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Abstract

Despite years of intensive research, much remains to be discovered to understand the regulatory networks coordinating
bacterial cell growth and division. The mechanisms by which Streptococcus pneumoniae achieves its characteristic ellipsoid-
cell shape remain largely unknown. In this study, we analyzed the interplay of the cell division paralogs DivIVA and GpsB
with the ser/thr kinase StkP. We observed that the deletion of divIVA hindered cell elongation and resulted in cell shortening
and rounding. By contrast, the absence of GpsB resulted in hampered cell division and triggered cell elongation.
Remarkably, DgpsB elongated cells exhibited a helical FtsZ pattern instead of a Z-ring, accompanied by helical patterns for
DivIVA and peptidoglycan synthesis. Strikingly, divIVA deletion suppressed the elongated phenotype of DgpsB cells. These
data suggest that DivIVA promotes cell elongation and that GpsB counteracts it. Analysis of protein-protein interactions
revealed that GpsB and DivIVA do not interact with FtsZ but with the cell division protein EzrA, which itself interacts with
FtsZ. In addition, GpsB interacts directly with DivIVA. These results are consistent with DivIVA and GpsB acting as a
molecular switch to orchestrate peripheral and septal PG synthesis and connecting them with the Z-ring via EzrA. The
cellular co-localization of the transpeptidases PBP2x and PBP2b as well as the lipid-flippases FtsW and RodA in DgpsB cells
further suggest the existence of a single large PG assembly complex. Finally, we show that GpsB is required for septal
localization and kinase activity of StkP, and therefore for StkP-dependent phosphorylation of DivIVA. Altogether, we
propose that the StkP/DivIVA/GpsB triad finely tunes the two modes of peptidoglycan (peripheral and septal) synthesis
responsible for the pneumococcal ellipsoid cell shape.
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Introduction

Bacterial cell growth and division are intimately linked.

Complex webs of proteins interacting with each other temporally

and spatially control the cellular events leading to the production

of two identical daughter cells [1–3]. Most of the proteins required

for cell division and elongation have been characterized in rod-

shaped bacterial models like the Gram-negative bacteria Escherichia

coli and Caulobacter crescentus or the Gram-positive bacterium Bacillus

subtilis, and robust models depicting their division process are

proposed. This knowledge has been beneficial for characterizing

and understanding cell division of other bacteria. However, some

aspects related to cell division, including the achievement of cell

shape, are often hardly transposable and species-specific mecha-

nisms exist to allow cells to divide, assume a given shape and/or

cope with their environment [4,5].

In the Gram-positive human pathogen Streptococcus pneumoniae

(the pneumococcus), some conserved division proteins have been

studied, but overall, little is known about the mechanisms

governing cell division and those responsible for peptidoglycan

(PG) synthesis, as well as how this species achieves its characteristic

ellipsoid (rugby-ball like) shape [6–10]. Early studies have
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suggested that S. pneumoniae utilizes a combination of two PG

synthesis modes, namely septal and peripheral [11]. Due to the

absence of the actin-like protein MreB and any homologues in the

pneumococcus, it is speculated that these two modes of PG

synthesis are coordinated with and organized by FtsZ-ring

formation [12]. A two-state model in which two different PG

synthesis machineries are responsible for either septal or periph-

eral synthesis has been proposed. In this model, the PG

transpeptidase PBP2x, a penicillin binding protein (PBP) that

catalyzes PG cross-linking, and the lipid-flippase FtsW, that

transports lipid-linked PG precursors from the inner to the outer

leaflet of the cytoplasmic membrane, belong to a septal machinery

and are exclusively required for septal PG synthesis and cell

separation. On the other hand, the transpeptidase PBP2b and the

lipid-flippase RodA would be exclusively associated with a

peripheral machinery, and required for peripheral PG synthesis

and cell elongation. However, it is unclear how S. pneumoniae would

coordinate peripheral and septal synthesis. An interesting possi-

bility comes from work in B. subtilis showing that cell elongation-

division cycles are controlled by shuttling of PBP1, a transpepti-

dase/transglycosidase class A PBP involved in peptidoglycan

polymerization [13]. PG synthesis could thus be fine-tuned by a

yet uncharacterized process to allow the alternate synthesis of

septal and peripheral PG in pneumococcus. StkP, a membrane

eukaryotic-type serine/threonine kinase, represents an attractive

candidate to regulate septal and peripheral PG synthesis in S.

pneumoniae. This kinase has been recently shown to play an

important role in pneumococcal cell division and growth [14–16].

In vivo, only a few proteins appear specifically phosphorylated by

StkP [14,17,18]. Among them, it is noteworthy to find the division

protein DivIVA, which was shown to be phosphorylated by StkP

on Thr-201. Expression of the non-phosphorylatable form of

DivIVA (i.e., a mutant in which Thr-201 is substituted for an

alanine) induced severe defects in cell shape, possibly by affecting

pole maturation [14].

Interestingly, a DivIVA paralog, named GpsB [19], was

identified in B. subtilis and shown to be involved together with

EzrA in PBP1 shuttling between elongation and division sites

[13]. Global phosphoproteome analyses of B. subtilis and

Streptococcus agalactiae indicated that GpsB is phosphorylated in

these species [20,21]. GpsB is also found in S. pneumoniae, as in

most Firmicutes. This situation prompted us to investigate the

role of the two paralogs, GpsB and DivIVA, in PG synthesis and

cell morphogenesis of S. pneumoniae, and to examine whether

their phosphorylation by StkP could affect their role. Here, we

establish that GpsB and DivIVA are both crucial for cell

morphogenesis, and demonstrate that DivIVA is necessary for

cell elongation whereas GpsB acts as a negative regulator of

DivIVA to prevent cell elongation. Moreover, we show that

GpsB is not phosphorylated, but required for StkP septal

localization and subsequent phosphorylation of DivIVA. In light

of these observations, we propose that the StkP/DivIVA/GpsB

triad finely tunes the two modes of PG synthesis to achieve the

ovoid shape of pneumococci and we discuss the relevance of this

process in other bacteria. Our observation of similar localization

patterns for the transpeptidases PBP2x and PBP2b as well as for

the lipid-flippases FtsW and RodA in cells deficient for GpsB

and/or DivIVA questions the existence of two distinct PG

biosynthesis machineries.

Results

Inactivation of divIVA hampers cell elongation
To analyze the potential role of DivIVA in pneumococcal

morphogenesis, we constructed a nonpolar, markerless divIVA-null

mutant and investigated its cell morphology. As previously

reported for the S. pneumoniae RX1 strain [6,22], 99.8% of DdivIVA

R800 cells exhibited a striking chain phenotype (Figure 1A and

Table S1). When the divIVA mutation was repaired back to wild

type (WT) by transformation, the morphology of the resulting

strain was similar to that of the WT strain with a typical diplo-

ovococcal shape (compare Figure 1A with Figure S1) indicating

that the chain phenotype is due to the deletion of divIVA. DdivIVA

chains contained up to several dozen of tightly joined cells

separated by well-defined membranes (Figures 1A and S2A). Cells

were clearly not ovoid but flattened at the poles, exhibiting a

rounded shape. Analysis of individual cell parameters further

confirmed this visual impression and showed that divIVA deletion

resulted in reduced pneumococcal cell length (Figure S2B and

Table S1).

We also examined DdivIVA cells by scanning- and transmission-

electron microscopy (SEM and TEM). Using SEM, cells seemed

to be interlocked into the neighboring ones (Figure 1B).

Nevertheless, TEM indicated that cells were clearly separated

by membranes, consistent with efficient Z-ring constriction and

closure, and suggesting that septal PG is efficiently produced

(Figure 1C). To confirm the latter, we applied the strategy

described by Kuru and co-workers [23] and PG synthesis was

visualized using Bodipy-FL containing fluorescent D-amino acid,

namely Bodipy-FL-amino-D-alanine, or BADA [24]. More

specifically, the exponentially growing cells are pulsed with

BADA for 4 min corresponding to ca. 10–12% of the generation

times of the WT and the mutants. As a control, we checked that

BADA labeled the division site in WT cells as previously

described using fluorescent vancomycin [14] (Figure 2). BADA

labeling of DdivIVA cells revealed PG synthesis localizing

exclusively as bands across the cells at the division septa in

99.4% of cells (Figure 2 and Table S2). Altogether, these results

suggest that in the absence of DivIVA, cell elongation is

hampered while septum closure still occurs. On the other hand,

the last step of cell division allowing the final separation of

daughter cells is affected.

Author Summary

Over the last decade, bacterial genomics have revealed the
presence of eukaryotic-type serine/threonine protein
kinases (STKPs) in many bacteria. However, their role and
mode of action is still elusive. Recent studies have
suggested that STKPs could play an important role in
regulating cell division of some bacterial species but the
underlying regulatory mechanisms are largely unknown.
Considering that much remains to be discovered about
the mechanisms by which the cell division machinery is
assembled at the cell center and how the diversity of
bacterial cell shapes is achieved and maintained, studying
the role of STKPs represents a promising approach to
decipher the inner workings of bacterial cell division. In
this article, we show that the ser/thr-kinase StkP and the
two cell division paralogs GpsB and DivIVA of Streptococ-
cus pneumoniae (the pneumococcus) work together to
finely tune peptidoglycan synthesis and achieve proper
cell shape and division. We discuss the likelihood that
similar mechanisms occur in other bacteria requiring
protein-kinases for the cell division process. We propose
that the interplay between protein-kinases and cell-
division proteins like GpsB or DivIVA is of crucial
importance to satisfy the modes of cell division and the
cell shape displayed by streptococci and other bacteria.

Pneumococcal Cell Elongation and Division
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Inactivation of gpsB hinders cell septation
To unravel the role of GpsB in S. pneumoniae, we first constructed

a nonpolar markerless deletion mutant of gpsB in strain R800. In

contrast to the deletion of divIVA, the deletion of gpsB severely

affected growth (Figure S3A) and cell viability decreased to 60%

suggesting that GpsB is crucial for the pneumococcus. Microscopy

analysis revealed a striking phenotype characterized by the

presence of very elongated cells (Figures 1A, S3B and Table S1).

Morphometric measurements indicated that the length was below

1.4 mm for 90% of wild-type cells (WT), whereas nearly 90% of

DgpsB cells exhibited length greater than 1.3 mm. DgpsB cells

seemed irregularly shaped and septal membranes across cells were

lacking, indicating that cell constriction was seriously hampered

(Figure 1A). Examination of the ultrastructure of DgpsB cells by

TEM and SEM confirmed that mutant cells displayed a strongly

affected morphology with irregular width (Figures 1B–C). The

presence of several septal initiations positioned asymmetrically on

each side of the long axis of the cells was detected by TEM

(Figure 1C). SEM images confirmed an irregular elongation of

DgpsB cells which displayed a ‘‘twisted-towel’’ shape (Figure 1B).

One could further observe the presence of a helical groove at the

surface of the cells that seemed to correspond to the asymmetric

septal initiations detected by TEM, suggesting that the divisome

is stretched upon cell elongation. Importantly, a wild-type

diplo-ovococcal shape and normal growth were restored when

the DgpsB strain was transformed back to gpsB+ confirming that the

observed phenotype resulted from the inactivation of gpsB

(compare Figure 1A with Figure S1). Deletion of gpsB was also

attempted into four other well-characterized and widely used S.

pneumoniae strains, the encapsulated D39 and TIGR4, and the

unencapsulated R6 and RX1. The same elongated phenotype was

observed with gpsB2 derivatives of the unencapsulated strains,

while our efforts to delete gpsB failed with both encapsulated

strains (Figure S3C). The latter observation is consistent with the

recent report of Land and co-workers [25]. Altogether, these data

show that deletion of gpsB triggers cell elongation and prevents

proper pneumococcal cell division.

Helical FtsZ pattern in DgpsB cells
We then analyzed the effect of the deletion of gpsB on FtsZ

localization. For this purpose, we first constructed a C-terminal

GFP fusion to FtsZ. Throughout this study and unless otherwise

indicated, C-terminal and N-terminal fusions (denoted respectively

Protein-GFP and GFP-Protein) were constructed at each native

chromosomal locus, expressed under the control of the native

promoter and represented the only source of protein. The FtsZ-

GFP fusion seemed fully functional as cells grew as rapidly as WT

cells and did not display any shape defect (Figures 3A and S4A). As

Figure 1. Morphology of WT, DdivIVA, DgpsB and DdivIVADgpsB cells. (A) Phase contrast microscopy (lower panel) and FM4–64 membrane
staining (upper panel) images of WT, DdivIVA, DgpsB and DdivIVADgpsB exponentially growing cells at 37uC in THY medium. Scale bar, 5 mm. (B)
Scanning electron micrograph of WT, DdivIVA, DgpsB and DdivIVADgpsB cells. Scale bar, 1 mm. (C) Transmission electron micrograph of WT, DdivIVA,
DgpsB and DdivIVADgpsB cells. Scale bar, 1 mm. Asterisks indicate defective septal initiations in staggered rows in the DgpsB cell.
doi:10.1371/journal.pgen.1004275.g001

Pneumococcal Cell Elongation and Division
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expected, FtsZ-GFP localized at midcell in exponentially grown

WT cells as well as in DdivIVA rounded cells (Figure 3A and Table

S2). FtsZ-GFP also appeared as several transversal bands in a

majority of DgpsB cells. Interestingly however, a number of cells

(25.2%) displayed a zig-zag localization of FtsZ (Figures 3A, S5

and Table S2). To clarify the dimensional nature of this zig-zag

structure, we carried out deconvolution microscopy (Movie S1)

that revealed a continuous FtsZ-helical organization. This

unexpected helical localization of FtsZ in DgpsB cells was

confirmed by immunostaining using anti-FtsZ antibodies

(Figure 3B) indicating that the helical pattern is not an artifact

due to the GFP tag on FtsZ. Control experiments also confirmed

that FtsZ levels were unaffected in the absence of GpsB (Figure

S4B). To reconcile the dual FtsZ localization (spirals vs. bands) in

DgpsB elongated cells, time-lapse microscopy was performed.

During cell elongation, some Z-rings were replaced by helical

structures which eventually split to generate several new Z-rings,

whereas others continued to stretch (Figure 3C and Movie S2).

However, in both cases cells ended up bursting and dying (e.g.,

cells marked with arrows in Figure 3C). We conclude from these

observations that the Z-ring is replaced by a helical structure

during elongation of DgpsB cells.

Helical PG synthesis, PBP2x, PBP2b, FtsW and RodA
pattern in DgpsB cells

To test whether cell elongation in DgpsB cells was accompanied

by altered localization of PG synthesis, the latter was labeled using

BADA. BADA labeling revealed a helical organization of

neosynthesized PG in 28.7% of DgpsB elongated cells (Figure 2

and Table S2), which is comparable to the percentage of cells

exhibiting GFP-FtsZ spirals. This prompted us to examine the

localization of PBP2x, PBP2b, FtsW and RodA, which are

involved in PG synthesis, using GFP-PBP2x, GFP-PBP2b, FtsW-

GFP or RodA-GFP. All four GFP-fused proteins were functional

as cells grew normally and displayed WT shape (Figures 4A and

S6A). Fluorescence microscopy indicated that PBP2x, PBP2b,

FtsW, and RodA localize at midcell in WT cells as well as in

DdivIVA cells (Figures 4A and 4C). Strikingly, they all appeared

mislocalized in elongated DgpsB cells, exhibiting a helical pattern

(Figure 4B and Table S2) reminiscent of that observed for FtsZ

(Figure 3A) and PG synthesis (Figure 2). Western blot control

experiments confirmed that the four GFP-fusions were produced

at similar levels in WT, DdivIVA and DgpsB cells, excluding any

artifact due to aberrant protein expression (Figure S7).

These helical patterns suggested that the four GFP-proteins

could co-localize with FtsZ. To directly assess this, we constructed

double-labeled strains containing FtsZ fused to RFP and either

PBP2x, PBP2b, FtsW, or RodA fused to GFP. Cells containing a

pair of fusion proteins in an otherwise WT background exhibited a

growth delay (Figure S6B) indicating that the combination of FtsZ-

RFP with GFP-fused PBP2x, PBP2b, FtsW, or RodA is somehow

detrimental. Nevertheless, microscopy analyses indicated that cell

shapes were normal and that each pair of RFP/GFP-fusions co-

localized properly at midcell (Figure 5A). On the other hand, when

we detected helical RFP-FtsZ in DgpsB elongated cells, PBP2x,

PBP2b, FtsW and RodA also displayed an helical organization co-

localizing with helical FtsZ (Figure 5B).

Helical DivIVA pattern in DgpsB cells
To examine DivIVA localization in DgpsB elongated cells, we

first generated a WT strain producing DivIVA-GFP. WT cells

expressing DivIVA-GFP grew normally and displayed a classic

ovoid-shape (Figures 6A and S8A) establishing that the DivIVA-

GFP fusion is functional. In agreement with a previous report [15],

DivIVA-GFP localized at both midcell and the cell poles

(Figure 6A). By contrast, DivIVA-GFP exhibited a helical

organization in 20.1% of elongated DgpsB cells (Figure 6A and

Table S2). This phenotype was not due to an aberrant expression

of DivIVA-GFP since western blot analyses confirmed that the

fusion protein was synthesized at similar levels in WT and DgpsB

cells (Figure S8B). DivIVA localization was thus comparable to

that of FtsZ in DgpsB cells (Figure 3A) suggesting that the two

proteins co-localize during cell elongation. To confirm this, we

constructed WT and DgpsB strains expressing both DivIVA-GFP

and FtsZ-RFP. As expected, FtsZ and DivIVA displayed

respectively septal and septal/polar localization in WT cells

(Figure 6B). In DgpsB cells, DivIVA co-localized with FtsZ in a

helical pattern (Figure 6B).

Figure 2. Localization of PG synthesis in WT, DdivIVA, DgpsB
and DdivIVADgpsB cells. Phase contrast microscopy (left panel) and
BADA labeling of PG (middle panel) images of WT, DdivIVA, DgpsB and
DdivIVADgpsB exponentially growing cells pulsed with BADA 4 min
each at 37uC in THY medium. Overlay between phase contrast (red) and
BADA (green) labeling is shown. Arrows show helical organization of PG
synthesis. Scale bar, 5 mm.
doi:10.1371/journal.pgen.1004275.g002

Pneumococcal Cell Elongation and Division

PLOS Genetics | www.plosgenetics.org 4 April 2014 | Volume 10 | Issue 4 | e1004275



Figure 3. FtsZ localization in WT, DdivIVA, DgpsB and DdivIVADgpsB cells. (A) FtsZ localization in WT, DdivIVA, DgpsB and DdivIVADgpsB cells.
Phase contrast (left), GFP fluorescent signal (middle) and overlays (right) between phase contrast (red) and GFP (green) images are shown. Arrows
show helical organization of FtsZ. Scale bar, 5 mm. See also the unprocessed image of FtsZ localization in DgpsB cells in Figure S5 showing that the
FtsZ fluorescent signal is detected in all cells. (B) Immunofluorescence staining of fixed WT and DgpsB cells using anti-FtsZ polyclonal antibodies. DNA
was counterstained with DAPI. Merged pictures show (upper panels) the overlay of FtsZ (red) and phase contrast images, and (lower panels) the
overlay of FtsZ (red) and DAPI (blue). Higher magnifications of DgpsB cells highlighted with a white square are shown in the right row. Arrows show
helical organization of FtsZ. Scale bar, 5 mm. (C) Fluorescence time-lapse microscopy of DgpsB cells producing FtsZ-GFP and grown in C+H medium at
30uC. Overlays between phase contrast (gray) and GFP (green) are shown. Stills are from Movie S2. Scale bar, 2 mm. Blue arrows point to cells in which
the Z-ring helix-stretches until cell death. Red arrowheads point to helical structures of FtsZ. FtsZ-GFP is the only source of FtsZ in cells. ftsZ-gfp
substitutes the native ftsZ gene at its chromosomal locus.
doi:10.1371/journal.pgen.1004275.g003
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Inactivation of divIVA suppresses elongation and helical
patterns of DgpsB cells

To further investigate the role of GpsB and DivIVA, we

introduced the divIVA deletion in cells deficient for gpsB. The

double mutant was readily obtained. FM4–64 membrane staining

showed that DdivIVADgpsB cells exhibited the same cell shape and

chain phenotype as DdivIVA cells (97.9% of cells), although a few

cells were irregularly shaped (Figure 1A and Table S1), indicating

that inactivation of divIVA suppressed the elongated cell phenotype

typical of DgpsB cells (the same was observed with a double mutant

constructed by introducing the DgpsB mutation into DdivIVA cells;

data not shown). However, cell viability decreased to 60% and was

comparable to that of DgpsB cells. As controls, FtsZ-GFP still

localized at the division septa in the absence of DivIVA and GpsB,

and was produced to WT levels (Figure 3A, Table S2 and compare

Figures S4B with S9B). These observations suggest that GpsB

interplays with DivIVA to coordinate cell elongation and cell

division, and that GpsB is dispensable for septal PG synthesis when

DivIVA is absent.

To further test this hypothesis, we analyzed BADA labeling of

PG in DdivIVADgpsB cells. We observed that PG is produced

properly at the division site (Figure 2 and Table S2). Likewise, we

analyzed the localization of PBP2x, PBP2b, FtsW and RodA in

DdivIVADgpsB cells (Figure 4D and Table S2). All of them still

localized to the division septa as observed in DdivIVA cells

(Figure 4C and Table S2). Western blot control experiments

confirmed that the four GFP-fused proteins were produced at

similar levels in WT and DdivIVADgpsB cells (Figure S7). These

observations indicate that deletion of gpsB is tolerated in a DdivIVA

mutant without inducing further detectable cell shape and septum

closure defects and does not impair PG synthesis at the division

site.

Interconnections between GpsB, DivIVA and the Z-ring
To gain an insight into a possible connection between GpsB,

DivIVA and cell division, we first looked for physical interactions

between these proteins and FtsZ using a bacterial two-hybrid

screen [26]. Neither GpsB nor DivIVA were found to interact with

FtsZ (Figure S10A). However, as the cell division protein EzrA was

found to bridge GpsB with the Z-ring in B. subtilis [13], we also

analyzed EzrA interactions with GpsB, DivIVA and FtsZ.

Reproducible interactions were detected between EzrA and either

GpsB, DivIVA or FtsZ by bacterial two-hybrid assays (Figure

S10A). These interactions were further analyzed by surface

plasmon resonance (SPR), which confirmed that EzrA interacts

with GpsB (KD = 7706230 nM), DivIVA (KD = 530675 nM) and

FtsZ (KD = 295660 nM) (Figures S10B and S10C–E). We also

tested whether GpsB interacts with DivIVA. Reproducible

interactions were first detected with the two-hybrid screen (Figure

S10A) and SPR confirmed that GpsB interacts with DivIVA

(KD = 85614 nM) (Figures S10B and S10F).

We then analyzed the localization of EzrA and GpsB fused to

GFP. WT cells producing GFP-GpsB or GpsB-GFP appeared

elongated and displayed aberrant cell shapes indicating that both

fusions were not fully functional (Figure S11). We therefore

constructed a merodiploid strain carrying an ectopic gfp-gpsB

fusion under the control of the zinc-inducible PZn promoter at the

non-essential bgaA locus. Fluorescence microscopy indicated that

GFP-GpsB localizes as bands across the short axis of the cells at

the division septum in WT cells and the same observation was

made in DdivIVA rounded cells (Figure 7A and Table S2). By

contrast, while EzrA-GFP localized at midcell in exponentially

grown WT cells as well as in DdivIVA and DdivIVADgpsB cells,

EzrA-GFP formed helical structures that extended across the long

axis of the cell in 19.9% of DgpsB elongated cells (Figure 7B and

Table S2) as was found for FtsZ-GFP and DivIVA-GFP

(Figures 3A and 6). Western blot control experiments confirmed

that GFP-GpsB and EzrA-GFP were produced at similar levels in

WT and DdivIVA (and DgpsB and DdivIVADgpsB cells for EzrA)

(Figures S8B and S9). These observations are consistent with

EzrA serving as a connector between FtsZ and GpsB and/or

DivIVA.

GpsB, but not DivIVA, is required for proper localization
and functioning of StkP

The elongated phenotype with incomplete septa displayed by

DgpsB cells was reminiscent of that reported for cells expressing the

kinase-dead form of StkP and suggested a relationship between

these two proteins [14,15]. Hence, we hypothesized that GpsB

could be phosphorylated by StkP in S. pneumoniae. The general

phosphorylation pattern of crude extracts of pneumococcal cells

was thus analyzed using anti-phosphothreonine antibodies. We

detected an intense phosphorylation signal around 15 kDa, which

could be compatible with the phosphorylation of GpsB (13 kDa)

(Figure 8A). Therefore, GpsB from S. pneumoniae cells was purified

to examine its in vivo phosphorylation state using high-resolution

based mass spectrometry (Figures S12A–B). No phosphorylated

sites were detected suggesting that GpsB is not phosphorylated in

vivo. To confirm this result, we analyzed the phosphorylation

pattern of cells expressing only GFP-GpsB. An intense phosphor-

ylation signal at 15 kDa was still detected and no new

phosphorylation signal appeared around 45 kDa, the predicted

mass of GFP-GpsB (Figure 8A), though GFP-GpsB was efficiently

stained with anti-GFP antibodies (Figure 8B). Altogether, these

data show that GpsB is not phosphorylated in vivo and that the 15-

kDa phosphorylation signal corresponds to another unidentified

protein.

In parallel, we analyzed the phosphorylation pattern of DgpsB

cells using anti-phosphothreonine antibodies. Surprisingly, the

deletion of gpsB abolished not only the phosphorylation of all the

substrates of StkP, including DivIVA, but also StkP autophos-

phorylation itself (Figure 8A). Nevertheless, StkP was expressed

at similar levels in WT and DgpsB cells (Figure S12C).

Furthermore, SPR analysis showed that GpsB was able to

interact with the inactive cytoplasmic domain of StkP-K42R

(KD = 500660 nM) (Figure S10G). These data raised the

question of whether GpsB could affect StkP septal localization

[14,15] (Figure 8C). Therefore, we constructed a DgpsB mutant

harboring a GFP-StkP fusion [14]. Fluorescence microscopy

revealed an intense signal distributed all around the cell,

consistent with a diffuse membrane localization of GFP-StkP

(Figure 8C). StkP localization and general phosphorylation

patterns of DdivIVA and DdivIVADgpsB cells were also analyzed.

While StkP localized to midcell and was able to phosphorylate

Figure 4. Localization of PBP2x, PBP2b, FtsW and RodA in WT, DdivIVA, DgpsB and DdivIVADgpsB cells. Chromosomal copy of either
pbp2x, pbp2b, ftsW or rodA were substituted for a gfp-fused gene in WT (A) or DgpsB (B), or DdivIVA (C), or DdivIVADgpsB (D) cells. Cells were grown in
THY medium at 37uC. GFP (green) and phase-contrast (grey) images were taken from a typical field of exponentially growing cells. Merged pictures
show the overlay of GFP fluorescence (green) and phase contrast images (red). Arrows show helical organization of GFP-PBP2x, GFP-PBP2b, FtsW-GFP
and RodA-GFP. Scale bar, 5 mm. All fusion proteins are the only source of PBP2X, PBP2b, FtsW or RodA in the cells.
doi:10.1371/journal.pgen.1004275.g004
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its targets in the absence of DivIVA, a deficient phosphorylation

pattern as well as a StkP diffuse membrane localization were

observed in the double mutant (Figures 8A and 8C). In both

mutant strains, StkP was produced to similar levels as in WT

cells (Figure S12C). These data establish that, although GpsB is

not phosphorylated, it is crucial for StkP septal localization and

its capacity to autophosphorylate and phosphorylate its

substrates, notably DivIVA. By contrast, DivIVA is not required

for StkP kinase activity and localization.

Deletion of divIVA, but not of gpsB suppresses elongation
of stkP-K42M cells

Because GpsB is required for StkP septal localization and thus

phosphorylation of DivIVA, we investigated the impact of either

gpsB or divIVA deletion on the elongated morphology of cells

producing the kinase-dead form of StkP, StkP-K42M [14]. As

shown in Figure 8D, DgpsB-stkP-K42M cells still displayed an

elongated phenotype supporting the idea that the main function of

GpsB is to allow StkP to phosphorylate its targets. By contrast, the

Figure 5. Localization of GFP fused PBP2x, PBP2b, FtsW or RodA together with FtsZ-RFP in WT and DgpsB cells. Localization of FtsZ-
RFP and either GFP-PBP2x, GFP-PBP2b, FtsW-GFP or RodA-GFP in WT (A) or DgpsB (B) cells grown at 37u in THY. Overlays between phase contrast
(gray), GFP (green), and RFP (red) are shown on the right. Arrows show helical organization of FtsZ-RFP, GFP-PBP2x, GFP-PBP2b, FtsW-GFP and RodA-
GFP. Scale bar, 5 mm. All fusion proteins are the only source of FtsZ, PBP2X, PBP2b, FtsW or RodA in cells. The fusion genes encoding these proteins
substitute the corresponding native genes at their chromosomal locus.
doi:10.1371/journal.pgen.1004275.g005

Figure 6. Localization of DivIVA in WT and DgpsB cells. (A) DivIVA-GFP localization in WT and DgpsB cells. Phase contrast (left), GFP fluorescent
signal (middle) and overlays (right) between phase contrast (red) and GFP (green) images are shown. (B) Co-localization of FtsZ-RFP (red) and DivIVA-
GFP (green) in WT and DgpsB cells. Overlays between phase contrast (gray), GFP (green), and RFP (red) are shown. Cells were grown to exponential
phase in THY medium at 37uC. Arrows show helical organization of DivIVA-GFP and FtsZ-RFP. Scale bar, 5 mm. DivIVA-GFP and FtsZ-GFP are the only
source of FtsZ and DivIVA in cells. ftsZ-gfp and divIVA-gfp substitute the native ftsZ and divIVA genes at their chromosomal locus, respectively.
doi:10.1371/journal.pgen.1004275.g006
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deletion of divIVA was found to abrogate stkP-K42M cell

elongation. Indeed, DdivIVA-stkP-K42M cells formed chains of

rounded cells similar to those of the DdivIVADgpsB mutant

(compare Figure 8D with Figure 1A). This observation confirms

that DivIVA is crucial for cell elongation and the late step of cell

separation, and further suggests that its non-phosphorylation likely

results in aberrant elongation of stkP-K42M and DgpsB cells.

Discussion

Roles of DivIVA
According to the current model of PG synthesis in pneumo-

coccus, cell elongation is due to the peripheral PG synthesis. Our

observations suggest that peripheral PG is impaired in DdivIVA

cells (Figures 1 and S2). In addition, we show that DivIVA co-

localizes with FtsZ in DgpsB elongated cells and that divIVA

deletion suppresses DgpsB cell elongation (Figures 1A and 6B).

Therefore, we propose that one function of DivIVA is to switch

from septal to peripheral PG synthesis to trigger cell elongation.

DivIVA performs quite different functions in B. subtilis and

Staphylococcus aureus [27], but it has already been shown to

participate in cell wall biosynthesis in bacteria such as Streptomyces

coelicolor, Mycobacterium tuberculosis and Corynebacterium glutamicum that

either lack or do not require MreB for their vegetative growth. In

these bacteria, DivIVA is required for polar growth allowing tip

extension and cell elongation [28–30]. Pneumococcus is devoid of

MreB and any identifiable homologues. Altogether, these obser-

vations raise the possibility that DivIVA is crucial for cell

elongation in those species in which vegetative growth is not

dependent on MreB.

The chaining displayed by DdivIVA cells also suggests that while

septum closure leading to the separation of the daughter cell

cytoplasms is normal, their final separation is somehow affected, as

previously reported for the RX1 strain [6]. DivIVA has been

previously found to interact or to contribute to the positioning of

some PG hydrolases in the pneumococcus [31,32] or in autolysin

secretion in other bacteria as Listeria monocytogenes [33]. The chain

phenotype displayed by the DdivIVA mutant is consistent with

impairment of PG hydrolysis and remodeling required for final

separation of daughter cells.

Essentiality and role(s) of GpsB
Previous studies using high-throughput gene disruption ap-

proaches have suggested that gpsB could be essential in pneumo-

coccus [34–36]. In this study, we show that GpsB is actually not

essential for pneumococcal laboratory strains (Figures 1 and S3).

However, and in agreement with the previous observations, no

DgpsB transformants could be obtained with the pathogenic strains

D39 and TIGR4 indicating that the requirement for GpsB

depends on the genetic background. The recent work of Land and

co-workers also suggests that suppressive mutations are required

for growth of unencapsulated derivatives of pathogenic strains

expressing low level of GpsB [25]. The conditional essentiality of

GpsB is reminiscent of the situation with MreC and MreD. These

proteins are essential in D39 and TIGR4 pathogenic strains but

not in the R6 laboratory strain due to suppressive mutations in

PBP1a and in proteins of unknown function in the latter [9].

Inactivation of gpsB resulted in severely impaired cell division,

with a large fraction of the population appearing as elongated cells

with incomplete septa similar to cells producing the kinase-dead

form of StkP [14]. This phenotype is accompanied by helical

patterns for PG synthesis and FtsZ, along the long axis of the cell

(Figures 2 and 3). Interestingly, Z-spiraling was not observed in the

work published by Land and co-workers [25]. Rather, the authors

detected multiple non-constricted rings of FtsZ in elongated cells.

Because GpsB expression was under the control of an inducible

fucose promoter, we tentatively attribute the absence of Z-spiraling

to low level of gpsB expression in absence of fucose, likely

Figure 7. Localization of GpsB and EzrA. (A) Localization of GFP-
GpsB in WT and DdivIVA cells. Expression of the gfp-gpsB fusion is under
the control of the zinc-inducible Pzn promoter at the non-essential bgaA
locus. (B) EzrA-GFP localization in WT, DgpsB, DdivIVA and DdivIVADgpsB
cells. Phase contrast (left), GFP fluorescent signal (middle) and overlays
(right) between phase contrast (red) and GFP (green) images are shown.
Cells were grown to exponential phase in THY medium at 37uC. Arrows
show helical organization of EzrA-GFP. Scale bar, 5 mm. EzrA-GFP is the
only source of EzrA in cells. ezrA-gfp substitutes the native ezrA gene at
its chromosomal locus.
doi:10.1371/journal.pgen.1004275.g007
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Figure 8. Interplay of GpsB, DivIVA and StkP. (A) Western immunoblot of whole-cell lysates from the wild type (WT), DstkP, gpsB::gfp-gpsB,
DgpsB, DdivIVA and DgpsBDdivIVA cells grown in THY at 37uC probed with anti-phosphothreonine antibodies. The same amounts (25 mg) of proteins
were loaded in all gel lanes. Arrow indicates the signal observed around 15 kDa. The phosphorylation signal for DivIVA and StkP are indicated. (B)
Western immunoblot of whole-cell lysates from wild type (WT) or gpsB::gfp-gpsB cells probed with anti-GFP antibodies. Purified GFP is used as control.
Arrow indicates the signal observed for GFP-GpsB. (C) StkP localization using a GFP N-terminal fusion in WT, DgpsB, DdivIVA and DgpsBDdivIVA cells.
GFP (green) and phase-contrast (grey) images were taken from a typical field of exponentially grown cells in THY at 37uC. Merged pictures (lower
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preserving Z-ring formation in elongated cells. This hypothesis is

consistent with our time-lapse analysis showing Z-spiraling upon

cell elongation, eventually splitting to generate several new Z-rings

(Figure 3C and Movie S2).

The stimulation of cell elongation and aberrant helical

organization of the divisome observed in our study in DgpsB cells

suggest that GpsB is a negative regulator of cell elongation in WT

cells. On the other hand, the deletion of gpsB has no effect on cell

shape and septum closure in the absence of DivIVA (Figure 1A),

and septal localizations of PG synthesis, PBP2x, PBP2b, FtsW and

RodA are not affected (Figures 2 and 4D). However, the deletion

of both divIVA and gpsB genes has a detrimental effect on cell

viability. It could thus be proposed that in absence of DivIVA,

GpsB is dispensable for septal PG synthesis but required for

optimal cell survival.

We also show that GpsB interacts with StkP and is crucial for

both StkP localization at the division site and its ability to

phosphorylate its targets, including DivIVA (Figure 8). This

represents the first evidence of STPKs regulation by a cell

division protein. Consequently, GpsB becomes the major

determinant of pneumococcal cell division. Most of StkP targets

remain to be identified but their phosphorylation is crucial for

cell division [14]. On this basis, one cannot exclude that

deficient phosphorylation of StkP targets in the absence of GpsB

could favor FtsZ-ring spiraling. In other words, FtsZ could be

prone to move in a spiral driving peripheral PG synthesis in the

absence of GpsB, yet preventing septal PG synthesis and cell

division. The function of GpsB could be more complex than

promoting septal PG synthesis during septum closure and also

involved in mediating proper condensation of the divisome at

midcell.

Interplay of GpsB, DivIVA and StkP
Analysis of protein-protein interactions revealed that GpsB and

DivIVA do not interact with FtsZ but with the cell division EzrA,

which itself interacts with FtsZ (Figure S10). Together with the

helical organization of EzrA and the co-localization of DivIVA

with FtsZ in DgpsB elongated cells, we propose that septal and

peripheral PG synthesis are coordinated with and organized by

FtsZ via EzrA, GpsB and DivIVA.

Considering the opposing function of DivIVA and GpsB in cell

elongation, and the finding that inactivation of divIVA in DgpsB

cells results in the disappearance of elongated cells, we propose

that GpsB is required to confine PG synthesis at the division site

and to negatively control cell elongation promoted by DivIVA.

GpsB and DivIVA are also found to interact. Therefore, we

propose that GpsB and DivIVA constitute a molecular switch,

connected to FtsZ via EzrA, that orchestrates the production of

peripheral (cell elongation) and septal (cell division) PG to confer

to the pneumococcus its characteristic ovoid shape. How could

this switch operate? The finding that inactivation of gpsB affects

both StkP septal localization and kinase activity, and thus DivIVA

phosphorylation, leads us to propose that cell elongation is

stimulated by non-phosphorylated DivIVA and that DivIVA

phosphorylation by StkP abolishes its ability to promote cell

elongation. Suppression of the elongated cell shape of the stkP-

K42M mutant upon divIVA deletion is consistent with this

hypothesis (Figure 8D).

Toward a single PG synthesis machine?
The current model of PG synthesis in S. pneumoniae, and more

generally in ovococci, proposes that the two modes of PG synthesis

depend on the action of two distinct machineries [12], as described

for rod-shaped bacteria. Recently, Land and co-workers have

analyzed the localization of PBP2x and PBP1a over the cell cycle

[25]. These two enzymes display similar localization patterns in

pre- and mid-divisional cells, but not during septum closure.

Indeed, PBP1a localized as a ring larger than that of PBP2x. This

observation was interpreted as supporting the existence of two

distinct PG synthesis machineries. While PBP2x is essential and

participates in cell constriction (septal PG synthesis), the role of

PBP1a in PG synthesis remains elusive. A pbp1a mutant is affected

both in length and width but cells grow normally with no viability

defects and cells remain ovoid rather than being elongated or

rounded [9,37,38]. In the two-machinery model, PBP1a would be

involved in both elongation and constriction. That PBP2x and

PBP1a display different localization dynamics during septum

closure does not necessarily imply that they belong to two distinct

machineries. Here we have analyzed the localization of PBP2x and

FtsW as well as PBP2b and RodA, which are proposed to be

specific for septal and peripheral PG synthesis, respectively, in the

two-machinery model. We show that they all co-localize with

helix-shaped FtsZ in elongated DgpsB cells (Figure 5B). In addition,

we failed to delete the genes encoding PBP2x, PBP2b, FtsW or

RodA in DgpsB, DdivIVA or DdivIVADgpsB cells indicating that all

these proteins remain essential even when septal or peripheral PG

synthesis is impaired. Therefore, our data hardly fit with (and

challenge) the two-machinery model. An exciting and promising

alternative conciliating the data reported by Land and co-workers

with ours would be that the four proteins are present in a same

unique complex, ensuring both septal and peripheral PG synthesis,

whose composition varies in the course of the cell cycle. A previous

study has demonstrated that a first short step is dedicated to cell

elongation (around 300 nm) (peripheral PG synthesis) [39]. This is

followed by a second step, in which cell constriction (septal PG

synthesis) occurs simultaneously with elongation at mid-cell of the

forming daughter cells, and a third step dedicated to constriction.

In the second step, PG synthesis is distributed along progressively

constricting circles converging toward the future new cell pole to

achieve both elongation and septation. These observations are

consistent with a finely tuned single machinery allowing concom-

itant cell elongation and constriction, with components displaying

different localization dynamics toward the future equatorial

division site. Considering these constraints imposed by an ovoid

cell shape, a unique machinery thus represents an attractive mean

to achieve PG synthesis along progressively constricting circles.

Deciphering these mechanistic questions will certainly require

implementing higher resolution microscopy approaches than 3D-

SIM, such as PALM or STORM, to assess the dynamics of each

components of the division machinery over the pneumococcus cell

cycle and particularly during the second step involving simulta-

neous cell constriction and elongation.

Using a depletion approach, Berg and co-workers recently

reported that lowering the amount of either PBP2b or PBP2x in

pneumococcus results in lentil-shaped and lemon-shaped-cells,

respectively [40]. These cell shapes are distinct from that of

DdivIVA rounded cells and DgpsB elongated cells. An interpretation

panels) show the overlay of StkP (green) and phase contrast images (red). Scale bar, 5 mm. (D) Cell morphology of stkP-K42M cells deficient for DivIVA
or GpsB expression. Cells producing a kinase dead-form of StkP (stkP-K42M, see [14]) were deleted either for divIVA or gpsB resulting thus in DdivIVA-
stkP-K42M and DgpsB-stkP-K42M strains, respectively. Phase contrast microscopy (upper row) and FM4–64 membrane staining (lower row) images of
DdivIVA-stkP-K42M (left panel) and DgpsB-stkP-K42M (right panel) exponentially growing cells at 37uC in THY medium. Scale bar, 5 mm.
doi:10.1371/journal.pgen.1004275.g008
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could be that while the catalytic activity of the PBPs is important to

specifically achieve septal or peripheral synthesis, they are both

structurally (physically) required for the two PG synthesis modes.

This would be consistent with our observations and further supports

our model in which PG synthesis would depend on a single machine

responsible for both septal and peripheral PG synthesis (Figure 9). In

such a model, we propose that the StkP/DivIVA/GpsB triad finely

tunes this machine to dictate the type of PG (septal or peripheral)

produced. Investigating the underlying regulatory mechanism,

which might involve modification of DivIVA interactions with

EzrA, GpsB, or other partners in the divisome presumably via StkP-

driven phosphorylation, will likely improve the understanding of

how septal and peripheral PG synthesis are coordinated.

The StkP/DivIVA/GpsB triad: A regulatory device
conserved in other bacterial species?

Phosphorylation of GpsB and/or DivIVA homologs has

previously been detected in B. subtilis, S. coelicolor, S. agalactiae and

M. tuberculosis [20,21,41,42]. However, phosphorylation sites are

not conserved or occur in regions of poor amino acid conservation

(Figure 10A). In addition, phosphothreonines can be replaced by

glutamic acids, as revealed by alignment of GpsB sequences from

several streptococci (Figure 10B). Interestingly, negatively charged

amino acids (Asp/Glu) can mimic the phosphorylated state of a

protein. A recent comparative genomic study indicated that nature

uses this trick in reverse by evolving serine, threonine, and tyrosine

phosphorylation sites from Asp/Glu residues [43]. It is thus

possible that GpsB and DivIVA phosphorylation by StkP is a

widespread means for finely tuning cell-wall synthesis and defining

bacterial cell shape though the underlying mechanism may differ

between species.

Materials and Methods

Strains, plasmids, primers and growth conditions
For growth experiments, S. pneumoniae strains were cultivated at

37uC in Todd-Hewitt Yeast (THY) broth (Difco). For induction of

PZn, ZnCl2 was added at the concentration of 0.15 mM. For

construction of S. pneumoniae mutants, transformation was

performed as described previously [44], using precompetent cells

treated at 37uC with synthetic competence stimulating peptide 1

(CSP 1) to induce competence. Transformants were plated into

THY-agar supplemented with 3% (vol/vol) defibrinated horse

blood and then incubated for 120 min at 37uC. Selection was then

performed by adding a 10 ml THY-agar overlay containing the

appropriate antibiotic (streptomycin 200 mg/ml, kanamycin

250 mg/ml, tetracyclin 2,5 mg/ml) and overnight incubation at

37uC. For viability assays, several samples of exponentially

growing cells were taken every 30 min, diluted appropriately

and plated onto THY-agar supplemented with horse blood. After

overnight incubation, colony-forming units (CFU) were counted

and the percentage of viability of mutant strains was expressed

relatively to the WT strain. The Escherichia coli XL1-Blue strain was

used as a host for cloning. E. coli BL21(DE3) strain was used as

host for overexpression. The E. coli BTH101 was used as host for

bacterial two-hybrid analysis. Luria–Bertani (LB) broth and agar

supplemented with appropriate antibiotic (tetracyclin 15 mg/ml,

ampicillin 100 mg/ml, and kanamycin 25 mg/ml) were used for

routine growth at 37uC. The nucleotide sequences of all

Figure 9. Models for PG synthesis in S. pneumoniae. In this model, a large membrane PG assembly complex (Yin Yang circle) contains both the
septal (red) and the peripheral (orange) PG assembly machineries. The two transpeptidases PBP2x and PBP2b (noted 2x and 2b) and the two lipid-
flippases FtsW and RodA (noted W and A) are indicated in green and blue, respectively. Non-phosphorylated forms of DivIVA and other StkP
substrates are required for cell elongation and thus peripheral PG synthesis. GpsB is not per se involved in the production of the cross-wall, but is
required at the septum to localize StkP (light green oval), to allow the phosphorylation of StkP substrates including DivIVA and to favor production of
septal PG by down-regulating peripheral PG synthesis. The paralogs GpsB (pink oval) and DivIVA (purple oval) constitute a molecular switch that
connects, together with EzrA (green oval), the Z-ring with the PG assembly complex. StkP kinase activity, counterbalanced by the phosphatase PhpP
(yellow oval) [15] and triggered by GpsB, modulates the function of a set of proteins (dashed ovals) including DivIVA [14]. The StkP/DivIVA/GpsB triad
is thus proposed to orchestrate and to finely tune production of septal and peripheral peptidoglycan synthesis responsible for the ovoid-shape of
pneumococcus.
doi:10.1371/journal.pgen.1004275.g009
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synthesized DNA fragments were checked to ensure error-free

amplification. Strains used in this study are listed in Table S3.

Construction of plasmids
DNA fragments coding for GpsB, DivIVA, FtsZ, inactive StkP

cytoplasmic domain and EzrA without its N-terminal transmem-

brane domain were obtained by PCR using chromosomal DNA

from S. pneumoniae R800 strain as template and oligonucleotides

described in Table S4, section 2. Site directed mutagenesis of StkP

kinase domain was achieved by 2 successive PCRs using

chromosomal DNA as template and primer pair IX/XI and then

the resulting DNA fragment and primer X. The obtained DNA

fragments were cloned between the NdeI and BamHI cloning sites

of the pETPhos plasmid (except for ezrA that has been inserted

using NheI and BamHI) [45]. To construct PZn-gfp-gpsB, gfp was first

amplified using the primer pair XII/XIII (Table S4 section 3)

using pUC57-gfp as template [46]. After digestion with AgeI and

NotI, gfp was cloned into pCM38 (gift form C. Morlot, IBS,

Grenoble) previously opened with the same enzymes resulting in

PZn-gfp. pCM38 is a modified version of pJWV25 [47] in which an

AgeI restriction site has been inserted upstream of the gfp+ gene.

Then, gpsB was amplified using the primer pair XIV/XV (Table

S4 section 3) using pneumococcus WT chromosomal DNA. The

amplified fragment was then digested by SpeI and NotI and inserted

in PZn-gfp resulting in PZn-gfp-gpsB. To construct plasmids for

bacterial two-hybrid, DNA fragments were amplified by PCR

using specific primers pairs presented in Table S4, section 4. The

PCR DNA fragments were then digested by Acc65I and XbaI and

ligated into either pKNT25 or pUT18 vectors [26]. The

nucleotide sequences of all final PCR DNA fragments were

checked to ensure error-free amplification. Plasmids and primers

used in this study are listed in Tables S3 and S4, respectively.

Allelic replacement mutagenesis
S. pneumoniae strains were constructed by transformation in R800

and are therefore isogenic. We used a two-step procedure, based

on a bicistronic kan-rpsL cassette called Janus [48] to delete, or

replace the genes of interest by their gfp or rfp fusion forms. This

procedure avoids polar effects and allows a physiological level of

expression of GFP and RFP fusions. An exhaustive description of

the procedure is provided in Supplemental Materials and Methods

(Text S1). The genes encoding GFP and RFP were from [46] and

[15], respectively.

Protein purification
Recombinant plasmids overproducing GpsB, FtsZ EzrA,

DivVA and inactive StkP cytoplasmic domain (StkP-K42R) were

transformed into the BL21(DE3) E. coli strain. The transformants

were grown at 37uC until the culture reached an OD600 = 0.4.

Expression was induced by adding IPTG to a final concentration

of 0.5 mM and incubation was continued for 3 h. Proteins were

extracted, purified on a Ni-NTA agarose column (Qiagen) and

dialyzed overnight at 4uC as previously described [14]. The

concentration of protein was determined using a Coomassie Assay

Figure 10. Alignment for GpsB and DivIVA proteins from several bacteria. (A) Multiple sequence alignments of GpsB and DivIVA sequences
from streptococci and Gram-positive bacteria. Protein sequences similar to that of pneumococcus GpsB and DivIVA were identified by BLAST
searches and aligned using CLUSTALW. Spn: S. pneumoniae; Sag: S. agalactiae, Bsu: B. subtilis; Sta: S. aureus, Mtb: M. tuberculosis; Sco: S. coelicolor.
Yellow highlights the potential coiled-coil motifs retrieved from UniProtKB/Swiss-Prot:Q8CWP9 and UniProtKB/Swiss-Prot:C1CIN3 entry annotations
for Spn-DivIVA (residues 34–135 and 199–236) and Spn-GpsB (36–63) respectively. The PF05103 PFAM DivIVA family signatures are mapped as green
open boxes for DivIVA and GpsB. When identified, phosphorylation sites are red boxed. The S. coelicolor DivIVA phosphopeptide containing
unidentified phosphorylation sites are highlighted in orange letters. Identical residues are in pink letters and positions showing conservation of
similar residues are in blue. Dots indicate gaps introduced in sequences during alignment computation. The figure was rendered with the ESPript
server [54]. (B) Multiple sequence alignments of GpsB sequences from streptococci. Protein sequences were aligned using CLUSTALW. Spy: S.
pyogenes; Sag: S. agalactiae, Smu: S. mutans; Sth: S. thermophylus; Ssa: S. salivarius; Spn: S. pneumoniae; Smi: S. mitis, Sgo: S. gordonii. The PFAM
PF05103 DivIVA family signatures are mapped as green boxes. Yellow highlights the potential coiled-coil motifs retrieved from UniProtKB/Swiss-
Prot:C1CIN3 entry annotations for Spn-GpsB (36–63). The phosphothreonine identified for S. agalactiae GpsB is red boxed. Glutamic acids possibly
mimicking threonine phosphorylation are black boxed with white letters. Identical residues are in pink letters and positions showing conservation of
similar residues are in blue. Dots indicate gaps introduced in sequences during alignment computation. The figure was rendered with the ESPript
server [54].
doi:10.1371/journal.pgen.1004275.g010
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Protein Dosage Reagent (Uptima) and aliquots were stored at 2

80uC.

To purify GpsB from S. pneumoniae cells, we constructed a strain

in which gpsB is fused to a DNA fragment encoding for 6 histidines

at the chromosomal locus. We checked that cells grew as the WT

cells and displayed proper cell shape. This strain was cultured in

THY medium at 37uC until OD550 reached 0.4. After centrifu-

gation, the pellet was suspended in buffer A (50 mM Tris-HCl

pH7.5, 10% (v/v) glycerol, 200 mM NaCl, 10 mM imidazole,

0.3% (w/v) SDS) supplied with 1 mg/L lysosyme, 6 mg/L

DNase/RNase, 16 cocktail of anti-protease (Roche) and 0.1%

(v/v) anti-phosphatase (Sigma). The cells were then incubated at

4uC for 10 min and opened by sonication. The lysate was supplied

with 1% (v/v) Triton X-100 and further incubated at 4uC for

15 min. Then, the lysate was subjected to ultracentrifugation of

14,0006 g for 30 min. Ni-NTA agarose was equilibrated with

buffer A9 (50 mM Tris-HCl pH7.5, 10% (v/v) glycerol, 200 mM

NaCl) and then incubated with the ultracentrifuged supernatant.

The resin was washed twice with buffer A supplied with 0.1% (v/v)

Triton X-100 and then twice with buffer B (buffer A9 containing

20 mM imidazole and 0.1% (v/v) Triton-X100). Elution was

carried out with buffer C (buffer A containing 300 mM imidazole

and 0.1% (v/v) Triton-X100). Eluted fractions were collected and

added with 0.02% (w/v) deoxycholate and 8% (w/v) trichlor-

oacetic acid and shake vigorously. After centrifugation of 13,2006
g at 4uC for 30 min, the supernatant was discarded and the pellet

was resuspended in SDS-PAGE loading buffer. pH was adjusted

using 1.5 M Tris-HCl pH8.8. The resulting samples were

separated by 15% SDS-PAGE after boiling for 5 min.

Microscopy techniques
TEM, SEM, fluorescence and immunofluorescence microscopy

were carried out as previously described [14]. Cells were grown at

37uC in THY broth and analyzed when the OD reached

Abs550 = 0.1 Polyclonal antibody specific for FtsZ [49] was used

at 1/200. Slides were visualized with a Zeiss AxioObserver Z1

microscope fitted with an Orca-R2 C10600 charge-coupled device

(CCD) camera (Hamamatsu) with a 1006 NA 1.46 objective.

Images were collected with AxioVision (Carl Zeiss) and analyzed

with ImageJ (http://rsb.info.nih.gov/ij/). For TEM, cells were

examined with a Philips CM120 transmission electron microscope

equipped with a Gatan Orius SC200 CCD camera. For SEM,

cells were observed with a Quanta 250 FEG (FEI) scanning

electron microscope. For PG labeling with Bodipy-FL-amino-D-

alanine (BADA), the procedure used was adapted from [23,24].

Exponentially growing cells of (OD550 = 0.1) were incubated for

4 min at 37uC with 500 mM of BADA. Cells were then washed

three times with Phosphate Buffer Saline (PBS) pH 7.4. Then,

0.7 ml of the mixture was placed on slides and observed under the

microscope. Time-lapse microscopy was performed as described

[50] using an automated inverted epifluorescence microscope

Nikon Ti-E/B equipped with the perfect focus system (PFS,

Nikon) and a phase contrast objective (CFI Plan Fluor DLL 1006
oil NA1.3), a Semrock filter set for GFP (Ex : 482BP35; DM : 506;

Em : 536BP40), a Nikon Intensilight 130W High-Pressure

Mercury Lamp, a monochrome OrcaR2 digital CCD camera

(Hamamatsu) and an ImagEM-1K EMCCD camera (Hama-

matsu). Briefly, after gentle thawing of THY stock cultures,

aliquots were inoculated at OD550 = 0.006 in C+Y medium and

grown at 37uC to an OD550 of 0.3. These precultures were

inoculated (1/100) in C+Y medium and incubated at 37uC to an

OD550 of 0.1 unless otherwise specified. Two microliters were

directly spotted on a microscope slide containing a slab of 1.2%

C+Y agarose. The microscope is equipped with a chamber

thermostated at 30uC. Images were captured every 5 minutes and

processed using Nis-Elements AR software (Nikon). All fluores-

cence images were acquired with a minimal exposure time

(exposure time: 2 seconds; camera gain: 50; light attenuation with

neutral-density filters: 25%) to minimize bleaching and phototox-

icity effects. GFP fluorescence images were false colored green and

overlaid on phase contrast images.

Immunoblot analysis
Detection of in vivo phosphorylated proteins in crude extracts of

S. pneumoniae strains was performed after SDS-PAGE by immu-

noblotting using an anti-phosphothreonine polyclonal antibody

(Cell Signaling) at 1/2000 as described in [14]. A goat anti-rabbit

secondary antibody HRP conjugate (Biorad) was used at 1/5000.

Detection of StkP and GFP fusions were performed using a rabbit

polyclonal antibody specific for StkP [14] and rabbit anti-GFP

(AMS Biotechnology).

Mass spectrometry
To examine GpsB in vivo phosphorylation, GpsB was analyzed

by SDS-PAGE after purification (see Protein purification). An in

gel digest using trypsin was performed, followed by a phosphor-

ylated peptide enrichment procedure with TiO2 beads as

previously described [51], with minor modifications: TiO2 beads

(10 mm) (MZ Analysetechnik, Mainz, Germany) were incubated

with 2,5 dihydrobenzoic acid in 80% acetonitrile (final concen-

tration 30 g/L) prior to phosphopeptide enrichment. 5 mg of

TiO2 beads were added to the sample and incubated at room

temperature on a rotating carousel for 30 minutes. After washing

in 1 mL 30% acetonitrile/3% TFA and 80% acetonitrile/0.1%

TFA for 10 min each, the phosphopeptides were eluted from the

TiO2 spheres with 36100 mL of 40% ammonium hydroxide

solution in 60% acetonitrile, pH 10.5. The sample volume was

reduced in a vacuum centrifuge at room temperature and brought

to a final volume of 6 mL for nano-LC-MS/MS analysis. NanoLC-

MS/MS-experiments were performed on an EASY-nLCt system

(Proxeon Biosystems,) connected to an LTQ-Orbitrap XL or Elite.

For proteome analysis, peptides were applied onto a 15 cm nano-

HPLC column, in-house packed with reverse-phase 3 mm C18

spheres (Dr. Maisch, Ammerbuch, Germany) at a flow rate of

500 nL/min in 0.5% acetic acid. The peptides were eluted using a

segmented 90 min gradient of 5–33% of Solvent B (80%

acetonitrile in 0.5% acetic acid) at a constant flow rate of

200 nL/min. Peptide were ionized via the electrospray ion source

(ESI) (Proxeon Biosystems, Odense, Denmark). The mass spec-

trometer was operated in the positive ion mode with the following

acquisition cycle: one initial full scan in the Orbitrap analyzer

(MS) was followed by fragmentation through rapid collision

induced dissociation (CID) of the 20 most intense multiply charged

precursor ions in the linear ion trap analyzer (LTQ). The full scan

was performed range of m/z 300–2,000 at a resolution of 120,000

(defined at m/z = 400). Target values were set at 1E6 and 5E3

charges for MS or MS/MS, respectively. Sequenced precursor

ions were subjected to dynamic exclusion (set for 90 seconds). The

LTQ Orbitrap XL was used for the detection of phosphorylation

sites in the same way as above but with slight modifications: CID

was performed on the 5 most intense precursor ions. Multi stage

activation (MSA) was applied in all MS/MS events when a neutral

loss event was detected on the precursor ions depending on their

charge state: singly (297.97 Th), doubly (248.99 Th) and triply

(232.66 Th).The full scan was set at 60,000 and the lock-mass

option [52] was enabled for real time recalibration of MS spectra.

All RAW files were processed with the MaxQuant software

version 1.2.2.9 [53]. N-acetylation of protein (N term+42.010565
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Da), N-pyro-glutamine (Gln _17.026549), oxidized methionine (+
15.994915 Da) and phosphorylation of serine, threonine and

tyrosine (Ser/Thr/Tyr +79.966331 Da) were searched as variable

modifications. The database used to search all submitted peak lists

was uniprot S.pneumoniae ATCC BAA-255 R6.

Analysis of protein-protein interactions
Bacterial two-hybrid experiments were performed according to

the manufacturer’s instructions (Euromedex). The picture was

taken after 40 h of growth at 30uC onto LB-agar plates containing

X-gal (40 mg/ml), 0.5 mM IPTG and appropriated antibiotics.

For analyses using surface plasmon resonance (SPR), real time

binding experiments were performed on a BIAcore T100

biosensor system (GE Healthcare). EzrA or GpsB (ligand) were

covalently coupled through their amino groups to the surface of a

CM5 sensorchip according to the manufacturer’s instructions.

Increasing concentrations (0.002, 0.005, 0.1, 0.2, 0.5 and 1 mM

from bottom to top) of DivIVA, EzrA, StkP, GpsB, or FtsZ

(analyte) were injected over the surface of the sensorchip at a flow

rate of 30 mL/min in 10 mM HEPES pH 7.4, 150 mM NaCl,

0,005% surfactant. For all experiments, aspecific binding to the

surface of the sensorchip was substracted by injection of the

analytes over a mocked derivatized sensorchip. The resulting

sensorgrams were analyzed using BIAevaluation software (GE

Healthcare). KD values were calculated from the equilibrium

resonance signal (Req) as a function of the analyte concentration.

Req values were estimated by extrapolation to infinite time using

plots of resonance signal as a function of the reciprocal of time.

Apparent KD were then calculated by nonlinear fitting to the

expression Req = RmaxC/(KD+C), where Rmax is the maximum

binding capacity of the surface and C is the analyte concentration.

The goodness of the fit was assessed by inspecting the x2 values.

The measurements were made in triplicate.

Supporting Information

Figure S1 Cell morphology and growth of DdivIVA and DgpsB

mutants repaired back to WT. divIVA and gpsB genes were inserted

back to their genuine chromosomal locus in either the DdivIVA

mutant or the DgpsB mutant to obtain divIVA+ and gpsB+ strains,

respectively. (A) Cell shape of divIVA+ and gpsB+ cells. Phase

contrast microscopy (left panel) and FM4–64 membrane staining

(right panel) images of exponentially growing cells at 37uC in THY

medium. Scale bar, 5 mm. (B) Growth of divIVA+ and gpsB+ cells

compared to WT cells. Strains were grown in THY medium at

37uC in a JASCO V-630 Biospectrophotometer. The OD550 was

read automatically every 10 min.

(TIF)

Figure S2 Morphology and cell length of DdivIVA cells. (A)

DdivIVA cells were grown at 37uC in THY medium and observed

by scanning electron microscopy. Scale bar, 10 mm. (B) Frequency

of the length parameter of DdivIVA cells compared to WT cells.

Strains were grown in THY medium at 37uC up to OD550 = 0.1.

The lengths of at least 500 cells of WT and DdivIVA strains, based

on phase-contrast images, were measured using ImageJ.

(TIF)

Figure S3 GpsB is required for S. pneumoniae growth and cell

division. (A) Effect of gpsB deletion on pneumococcal growth. WT

(black curve) and DgpsB (red curve) strains were grown in THY

medium at 37uC. The OD550 was read automatically every

10 min. (B) Frequency of the length parameter of DgpsB cells

compared to WT cells. Strains were grown in THY medium at

37uC up to OD550 = 0.1. The lengths of at least 500 cells of WT

and DgpsB cells, based on phase-contrast images, were measured

using ImageJ. (C) Phase contrast microscopy (grey) and FM4–64

membrane staining (red) of gpsB-deficient (upper row) and WT

(lower row) R6 and RX1 growing cells at 37uC in THY medium.

Scale bar, 5 mm.

(TIF)

Figure S4 Analysis of WT cells expressing FtsZ-GFP. (A)

Growth curves of WT strains expressing either FtsZ (black) or

FtsZ-GFP (red) as the only source of FtsZ from its endogenous

chromosomal locus grown in THY medium at 37uC. The OD550

was read automatically every 10 min. (B) Expression of the FtsZ-

GFP fusion in WT and DgpsB cells. Cells were grown in THY

medium at 37uC to OD550 = 0.3. Crude extracts (25 mg) of WT

or DgpsB cells expressing FtsZ fused to GFP were analyzed by

SDS-PAGE, electro-blotted onto a PVDF membrane and probed

with anti-GFP antibodies. Purified GFP and a crude extract of

WT cells not producing FtsZ-GFP were used as controls.

(TIF)

Figure S5 FtsZ localization in DgpsB cells. Same image as in

Figure 3A but unprocessed. Arrows show cells without FtsZ-GFP

signal in Figure 3A. Phase contrast (left), GFP fluorescent signal

(middle) and overlays (right) between phase contrast (red) and GFP

(green) images are shown. Scale bar, 5 mm.

(TIF)

Figure S6 Growth curves of WT cells expressing GFP-PBP2x,

GFP-PBP2b, FtsW-GFP or RodA-GFP fusions. (A) Growth curves

of WT cells (black) and cells expressing either GFP-PBP2x (orange)

or GFP-PBP2b (purple) (left panel), or FtsW-GFP (red) or RodA-

GFP (blue) (right panel) in THY medium at 37uC. The OD550 was

read automatically every 10 min. (B) Same as above but in cells

also expressing the FtsZ-RFP fusion. All fusion proteins are the

only source of PBP2x, PBP2b, FtsW, RodA or FtsZ in the cells.

The fusion genes encoding these proteins substitute the corre-

sponding native genes at their chromosomal locus.

(TIF)

Figure S7 Expression of GFP-PBP2x, GFP-PBP2b, FtsW-GFP

or RodA-GFP fusions. Expression of GFP-PBP2x and GFP-PBP2b

fusions (upper row) and FtsW-GFP and RodA-GFP fusions (lower

row) in WT, DgpsB, DdivIVA and DdivIVADgpsB strains. Cells were

grown in THY medium at 37uC. Crude extracts (25 mg) were

analyzed by SDS-PAGE, electro-blotted onto a PVDF membrane

and probed with anti-GFP antibodies.

(TIF)

Figure S8 Growth curves and expression of DivIVA-GFP and

EzrA-GFP fusions. (A) Growth curves of WT cells (black) and cells

expressing either DivIVA-GFP (red) or EzrA-GFP (green) in THY

medium at 37uC. The OD550 was read automatically every

10 min. DivIVA-GFP and EzrA-GFP were produced as the only

source of DivIVA and EzrA. (B) Expression of EzrA-GFP and

DivIVA-GFP fusions in WT and DgpsB strains. Cells were grown

in THY medium at 37uC to OD550 = 0.3. Crude extracts (25 mg)

of WT or DgpsB cells expressing either DivIVA or EzrA fused to

GFP were analyzed by SDS-PAGE, electro-blotted onto a PVDF

membrane and probed with anti-GFP antibodies.

(TIF)

Figure S9 Expression of GFP fusions in DdivIVA and DdivI-

VADgpsB cells. (A) Expression of GFP-fused FtsZ and EzrA

expressed as a single copy substituting the chromosomal ftsZ and

ezrA genes, respectively, in DdivIVA strain. For GpsB, expression

from the PZn promoter was assessed both in WT and DdivIVA

strains. Crude extracts (25 mg) of WT or DgpsB cells expressing
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FtsZ fused to GFP were analyzed by SDS-PAGE, electro-blotted

onto a PVDF membrane and probed with anti-GFP antibodies. A

crude extract of WT untagged cells was used as control. (B) Same

as above for FtsZ and EzrA GFP fusions but in DdivIVADgpsB cells.

(TIF)

Figure S10 Analyses of the interactions. (A) Bacterial two-hybrid

analyses. Plasmids expressing either the T18 or the T25 fragments

of the adenylate cyclase protein fused to the C-terminus of

DivIVA, GpsB, FtsZ and EzrA were constructed and the

interactions between two candidates were assessed after co-

transformation of T18- and T25-constructs in E. coli BTH101

and growth for 40 h on LB/X-Gal/IPTG plates. The blue

coloration indicates positive interactions. (B) Purification of GpsB,

EzrA, DivIVA, FtsZ and StkP-K42R cytoplasmic domain.

Proteins were overproduced in E. coli BL21 as 6his-tagged fusion

proteins. After purification using a Ni-NTA resin, purified proteins

were analyzed by SDS-PAGE. (C–G) SPR analyses of interactions.

(C–G, left panels) Kinetics of the interactions by Plasmon Surface

Resonance (SPR) of EzrA, GpsB, DivIVA, FtsZ and StkP-K42R

cytoplasmic domain. EzrA or GpsB were covalently coupled

through their amino groups to the surface of a CM5 sensorchip.

Increasing amounts of either GpsB (C) DivIVA (D) or FtsZ (E)

were injected onto the EzrA-coupled sensorship. Similarly,

increasing amounts of either DivIVA (F) or StkP (G) were injected

onto the GpsB-coupled sensorship. RU: resonance units. The

measurements were made in triplicate. (C–G, right panels) Non-

linear regression fits to the equilibrium resonance signal (Req),

obtained by extrapolation to infinite time vs. analyte concentra-

tion, used to obtain apparent equilibrium dissociation constant

(KD) (see Materials and Methods).

(TIF)

Figure S11 Localization of GFP fused to GpsB expressed as a

single copy in WT cells. WT cells expressing either a N-terminal

GFP-GpsB (upper row) or a C-terminal GpsB-GFP (lower row)

fusion as a single copy substituting the chromosomal gpsB gene

were grown in THY medium at 37uC. Scale bar, 5 mm.

(TIF)

Figure S12 Phosphorylation of GpsB and StkP. (A) and (B)

Analysis of GpsB in vivo phosphorylation in WT cells. After

purification from WT cells, GpsB was analyzed by mass

spectrometry (see Materials and Methods). (A) Overview into the

coverage of GpsB. 93% of the amino acid sequence is identified.

(B) Peptides identified are marked in yellow. MS/MS identified

peptides of GpsB, along with the PEP and Andromeda scores

(FDR 1%). The PEP score (Posterior probability score) represents

the probability of a false hit based on the length of the peptide and

the identification score that the peptide received. The smaller the

PEP score, the higher the statistical probability is that the peptide

was correctly identified. Searches were performed at an FDR

threshold level of 1%. A search where no FDR threshold was also

applied in order to ensure that no phosphorylation sites were

filtered out. Peptides were identified with no phosphorylation sites

detected. (C) Western immunoblot of whole-cell lysates from WT,

DgpsB, DdivIVA and DgpsBDdivIVA cells grown in THY at 37uC

probed with anti-StkP-PASTA antibodies [14]. The same amounts

(25 mg) of cell crude extracts have been loaded in all gel lanes.

Arrow indicates the expression signal detected for StkP.

(TIF)

Table S1 Statistical analysis of WT, DgpsB, DdivIVA and

DgpsBDdivIVA mutant cell parameters. Average area, perimeter,

length, AR (major axis/minor axis ratio) +/2 SD and chaining of

exponentially growing cells. The number of counted cells is in

parentheses.

(XLSX)

Table S2 Statistical analysis of GFP-fused protein localization

patterns and BADA staining in WT, DgpsB, DdivIVA and

DgpsBDdivIVA mutant cells. The number of counted cells is in

parentheses.

(XLSX)

Table S3 Strains and plasmids.

(XLSX)

Table S4 List of primers.

(XLSX)

Text S1 Supplemental Materials and Methods. Exhaustive

description of the procedure used for allelic replacement

mutagenesis and construction of mutant strains.

(PDF)

Video S1 Deconvolution microscopy of DgpsB cells producing

FtsZ-GFP. DgpsB cells producing FtsZ-GFP (green) grown in THY

medium at 37uC were stained with FM4–64 (red) and subjected to

deconvolution microscopy. 20 images of optical sections of

fluorescence from GFP (and FM4–64 when applicable) were

collected at spacings of 0.2 mm. Images were deconvoluted

through 30 iterations using the Huygens deconvolution software.

The deconvoluted images were then projected using Imaris

software. Scale bar, 2 mm.

(AVI)

Video S2 Time-lapse analysis of DgpsB cells producing FtsZ-

GFP. The movie shows an overlay of GFP (green) and phase-

contrast (gray) images. Scale bar, 2 mm).

(AVI)
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