immune antiviral responses. Supporting cells may also initi-
ate leukocyte recruitment, either through activation of gene expres-
sion or by releasing danger signals upon viral infection and damage. 
In fact, such mechanisms have been proposed for ACE2-positive re-
spiratory epithelium cells infected by SARS-CoV-2 (Tay et al., 2020). 
Macrophages in the OE can also contribute to neuronal damage, 
since activation of these cells by SARS-CoV-2 could culminate in 
dysregulated expression and release of pro-inflammatory molecules 
and chemotactic signals (Merad & Martin, 2020).

Only a few studies have so far analyzed the inflammatory re-
sponses to SARS-CoV-2 infection in the human OE. For example, 
post-mortem analysis of COVID-19 fatal cases revealed increased 
levels of TNF-α in the OE (Torabi et al., 2020). Prominent leukocytic 
infiltrates were observed in damaged OE and olfactory nerve in two 
other lethal cases, one of them had reported anosmia (Kirschenbaum 
et al., 2020). Tomographic scan and magnetic resonance imaging of 
the nasal cavity of a patient infected by SARS-CoV-2 whose major 
symptom was a sudden and complete loss of smell without nasal 
obstruction, revealed a bilateral inflammatory obstruction of the 
olfactory clefts (Eliezer et al., 2020). Further analysis should reveal 
whether uncontrolled inflammation in the OE plays a key role in 
smell loss reported by COVID-19 patients.

Nevertheless, the possibility that the virus could directly infect 
the OSNs by using alternative receptors cannot yet be excluded. 
Other cell surface proteins have been proposed to work as receptors 
for SARS-CoV-2, as for example CD147 (also known as bagisin). It 
has been previously shown that CD147 can facilitate invasion of host 
cells by SARS-CoV (Chen et al., 2005), and one recent study sug-
gests that SARS-CoV-2 may also invade cells through an interaction 
between the S protein and CD147 (Wang et al., 2020). CD147 is a 
highly glycosylated membrane protein that belongs to the immuno-
globulin superfamily and is highly expressed in different mouse brain 
regions, including the OB (Fan et al., 1998.). Even though OSNs ex-
press very high levels of CD147 mRNA as indicated by transcriptome 
analysis of FACS sorted mature olfactory marker protein (OMP) pos-
itive OSNs (Magklara et al., 2011), and by transcriptomes from single 
human OSNs (Brann et al., 2020; Durante et al., 2020), there are no 
reports yet of CD147 protein detection in the olfactory organs.

One particular difference of SARS-CoV-2 when compared to 
SARS-CoV is the presence of a four amino acid insertion at the S1/S2 
boundary constituting a cleavage site (RRAR) for furin, a ubiquitous 
protease expressed in most cells including lungs, liver, small intes-
tine, and olfactory organs (Brann et al., 2020; Hoffmann et al., 2020; 
Ueha et al., 2020). Similar furin-cleavage sites are found in S pro-
teins of MERS-CoV and many other pathogenic human viruses, in-
cluding Ebola, HIV-1 and highly aggressive strains of avian influenza. 
Experiments using human lung cells in culture showed that both 
MERS-CoV and SARS-CoV-2 depend on furin-mediated pre-cleav-
age of their S proteins at the S1/S2 site for subsequent S protein ac-
tivation by TMPRSS2 at the S’ cleavage site (Hoffmann et al., 2020). 

F I G U R E  2   SARS-CoV-2 and olfactory neuron function. Supporting cells (SUS), horizontal basal cells (HBC) and Bowmans' gland cells 
(but not OSNs) express the SARS-CoV-2 entry factors ACE2 and TMPRSS2. It is therefore likely that SARS-CoV-2 primarily infects the 
supporting cells and gland cells which are located in the apical region of the epithelium. Damage to the supporting cells would indirectly 
lead to disruption of proper odorant signaling by OSNs. It remains to be determined whether the virus could infect the OSNs in an ACE2-
independent manner and directly interfere with their function. Importantly, infected supporting cells can release molecules that trigger 
innate immune signaling in resident microglia/macrophages, which are also responsive to the viral particles. In consequence, key pro-
inflammatory transcription factors (such as NF-kappaB and IRFs) promote synthesis of interferons and inflammatory mediators that recruit 
and activate varied types of leukocytes. The olfactory neurons are vulnerable to inflammation, resulting in temporary olfactory loss until 
the viral infection is resolved and they are replenished by new neurons. Horizontal basal cells (HBCs), which are essential for regeneration 
of the epithelium after profound damage, express the SARS-CoV-2 entry proteins. Whether the virus can also infect these cells and perturb 
regeneration of the epithelium, remains unknown.
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In addition, cleavage by furin and by TMPRSS2 together, enhance 
SARS-CoV-2 entry in Vero cells (Hou et al., 2020).

In the OE, immunostaining experiments detected the presence 
of furin in the supporting cells and Bowman's gland, but not in the 
OSNs (Ueha et al., 2020). Furin mRNA was however detected in tran-
scriptomic data from sorted mature (OMP positive) OSNs (Magklara 
et al., 2011), and in transcriptomes from single human OSNs (Brann 
et al., 2020; Durante et al., 2020).

Two recent studies suggest that S protein furin-cleavage products 
bind to NRP1, which is expressed in the OSNs, but also abundantly 
expressed in endothelial and epithelial cells in both the respiratory 
and olfactory epithelia, and that this interaction enhances SARS-
CoV-2 entry in cultured cells (Cantuti-Castelvetri et al., 2020; Daly 
et al., 2020). Further work is however needed to confirm whether 
alternative receptors such as CD147 and NRP1 and alternative pro-
teases such as furin or cathepsins play a role in SARS-CoV2 infection 
in the OE.

Thus, as a result of the infection by SARS-CoV-2, loss of OSNs 
would occur, resulting in anosmia. The observation that in most 
cases the sense of smell in infected individuals is rapidly recovered 
indicates that the damage occurs in the peripheral olfactory system, 
and that the OE is able to self-regenerate in the course of the weeks 
following the infection. Therefore, even though ACE2 was found to 
be expressed in HBCs, renewal seems to continue.

7  | INVA SION OF THE CENTR AL NERVOUS 
SYSTEM THROUGH THE OLFAC TORY 
ROUTE

Whether SARS-CoV-2 is able to invade the CNS through the ol-
factory route like some neurotropic viruses is still an open ques-
tion. If as discussed above SARS-CoV-2 can really not infect the 
OSNs directly, the chances of such an invasion would be at least re-
duced. However, since neurological problems have been associated 
with COVID-19 and anosmia in some cases (Aragao et al., 2020; 
Laurendon et al., 2020; Paterson et al., 2020; Politi et al., 2020), 
the possibility of invasion through the OB should be carefully 
examined.

7.1 | Viral invasion of the CNS through the 
olfactory pathway

Early studies conducted in rodents showed that OSNs are able to 
uptake labeled proteins (tracers) and transport them to the OB glo-
merular region (Kristensson & Olsson, 1971), indicating a possible 
mechanism for central nervous system invasion by viruses that were 
known to use the olfactory route (Johnson, 1964; Nir et al., 1965; 
Sabin & Olitsky, 1937). Even so, different viral features such as coat-
ing/envelope, replication mechanisms, budding pathways and cell 
targets in the OE must determine specific viral abilities to invade 
the brain.

Many neurotropic viruses were shown to reach the central ner-
vous system after interacting with the nasal mucosa in animal mod-
els, including MHV (Perlman et al., 1989), the Borna disease virus 
(BDV) (Shankar et al., 1992), the pseudorabies virus (PrV)(Babic 
et al., 1994), the herpes simplex virus type 1 and 2 (HSV-1/HSV-2)
(Allavena et al., 2011; Barnett et al., 1993), the human coronavirus 
OC43 (HCoV-OC43) (St-Jean et al., 2004) and adenovirus (Lemiale 
et al., 2003). After infecting the OE, the vesicular stomatitis virus 
VSV can spread along the olfactory nerves into the glomeruli of 
the OBs, and afterwards, progressively spread to the brain (Lundh 
et al., 1987). The parainfluenza virus type 1 is also transported from 
the OE to the OB (Mori et al., 1995). In this case, supporting cells are 
not infected by the virus, while OSNs show persistent viral labeling, 
compatible with a non-cytolytic infection.

Not all the neurotropic viruses are however found in the olfac-
tory nerve fibers. Experiments with luciferase expressing HSV-1 
constructs, for example, showed that in intranasally infected mice 
this virus spreads from the OE to the trigeminal nerve, mostly ex-
cluding the olfactory nerve (Shivkumar et al., 2013).

7.2 | Can SARS-CoV-2 invade the CNS through the 
olfactory pathway?

Experiments in mice showed that SARS-CoV can enter the nervous 
system through the nasal route. In these experiments, transgenic 
mice expressing the human ACE2 (hACE2) under the control of the 
human cytokeratin 18 promoter (K18-hACE2 mice) were infected 
intranasally with SARS-CoV, and the virus was subsequently found 
in the brain (Netland et al., 2008). More recent experiments showed 
that intranasal inoculation of SARS-CoV-2 in mice that had their 
ACE2 gene replaced by the hACE2 gene leads to high levels of the 
virus RNA in the brain (Sun et al., 2020).

The mechanisms through which SARS-CoV and SARS-CoV-2 
invade the mouse brain are however unclear. As mentioned above, 
transcriptomic and immunostaining analysis showed that ACE2 is not 
expressed in the OSNs nor in neurons in the OB (Brann et al., 2020; 
Fodoulian et al., 2020). Therefore, if SARS-CoV-2 can be transported 
to the OB through the olfactory axons, it would have to do it in an 
ACE2-independent manner. Interestingly, in the experiments with 
the SARS-CoV inoculated K18-hACE2 transgenic mice, a 60-hr 
delay between the time of intranasal inoculation and detection of 
the virus in the OB was observed (Netland et al., 2008). After that, 
the virus rapidly spread from the OB to trans neuronally connected 
regions of the brain (Netland et al., 2008). These results suggest that 
the virus had first to replicate and accumulate in the OE, possibly 
in non-neuronal cell types, before it was able to be transported to 
the OB. Thus, the ability of the OE to serve as an efficient reservoir 
for SARS-CoV-2 replication and amplification, could facilitate brain 
invasion by the virus (Butowt & Bilinska, 2020).

The ensheathing cells that surround the axons of the OSNs 
form a continuous channel throughout the olfactory nerve, from 
the basal region of the OE to the OB (Li et al., 2005). Diffusion 
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through these channels has also been considered as an olfactory 
sensory neuron independent mechanism of viral entry to the brain 
(Butowt & Bilinska, 2020; van Riel et al., 2015). These ensheath-
ing cell channels were shown to survive axonal degeneration, and 
stably persist and provide support for regeneration of the new 
axons (Li et al., 2005). As mentioned above, in ferrets subjected 
to intranasal inoculation of the avian influenza virus H5N1, the 
viral antigen was also found in the ensheathing cells (Schrauwen 
et al., 2012). This extracellular route could be used to transfer 
SARS-Cov-2 in an ACE2-independent manner to the OB, once the 
virus crosses the basal lamina.

Interestingly, a mechanism that would prevent viral transport 
from the OE to the OB is the fast induction of apoptosis in infected 
OSNs (Mori et al., 2002, 2004). Viruses that block or delay apoptosis 
of the OSNs are therefore more likely to use the olfactory nerve as 
a route to enter the brain. Since OSNs are unlikely direct targets for 
SARS-CoV-2 (based on the lack of ACE2 expression), they could be 
able to bypass this preventive mechanism.

So far there is no experimental evidence showing that SARS-
CoV-2 can invade the brain through the olfactory route. In the ex-
periments mentioned above where golden Syrian hamsters were 
intranasally infected with SARS-CoV-2, the virus was not detected 
in the OBs, nor in the central nervous system (Bryche et al., 2020). 
These results suggest that brain invasion by SARS-CoV-2 through 
this pathway is not a common pathogenic mechanism for this virus. 
Nevertheless, as the authors note, the lack of detection of the virus 
in the brain could be due to the fact that a small number of animals 
were analyzed (Bryche et al., 2020).

Alterations in the OBs in COVID-19 patients with anosmia 
have been recently reported, suggesting that in these cases SARS-
CoV-2 could have reached the OB through the olfactory nerve 
(Aragao et al., 2020; Politi et al., 2020). The finding that ACE2 is 
highly expressed by pericytes in blood vessels in the OB (Brann 
et al., 2020; Fodoulian et al., 2020), raises the alternative possibil-
ity that the virus could use the hematogenous route to infect the 
OB, what would induce vascular inflammation and cause anosmia 
(Brann et al., 2020).

Importantly, not only the olfactory nerve, but also the trigeminal 
nerve, may serve as a route for entry of pathogens into the brain 
(Perlman et al., 1989). The trigeminal nerve can not only detect 
physical stimuli (mechanical and temperature) but also chemicals 
(denominated as chemesthesis) (Hummel & Frasnelli, 2019). The 
nose and oral trigeminal nerve endings are typically activated by irri-
tant chemicals, such as air pollutants and other noxious stimuli. This 
activation triggers protective physiological responses, including de-
creased respiration rate, sweating and increased salivation. Many of 
these chemicals are recognized by transient receptor potential (TRP) 
channels and lead to diverse sensations, for example the burning 
(capsaicin), cooling (menthol), pungency (allicin) and spicy (thymol) 
sensations (Viana, 2011).

Trigeminal nerve endings that innervate the olfactory epithelium 
can branch to innervate the olfactory bulb (Schaefer et al., 2002). 
A trigeminal route of invasion by SARS-CoV-2 could explain some 

neurological symptoms shown by COVID-19 patients, like for exam-
ple loss of facial sensation and headaches.

8  | CONCLUDING REMARKS

Mounting evidence indicates that SARS-CoV-2 infection can cause 
anosmia in a large percentage of the infected individuals. The cellular 
and molecular mechanisms underlying this effect remain largely un-
known. OSNs are not likely candidates for SARS-CoV-2 infection since 
they lack expression of the bona-fide viral entry factors. Loss of the 
sense of smell may be however attributed to viral damage to other 
epithelial cell types. The non-neuronal supporting cells, HBCs and 
Bowmans’ gland cells are equipped with the viral entry proteins, and 
therefore, are likely to be targets for SARS-CoV-2 infection and replica-
tion. These cell types would serve as a reservoir of viral replication what 
would cause cell damage and inflammation and ultimately disruption 
of olfactory sensory neuron function. Future work is required to verify 
whether the virus is able to directly infect the OSNs using alternative 
receptors, and/or whether it is able to enter the brain through the olfac-
tory or trigeminal route, even if in a small number of cases.
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