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This study aimed to investigate the relationship between maternal dietary fiber intake

and piglet health. Multiparous sows were randomly assigned to two groups and fed

diets without inulin (control group, n = 20) or 1.6% inulin (1.6IN group, n = 20).

The results indicate that 1.6IN prevented the prolonged farrowing duration of sows

(P < 0.05) and shortened the average piglet birth interval (P < 0.1). In addition, 1.6IN

decreased the percentage of the piglet born weak and the percentage of the piglet with

hyperthermia after birth (P < 0.01). Compared with the control group, the 1.6IN group

had a lower concentration of urea nitrogen in the colostrum, and also prevented diarrhea,

increased litter gain, survival rate, and average daily gain for suckling piglets (P < 0.05).

Furthermore, 1.6IN decreased the relative abundance of Firmicutes, Cyanobacteria,

and Streptococcus; increased the relative abundance of Bacteroidetes, Desulfovibrio,

Paludibacter, CF231, and Prevotella. Overall, this study showed that maternal fiber

nutrition during pregnancy regulated the health of offspring, and the response of the

maternal intestinal microbes played an important role in intervening in the phenotype of

sows and neonatal piglets.

Keywords: inulin, sow, piglet, health, gut microbiota

INTRODUCTION

In the intensive pig industry, sows suffered from both endogenous oxidative stress and exogenous
stress induced by environmental and management factors, which led to serious adverse reactions
on their offspring, such as prolonged birth intervals, low birth weight, and diarrhea (1). These
adverse reactions dramatically increased the risk of non-infectious death in neonatal piglets (2).
Fortunately, intestinal microbiota has become an important window for regulating the health
of sows and their neonatal piglets because of its close relationship with immunity, metabolism,
nutrient digestion, and hormones (3–5).

Feeding functional dietary fiber during pregnancy, especially soluble dietary fiber (SDF), has
become a key nutritional strategy for improving reproductive performance in sows, based on its
significant regulatory effect on intestinal microbiota (1, 6). As a typical SDF, inulin-type fructans
are a mixture of polymers and oligomers, which are composed of fructosyl units linked by β (2
→ 1) glycosidic bonds (7). In previous studies, inulin has been proven to increase the abundance
of probiotics, such as Bifidobacterium and Lactobacillus, in the intestine in human or mouse
experiments (8–10). Zhou et al. (11) confirmed that inulin inhibited the weight gain of pregnant
sows caused by high-fat diets and improved the BMI distribution of newborn piglets (11). The
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previous study also confirmed that sows fed with inulin increased
birth weight and pre-weaning survival for piglets (12); however, it
is still necessary to understand the relationship between maternal
dietary fiber intake and piglet health.

Therefore, this study aimed to investigate the relationship
between maternal dietary fiber intake during late pregnancy
and piglet health. Phenotypes of sows and piglets, as well as
serum markers and intestinal flora of sows, were analyzed to
provide some microbial mechanistic insights into the application

TABLE 1 | Feedstuff ingredients and nutrient composition of experimental diets.

Items Control 1.6IN Lactation diet

Ingredients, %

Corn 56.00 56.00 65.00

Soybean meal 8.00 8.00 20.00

Fermented soybean meal 5.00 5.00 5.00

Soybean oil 1.00 1.00 2.00

DDGSa 2.00 2.00 0.00

Soybean hull 16.00 15.20 0.00

Rice bran 8.00 7.20 3.60

Inulinb 0.00 1.60 0.00

Salt 0.45 0.45 0.50

L-Lys 0.00 0.00 0.20

D-Met 0.00 0.00 0.10

Dicalcium phosphate 1.18 1.18 1.20

Calcium carbonate 1.37 1.37 1.40

Mineral-vitamin pre-mixc 1.00 1.00 1.00

Total 100.00 100.00 100.00

Nutrient composition

ME of DM, MJ/kg 11.97 11.93 12.94

Crude protein, % 13.98 13.95 17.23

Crude fiber, % 8.18 8.09 2.63

Calcium, % 0.92 0.92 0.88

Phosphorus, % 0.54 0.51 0.58

Total dietary fiber, % 26.61 27.51 16.46

aDDGS, distillers dried grains with soluble.
b Inulin contains 94% DM, 89.8% inulin, 3.2% monosaccharide, <0.2% crude protein and

ash, average monomeric units = 13.
cProvided per kg of diet: Cu, 10mg (as CuSO4·5H2O); Fe, 110mg as ferrous sulfate; Mn,

35mg (as MnO2 ); Zn, 65mg as zinc sulfate; I, 0.6mg as potassium iodide; Se, 0.3mg as

selenium selenite; vitamin A, 7,200 IU; vitamin D3, 1,500 IU; vitamin E, 30mg; vitamin K,

1.2mg; 1mg, thiamin; 2mg, riboflavin; 1mg, pyridoxine; and 0.015mg, cobalamin.

FIGURE 1 | Experimental design of this study.

of inulin to a typical gestation diet of sows for improving neonatal
health and performance.

MATERIALS AND METHODS

Ethics Statement
The protocol of this study was approved by the Institutional
Animal Care and Use Committee of College of Animal Science
and Technology, Hunan Agricultural University (Changsha,
China) and was conducted in accordance with the National
Institutes of Health (Changsha, China) guidelines for the care
and use of experimental animals (No. 43321809). The inulin
was provided by Sensus (RG Roosendaal, The Netherlands) with
90% purity.

Experimental Animals, Diets, and Sample
Collection
A total of 40 Landrace × Yorkshire second parity sows were
selected for this experiment. All the sows were fed with the same
standard diet from mating to gestation d80. Then, they were
allocated to one of two treatments randomly as a single factorial
experimental design after balancing their backfat thickness and
body weight. The sows were fed with two different diets: a basic
diet based on corn and soybeanmeal (control group, n= 20), and
a diet that included 1.6% inulin (1.6IN group, n = 20). During
gestation from d80 to d109, the sows in each group were fed a
daily ration of 3.3 kg dry matter (DM) with their respective diets
containing 11.94 ± 0.03 MJ ME/kg. Then, the sows were moved
from the gestation pens to the farrowing rooms on day 109 ± 1
of gestation and kept in individual stalls (2.2× 0.75m). The sows
were offered 3 kg DM of the same lactation diet containing 13.7
MJ ME/kg DM (Table 1) and were fed two times a day before
farrowing. From the 1st day postpartum until weaning, the sows
of both treatments were fed ad libitum with the same standard
lactation diet (Table 1). All the sows had free access to water
during the whole experimental period. The experimental design
of this study was shown in Figure 1.

Colostrum samples (30ml) were collected from the third,
fourth, and fifth pairs of mammary glands of sows (eight sows per
diet group) on the farrowing day. Then, the colostrum samples
were immediately frozen at −20◦C until further analysis. Fresh
fecal samples were collected from the sows (eight sows per group)
on day 109 ± 1 of gestation and day 18 of lactation. Then, the
fecal samples were stored at−80◦C until further analysis.
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Performance Measurement
The birth time of each piglet was recorded, which was
used to calculate farrowing duration and average piglet
birth interval (APBI). After farrowing, the rectal temperature
of each piglet was recorded with a digital thermometer
(Xiaomi Co. Ltd, Beijing, China, with a display resolution
of 0.01 and ± 0.1◦C accuracy) and weighed before suckling.
Piglets weighing <800 g were recorded as born intrauterine
growth retardation (IUGR); otherwise, they were regarded as
born effective.

Cross-fostering was kept within diet treatments to adjust litter
size to about 12.86± 1.2 piglets per sow and average body weight
to about 1.8 ± 0.7 kg per litter within 48 h after parturition.
During lactation, mortality of each piglet was recorded, and
the occurrence of diarrhea was visually assessed and evaluated
by individual scoring of the consistency of the feces from
9.00 a.m. to 4.00 p.m. each day by trained observers blind to
the treatments according to the method of Marquardt et al.
(13). The diarrhea rate (%) was calculated as [(the total number
of piglets with diarrhea within a treatment)/(total number of

FIGURE 2 | Distribution of (A) farrowing duration and (B) average piglet birth interval of sows. N = 20 for the control group and 1.6IN group. Significance was

analyzed by chi-squared test.

FIGURE 3 | (A–C) Relationship between birth weight and birth body temperature of piglets and (D,E) effects of dietary inulin on the birth weight and birth body

temperature of newborn piglets. N = 295 and 291 for the control group and 1.6IN group, respectively. A Chi-square test was conducted to judge whether (D) low

birth weight improved or (E) distribution of birth body temperature of newborn piglets changed.
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experimental piglets × total observational days)] × 100. At
weaning (lactation d18), the number of piglets was recorded to
calculate the weaning survival rate, and the litter weight was
also recorded to calculate the litter gain and the average daily
gain (ADG).

Analysis of Colostrum Composition
The colostrum samples of sows in each group were
separately analyzed for the concentrations of fat,
protein, lactose, urea nitrogen (UN), and total DM
using Milko-Scan FT 120 (Foss Electric, Hillerford,
Denmark). Somatic cell count (SCC) was measured
using FOSS MATIC 5000 (Foss Analytical A/S,
Hillerod, Denmark).

DNA Extraction, PCR Amplification, Library
Preparation, and Sequencing
DNA was extracted from fecal samples of sows using a Stool
DNA Isolation Kit (Tiangen Biotech Co., Ltd., Beijing, China).
The V4 hypervariable region of the bacterial 16S rRNA gene
was amplified by PCR, where the forward primer was 550F:
5′-GTGCCAGCMGCCGCGGTAA-3′ and the reverse primer
was 806R: 5′-GGACTACHVGGGTWTCTAAT-3′. For each fecal
sample, a 10-digit barcode sequence was added to the 5′ end of
the forward and reverse primers. The sequences were clustered
into operational taxonomic units (OTUs) at a similarity level
of 97% to generate rarefaction curves and to calculate the
richness and diversity indices. OTUs representing <0.005% of
the population were removed, and taxonomy was assigned using
the Ribosomal Database Project (RDP) classifier. The relative
abundance of each OTU was counted at different taxonomic
levels. OTU-level alpha diversity indices were calculated using
the OTU table in QIIME. β-diversity was assessed by principal
component analysis (PCoA) based on the Bray–Curtis distance.
Bioinformatics analysis was mainly performed using QIIME
(v1.7.0) and R packages (v3.2.0).

Analysis of Fecal Short-Chain Fatty Acids
The concentration of SCFAs in feces was analyzed using a gas
chromatographic method, as described by Bosch et al. (14).
Briefly, approximately 1.5 g of feces was first homogenized

in 1.5ml of deionized water. The samples were centrifuged
at 15,000 × g at 4◦C for 10min. Supernatants (1ml each)
were then acidified with 25% metaphosphoric acid at a 1:5
ratio (1 volume of acid for 5 volumes of the sample) for
30min on ice. The sample was injected into a GC 2010 series
gas chromatograph (Shimadzu, Kyoto, Japan) equipped with
a CP-Wax 52 CB column 30m × 0.53mm i.d. (Chrompack,
Rotterdam, Netherlands). The injector and detector temperatures
were 75 and 280◦C, respectively. Total SCFAs were determined
as the sum of analyzed acetate, propionate, and butyrate. All
procedures were performed in triplicate.

Analysis of Serum Marker in Sows
Venous blood from the ear margin of the sow on the day of
parturition was used to separate serum. Serum markers, such
as malondialdehyde (MDA), total antioxidant capacity (TAOC),
superoxide dismutase (SOD), glutathione peroxidase (GSH-
Px), lipopolysaccharide (LPS), and lactate were determined
using commercial kits by following the instructions of the
manufacturer (Nanjing Jiancheng Co. Ltd., Nanjing, China).

Statistical Analysis
Litter gain, survival rate, piglet ADG, diarrhea rate, serum
marker, SCFA composition, α-diversities index, and relative
abundance were tested for normality and were then analyzed by
an unpaired t-test (SPSS 21.0, IBM, Armonk, NY, United States),
using each sow as an experimental unit. Data were presented
as means ± SEM except that confidence limits were given in
brackets instead of SEM values for data of relative abundance
at phylum. A chi-square test was performed to analyze the
percentage of sows that had a prolonged farrowing duration
or prolonged average piglet birth interval and to analyze the
percentage of piglets born weak or with hyperthermia after birth.
Statistical significance was declared when P < 0.05.

RESULTS

Farrowing Duration of Sows and Average
Piglet Birth Interval
The results of dietary inulin on farrowing duration and APBI
are shown in Figure 2. Compared to the control group, 1.6IN

FIGURE 4 | Effects of dietary inulin on the piglet performance during lactation. (A) litter gain at weaning; (B) average daily gain (ADG) of each piglet; (C) survival rate at

weaning; (D) diarrhea rate during lactation. Significance was analyzed by an unpaired t-test.
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decreased the percentage of sows whose farrowing duration
was longer than 240min (P = 0.011) and trend to decreased
percentage of sows whose APBI was longer than 20min
(P = 0.089). In addition, 1.6IN also increased the percentage
of sows whose APBI was shorter than 10min on a trend
(P = 0.095).

Performance of the Piglet
As shown in Figure 3, the birth weight and birth body
temperature of a total of 586 piglets from two groups were
recorded.When the two groups were analyzed together, there was
no significant relationship between the body temperature and
weight of newborn piglets; however, when the two groups were
analyzed separately, there was a significant linear relationship

TABLE 2 | The effect of dietary inulin on colostrum composition of sows.

Items Control 1.6IN P-value

Fat, % 5.35 ± 1.01 4.48 ± 0.43 0.448

Protein, % 17.55 ± 1.08 17.72 ± 0.78 0.901

Lactose, % 4.24 ± 0.19 4.13 ± 0.16 0.667

DM, % 35.31 ± 1.00 34.49 ± 0.91 0.556

UN, mmol/L 66.60 ± 5.69 51.9 ± 2.87 0.042

SCC, L 3,997.00 ± 2,581.00 795.00 ± 259.00 0.271

between piglet body temperature and weight. The control group
has a higher slope and intercept, which suggests that the
piglets of the control group may have a higher average body
temperature, which is more pronounced in high birth weight
piglets. In addition, it could be observed that the birth body
temperature of piglets was mainly enriched at 36.5–38.5◦C.
Therefore, piglets with body temperatures lower than 36.5◦C and
higher than 38.5◦C are judged as hyperthermia and hypothermia,
respectively. A Chi-square test was conducted to confirmwhether
dietary inulin improved IUGR or prevented hyperthermia or
hypothermia in newborn piglets (Figure 3). The results show that
1.6IN decreased the percentage of the piglet in IUGR (P < 0.05)
and the percentage of the piglet in hyperthermia (P < 0.01).

The piglet performance from cross-fostering to weaning is
presented in Figure 4. Compared with those in the control group,
the piglets in the 1.6IN group had higher litter gain and survival
rate at weaning (P < 0.01), and 1.6IN also increased piglet ADG
and decreased diarrhea rate during lactation (P < 0.05).

Colostrum Composition
The results of dietary inulin on colostrum composition are shown
in Table 2. The colostrum from the 1.6IN group had a lower
concentration of UN compared with the control group (P <

0.05); however, there was no difference in fat, protein, lactose,
DM, and SCC between the two groups (P > 0.05).

FIGURE 5 | Effects of dietary inulin on the serum markers of sows (A) malondialdehyde, MDA; (B) total antioxidant capacity, TAOC; (C) superoxide dismutase, SOD;

(D) glutathione peroxidase, GSH-Px; (E) lipopolysaccharide, LPS; (F) lactate. Significance was analyzed by an unpaired t-test.
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FIGURE 6 | (A) Venn diagram exhibits the shared and unique operational taxonomic units (OTUs) between two groups and (B) principal component analysis (PCoA)

based on genus level, each point represented one sample, blue points from the control group and red points from the 1.6IN group. (C) Simpson index; (D) Chao1

index; (E) Shannon; (F) ACE index. Significance was analyzed by an unpaired t-test.

Serum Marker of Sows
The results of dietary inulin on a serummarker of sows are shown
in Figure 5. The colostrum from the 1.6IN group had higher
levels of TAOC, SOD, and GSH-Px compared with the control
group (P < 0.05); however, there was no difference in MDA and
lactate between the two groups (P >0.05).

OTU Partition and Microbial Diversity
Analysis
There were means of 4,432 and 4,554 OTUs from the control
group and the 1.6IN group, respectively, and there were 3,009
common OTUs between the two groups (Figure 6A). There
was no difference in α-diversity, such as Shannon index, Chao1
index, Simpson index, and ACE index between the two groups
(Figure 6), indicating that bacterial richness was not affected by
dietary inulin. Themicrobial communities in all the samples were
analyzed and compared by the PCoA (Figure 6B). The first two
components accounted for 61.7% variation; however, no great
variation could be observed between the control group and the
1.6IN group (P = 0.09).

Taxonomic Composition Analysis
The results of phylum distribution are shown in Figure 7.
Taxonomic assignment of the OTU identified 15 phyla in
the fecal samples of sows in this study. Nine phyla (average

relative abundances >0.1% in at least one group) were
chosen for significance analyses, suggesting that the top two
phyla, Firmicutes and Bacteroidetes, were dominant in the
fecal samples of sows with >90% total relative abundance.
Compared with the control group, 1.6IN decreased the relative
abundance of Firmicutes, Cyanobacteria, and the ratio of
Firmicutes/Bacteroidetes (P < 0.05) and increased the relative
abundance of Bacteroidetes (P < 0.05). At the family level, 1.6IN
increased the relative abundance of Prevotellaceae (P < 0.01) but
increased the relative abundance of Ruminococcaceae (P < 0.05).

To identify the specific bacterial taxa among the groups, we
compared the fecal microbiota by using LEFSE analysis. The
results showed 25 different OTUs between the two groups, 10
OTUs were highly abundant in the 1.6IN group and 15 OTUs
in the control group (Figure 8). At the family level, a great
abundance of Ruminococcaceae, BS11, YS02, Streptococcaceae,
Mogibacteriaceae in the control group, and a great abundance
ofDesulfovibrionaceae and Paraprevotellaceae in the 1.6IN group
was found. At the genus level, a great abundance of CF231,
Paludibacter, Prevotella, andDesulfovibrio in the 1.6IN group and
Streptococcus in the control group was observed.

Fecal SCFA Composition
The results of microbial metabolite SCFAs are shown in
Table 3. There was no difference in the concentration of acetate,
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FIGURE 7 | Taxonomy composition of the bacterial communities at (A) the phylum level and (B) the family level (average relative abundance >0.001 at least one

group). Significance was analyzed by an unpaired t-test. *P < 0.05; ** P < 0.01.

propionate, butyrate, and total SCFAs (P > 0.05); however, 1.6IN
increased the ratio of acetate in the total SCFAs significantly
compared with the control group (P < 0.05).

Correlations Between Gut Microbiota and
Colostrum Composition, Newborn Body
Index of Piglets, and Serum Marker of
Sows
A Spearman correlation analysis was performed to evaluate
the potential link between alterations in gut microbiota
composition and colostrum composition, newborn body
index of piglets, and serum marker of sows (Figure 9). The

concentration of fat, DM, and UN was negatively correlated
with the phylum Bacteroidetes (P < 0.05). In addition, the
UN concentration was also negatively correlated with the
genus Prevotella and CF231 (P < 0.05), and the concentration
of UN and SCC was positively correlated with the genus
Streptococcus (P < 0.05). Firmicutes and Bacteroidetes were
negatively and positively correlated with the median body
weight (MBW) of newborn piglets (P < 0.05). Furthermore,
lipopolysaccharide (LPS) was negatively correlated with
Cyanobacteria and positively correlated with Proteobacteria
and Desulfovibrio (P < 0.05), respectively, and Cyanobacteria
also was negatively correlated with TAOC, SOD, and GSH-Px
(P < 0.05).

Frontiers in Nutrition | www.frontiersin.org 7 August 2021 | Volume 8 | Article 716723

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Li et al. Maternal Microbes Affecting Neonatal Health

FIGURE 8 | LefSE analysis of colonic microbiota between two dietary groups.

LDA scores are calculated for characteristics at the OTU level, and if the value

for the LDA score is >3, it means there is a significant difference.

TABLE 3 | The effect of dietary inulin on SCFA composition in the feces of sows.

Items Control 1.6IN P-value

Concentration, umol/g

Acetate 93.54 ± 5.38 99.76 ± 2.38 0.315

Propionate 31.31 ± 1.76 29.97 ± 1.35 0.561

Butyrate 14.12 ± 1.51 13.14 ± 0.83 0.585

Total SCFAs 138.96 ± 6.94 142.88 ± 3.55 0.627

Ratio, %

Acetate 67.2 ± 0.86 69.84 ± 0.70 0.038

Propionate 22.73 ± 1.42 20.97 ± 0.75 0.299

Butyrate 10.07 ± 0.76 9.18 ± 0.48 0.349

DISCUSSION

Because of specific physiological conditions and feeding
procedures, pregnant sows are exposed to a series of inevitable
problems, such as weight gain during pregnancy, constipation,
and prolonged farrowing duration (15). Affected by the above
physiological problems from their mothers, newborn piglets
often die of low birth weight and poor viability before weaning
(2, 15). Birth weight depends on nutritional status and placental
transport function during late gestation, while viability is closely

related to birth weight and farrowing duration, and may be
reflected in the body temperature (16, 17).

Previous studies have suggested that dietary fiber was
conducive to shortening the farrowing duration and improved
piglet birth weight (12, 18, 19). In this study, 1.6%, the dose with
the best improvement effect, was selected as the inulin dosage
from the previous study (12). The results of this study showed
that 1.6IN reduced the percentage of sows whose farrowing
duration was >240min and that APBI was >20min. 1.6IN also
reduced the percentage of IUGR in the piglet and improved the
survival rate before weaning. The reason for these results may
be that inulin improved the antioxidant capacity and energy
metabolism for sows, which were consistent with the results of
previous studies (5, 12, 20).

The body temperature of the piglet during birth and the
diarrhea rate before weaning were selected as indicators for
judging the health of the piglet. It has been reported that body
temperature during birth as an indicator affects survival and
growth performance due to which unnormal body temperature
is considered to be associated with increased mortality (21, 22).
Hypothermia indicated lack of suckling capacity and subsequent
growth retardation, whereas hyperthermia may be caused by
inflammation, and it means that piglets consume too much-
stored energy and oxygen to provide heat, and it may lead
to decreased digestive enzyme activity, and cause diarrhea and
reduced growth rate (23, 24). In this study, there was no
difference between the two groups in the percentage of piglets
whose body temperature was lower than 36.5◦C, whereas the
percentage of piglets with body temperature higher than 38.5◦C
was significantly reduced in the 1.6IN group. In addition, 1.6IN
also reduced the rate of diarrhea and increased the ADG of
the piglets, indicating that the preventive effect of 1.6IN on
hyperthermia helped to relieve diarrhea of suckling piglets. It
was reported that an improvement in intake of the maternal SDF
on the antioxidant capacity and the inflammation in the colon
of piglets were observed via regulation of the community of gut
microbiota, which could explain the results of body temperature
in piglets reasonably (12).

Breast milk is the most important source of nutrients,
energy, and immunologically active substances for piglets before
weaning. In previous studies, dietary fiber in the late gestation
could affect the colostrum composition for sows, so this study
determined the concentration of fat, protein, lactose, DM, UN,
and SCC in colostrum (18, 25). The results showed that 1.6IN
did not affect fat, protein, lactose, and DM in colostrum, which
meant that there was no difference in the nutritional content
of colostrum between the two groups; however, six samples
from the control group had elevated UN (P < 0.05) and SCC
concentrations (P > 0.05), which are important indexes for
judging milk quality or mastitis (26, 27). The diarrhea rate of
piglets in the control group was also significantly higher than that
in the 1.6IN group, which also may be caused by low-quality milk
from the inflamed breast.

Increasing research focuses on the interactions among diet,
gut microbiota, and the host (4, 28). The results of this study
have shown that Firmicutes and Bacteroides dominate at the
phylum level, which can reachmore than 90% relative abundance
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FIGURE 9 | Heatmap of the Spearman’s r correlations between the gut microbiota significantly modified by different diets treatment and colostrum composition,

newborn body index of piglets, and serum marker of sows. ABW, average body weight; MBW, median body weight; ABT, average body temperature; MBT, median

body temperature. Significance and correlation coefficient was analyzed by Spearman’s correlation analysis. *P < 0.05; ** P < 0.01.

of the total gut microbiota of sow. The ratio of Firmicutes to
Bacteroides (F/B) has been judged to be an important index
for affecting the energy metabolism of mammals, which was
usually related to energy deposition in humans, mice, and pigs
(29, 30). 1.6IN reduced the F/B ratio, affecting the median
body weight (MBW) of newborn piglets from correlation results,
indicating that the sows fed diet with dietary inulin deposited
less energy under the same calorie intake, and the undeposited
part may be allocated to the development of the fetus, which
was potentially causal with the reduction in the rate of low birth
weight (11).

Furthermore, the control group also had a higher relative
abundance of Streptococcaceae and Mogibacteriaceae, which
contained lots of common conditional pathogens (31, 32).
In particular, Streptococcus, one of the core strains in milk,
and parasitizing in the breast potentially, was identified
as a higher relative abundant species in the control group
(33). In previous studies, Streptococcus has usually shown
a high correlation with mastitis of cows (34). In this study,
the relative abundance of Streptococcus also showed a
positive correlation with the concentration of UN and SCC
in colostrum, which suggested the potential connection
between Streptococcus and sow mastitis. Therefore, the
reduction of Streptococcus may be the key reason for 1.6IN
to reduce UN and SCC in colostrum; however, the results
did not confirm whether the Streptococcus translocated
into the sow breast from the intestines, which required
further research.

The physiological status of sows largely determined the
health of offspring piglets. Six blood markers that reflect
the health status of sows were tested in this study, wherein
MDA, SOD, TAOC, and GSH-Px reflected antioxidant
capacity (12), LPS reflected intestinal barrier function (35),
and lactate reflected the degree of anaerobic respiration

of sows during farrowing (36). The results showed that
inulin increased the concentrations of SOD, TAOC, and
GSH-Px in the serum of sows, suggesting an improvement
in antioxidant capacity, which was consistent with previous
studies; however, inulin also increased the concentration of
LPS, suggesting a reduction in intestinal barrier function
of sows.

Two phyla, closely related to serum markers, deserved our
attention. Proteobacteria include many common opportunistic
pathogens, such as Escherichia coli and Desulfovibrio
(37). Desulfovibrio was increased in the 1.6IN group. It
can reduce the sulfur-containing substance to produce
hydrogen sulfide that irritates mucosa, causing decreased
barrier function, and increased serum LPS concentration
(38, 39); however, the tolerance of pig immune cells to
LPS stimulation has been previously reported (40), and we
have not identified a significant stress response in sows and
their offspring. Therefore, we have reservations about the
negative effects of LPS in sows. Cyanobacteria, containing
bacteria that produced natural toxins, were found to be
significantly higher in the control group (41). A characteristic
increase in intestinal Cyanobacteria on progeroid mice has
been reported by previous studies (42). The results of
correlation analysis also showed that Cyanobacteria were
negatively correlated with TAOC, SOD, and glutathione
peroxidase (GSH-Px). Therefore, we speculated that dietary
inulin may improve the antioxidant capacity of sows by
downregulating the relative abundance of Cyanobacteria in the
gut microbiota.

In research on dietary fiber, SCFAs were thought of as a
“bridge” in the diet–gut microbiome-host metabolism axis (43).
Acetate (C2), propionate (C3), and butyrate (C4) are the most
abundant, representing more than 90% of the SCFAs present
in the colon. The majority of SCFAs are absorbed by colonic
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epithelial cells, and only 5–10% is excreted in the feces. SCFAs
can regulate fat synthesis and cholesterol in the liver, and stabilize
blood glucose by triggering glucagon secretion and increasing
satiety (44). SCFAs regulate intestinal inflammation in sows
and inhibit fat deposition in sows, which has the potential to
be a beneficial intervention for positive pregnancy outcomes
(5). Results align with those obtained by Marquardt et al.
(13) and Zhou et al. (11) who did not detect any significant
effects of inulin inclusion on the concentration of SCFA and
its constituents in feces of sows during late gestation; however,
the feces sample from 1.6IN had a higher acetate ratio in total
SCFAs. The relative abundance of acetate-producing bacterium
Prevotella and CF231 was also higher in the 1.6IN group, which
provided a reasonable explanation for the results of acetate
ratio (29, 45).

CONCLUSION

This study verified the beneficial effect of inulin as a
functional fiber in the nutrition of sows in late pregnancy,
not only in the reproductive performance of sows but
also in the survival of newborn piglets. Overall, this study
showed that maternal fiber nutrition during pregnancy
regulated the health of offspring, and the response of
the maternal intestinal microbes played an important
role in intervening in the phenotype of sows and
neonatal piglets.
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