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Pheochromocytoma, neuroendocrine tumor, single cell RNA-sequencing,

transcriptome, heterogeneity, SDHB, RET, paraganglinoma; Pheochromocytomas

(PC) and paragangliomas (PG) are rare neuroendocrine tumors with varied

genetic makeup and are associated with high cardiovascular morbidity and a

variable risk of malignancy. The source of the transcriptional heterogeneity of

the disease and the underlying biological processes that determine the

outcome of PCPG remain largely unclear. We focused on PCPG tumors with

germline SDHB and RETmutations, which represent distinct prognostic groups

with worse or better prognoses, respectively. We applied single-nuclei RNA

sequencing (snRNA-seq) to tissue samples from 11 patients and found high

patient-to-patient transcriptome heterogeneity in neuroendocrine tumor cells.

The tumor microenvironment also showed heterogeneous profiles, mainly

contributed by macrophages of the immune cell clusters and Schwann cells of

the stroma. By performing non-negative matrix factorization, we identified

common transcriptional programs active in RET and SDHB, as well as distinct

modules, including neuronal development, hormone synthesis and secretion,

and DNA replication. Similarities between the transcriptomes of the tumor cells

and those of the chromaffin- and precursor cell types suggests different

developmental stages at which PC and PG tumors appear to be arrested.
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Introduction

Pheochromocytomas (PC) and sympathetic paragangliomas

(PG) are rare neuroendocrine tumors that originate from

chromaffin cell-related populations located inside or outside

the adrenal glands, respectively. PCPG is associated with

significant morbidity and mortality (1). The current therapy of

choice is surgical resection; however, the disease can be

associated with a lifelong risk of tumor persistence or

recurrence (2).

A plethora of genes have been reported to be responsible for

a diverse hereditary background in up to 40% of PCPG (3, 4).

PCPG is divided into two major classes based on bulk

transcriptional and genomic profiles. Tumors in class 1 are

predominantly extra-adrenal and display germline mutations

in the succinate dehydrogenase complex (SDHB, SDHC, and

SDHD, collectively referred to as SDHx), the most common

form of PCPG. SDHx tumors have the worst prognosis, with a

30–70% risk of metastasis or recurrence (5). Class 2 PCPG,

detected in 5% of hereditary PCPGs, is comprised of germline

and/or somatic mutations of the RET proto-oncogene and has a

better prognosis.

In this study, we exploited recent advances in single-nuclei

RNA-seq to compare the gene expression landscapes of PCPG

with SDHB and RET germline mutat ions, explore

transcriptional heterogeneity, and gain insight into the

molecular basis of their different prognoses.
Materials and methods

Preparation of single-nuclei suspensions

Previously selected tissue blocks were transferred to the

RadboudUMC biobank and stored at -80°C. Nuclei were

prepared from the frozen tissues under RNAse-free conditions.

Briefly, samples were cut into ~7 mm pieces and kept on dry ice.

The pieces were minced in a pre-cooled douncer in 500uL ice-

cold Nuclei EZ lysis buffer 5x with pestle-A and 10x with pestle-

B. The suspension was passed through a 70 µm cell strainer,

washed with 1.5 mL cold Nuclei EZ Lysis, and incubated on ice

for 5 min. The lysate was washed in Nuclei wash/resuspension

buffer (1xPBS completed with 1% BSA and 0.2U/ul RNAsin Plus

(Promega, #N2611) and passed through a 40 µm cell strainer.

The nuclei were stained with DAPI. To exclude doublets and

debris from the final mix and to precisely determine the number

of loaded nuclei, we used FACS. A total of 15000 nuclei were

sorted into a pre-cooled tube containing the RT-mix (RT-

reagent + TSO + Reducing agent B) Immediately before

loading the mix to one lane of the Chromium chip, 8.3 ul RT-

enzyme was added to the mix, according to the standard

protocol of the Chromium Single Cell 3’ kit (v2). All steps for
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library preparation were performed according to the

manufacturer ’s protocol. Paired-end sequencing was

performed to sequence the prepared libraries using an

Illumina NextSeq sequencer.
Single-cell RNA-seq data processing and
quality control

Raw sequencing data were converted into FASTQ files

using bcl2fastq. Reads were aligned to the human genome

reference sequence (GRCH38) and counted using STAR.

The CellRanger (10X Genomics) analysis pipeline was used for

sample demultiplexing and single-cell gene counting to

generate the gene-cell expression matrix for each library.

The gene expression matrix was then processed and

analyzed using the Seurat package in R. To filter out low-

quality cells, we first removed cells (nuclei) with less than 10%

or more than 250% of the mean gene count (nFeature_RNA)

within each individual library. The cell count and gene count

information for the single-cell datasets of the PCPG samples are

listed in Table 1.
Dimensionality reduction, clustering
and visualization

Data were normalized, scaled to 10000 counts and log-

transformed using the NormalizeData function of the Seurat

package. Principal component analysis was performed on the

scaled data with the 4000 most variable genes. Using the 15 first

principal components, we calculated a UMAP representation of

the data for visualization and calculated clusters using the

FindNeighbors and FindClusters functions with the resolution

parameter set to 0.3. Marker genes that differentiated between

clusters were identified using the FindAllMarkers function.

To identify the cell types, we used sets of well-established

markers and annotated each cell type based on their average

expression. Differentially expressed (marker) genes were

determined using the FindAllMarkers function and were

required to be expressed in at least 25% of the cells in a cluster

with a minimal log expression difference of 0.25 between

clusters. The gene sets were further filtered for p-values

(< 0.05) and log2FoldChange >|1.2|.
Inferred CNV analysis from snRNA-seq

Large-scale copy number variations (CNVs) were inferred

from single-nuclei gene expression profiles using the inferCNV

package (6) using the i3 HMM parameter, a window size of 101

genes and the “cluster_by_groups” parameter is true. To
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identify distinct chromosomal gene expression patterns in

neuroendocrine cells, all other cells were set as the “reference”

cells. CNVs in the reference cells would still detectable.
Expression programs of intra-tumoral
heterogeneity

We applied non-negative matrix factorization (NMF) using

the RunNMF function of the swne (7) package to extract

transcriptional programs of malignant cells from each sample.

We set the number of factors as 28 for each sample. For each of

the resulting factors, we considered the top 50 genes with the

highest NMF scores as the characteristics of the given factor. We

used the AddModuleScore function in the Seurat package to

evaluate the degree to which individual cells express a certain

pre-defined expression program and thus determine the scores.

All tumor cells were scored according to the 280 NMF programs.

Hierarchical clustering of the scores for each program using

Pearson correlation coefficients as the distance metric and

Ward’s linkage revealed ten correlated sets of metaprograms.

The gene list of the 10 meta-programs is shown in Table S5.
Logistic regression for
similarity calculation

To measure the similarity of a target single-cell

transcriptome to a reference single-cell dataset, we used the

logistic regression method described previously (8). Briefly, we

trained a logistic regression model with elastic net regularization

(a = 0.6) on the reference training set. We then use this trained

model to infer a similarity score for each cell in the query dataset

for each cell type in the reference data. The predicted logits were

averaged within each cluster or sample group of the

query dataset.
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Results

We performed single-nucleus transcriptomic profiling

(snRNA-seq) on resected tumor tissues from 11 treatment-

naïve patients to generate a comprehensive PCPG atlas

(Figure 1A). Molecular diagnoses revealed germline RET and

SDHB mutations in 5 and 6 patients, respectively (Table S1). All

RET-PCPG samples were retrieved from the adrenal gland,

whereas the SDHB-PCPG tumors were collected from various

locations, including the bladder, adrenal gland, retroperitoneal,

and mediastinal areas.
Cell type composition of PCPG tissue

Stringent quality filtering yielded 50 868 nuclei, with an

average of 1 800 genes per nucleus (Methods, Table S1; Figure

S1A). The merged expression profiles were compressed into a

2D-coordinate system using uniform manifold approximation

and projection for dimension reduction (UMAP). The cells were

grouped into 20 clusters and annotated based on their location,

mutation group, and patient ID (Figure 1B; Table S2).

Based on canonical marker genes, we identified three major

groups of cell types: neuroendocrine (NEs (markers TH, DBH,

and CHGB)), immune (PTPRC, CD163, and CD247), and

stromal (COL4A1 and COL1A2) cells (Figure 1C). The

analysis of cluster 7 revealed that it originated almost

exclusively from one donor (P370) and was characterized by

elevated expression of typical adrenocortical rather than

adrenomedullary marker genes, such as CYP11A1 and

CYP11B1 (Figures 1C, D; Figures S1C, D). Hence, cells from

donor P370 were considered non-representative and excluded

from downstream analysis. Neuroendocrine cells (NEs)

represented the largest cell fraction (63%, clusters 0, 1, 2, 3, 4,

6, 10, 11, 16, 19), followed by stromal (16%, Clusters 9, 12, 13, 15,

17, 18) and immune cells (16%, Clusters 5, 8, 14, 16) (Figure 1D).
TABLE 1 Clinical information and snRNAseq quality parameters of processed/analyzed samples.

'PPGL_'
ID

Age Date of
operation

Mutation
group

Mutation Location Metastatic number of captured nuclei
(after filtering)

gene count (after
filtering)

66 51 2012 RET C611Y adrenal gland no 7063 1697

100 48 2012 RET C634R adrenal gland no 3602 3110

180 30 2013 RET C611Y adrenal gland no 6829 2696

269 47 2012 RET C818S adrenal gland no 6437 1658

370 71 2017 RET C611Y adrenal gland no 3175 2113

373 32 2017 SDHB exon3del adrenal gland yes 3836 767

77 28 1998 SDHB exon3del bladder yes 3772 1916

92 21 1988 SDHB N109H retroperitoneal no 6232 1916

313 31 2009 SDHB IVS4+1G>A retroperitoneal no 5448 1171

266 15 2012 SDHB R115* mediastinal no 1526 1419

227 25 2012 SDHB C192R mediastinal no 2948 2111
See also in Table S1.
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Most NE clusters consisted of cells from a single patient (Figures

S1B–D). However, cells in the tumor microenvironment (TME)

occupied shared UMAP territories (Figure 1E). Based on these

observations, we decided not to apply batch correction in

subsequent analyses to maintain the biological heterogeneity.
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To obtain a more detailed insight into the cellular complexity

of the TME, immune and stromal cells were subselected separately

for further analyses. Annotation of immune cells (Figure S2A)

resulted in the assignment of macrophages, which are the major

components of the immune TME (9) (expressing CD163,
B

C D

E

A

FIGURE 1

(A) Graphical abstract of the study. Created with BioRender.com. (B) UMAP visualization of all 50 868 cells grouped according to their cluster
annotation and colored by their clusters, location of origin, mutation group, or patient ID. (C) Violin plots displaying the expression levels of
canonical markers of representative cell types. (D) Distribution of cell types across the merged dataset and per sample. (E) UMAP visualization of
all 50,868 cells, highlighting the cells annotated as the main cell types. The UMAP clusters of NEs were also marked by their most representative
patient IDs.
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CDSF1R, TGFBI), followed by T-cells (CD247, IL7R, TCF7), and

B-cells (MS4A1, BLK, BANK1) (Figure S2B). Macrophages are the

most heterogeneous immune cells, which could be related to tissue-

specific transcriptional programs, as they are widely known to exert

context-specific functions (10, 11) (Figure S2A, arrows). However,

adrenal macrophages (colored green) derived from the same

location but from different tumor samples were very different.

(Figure S2A, blue and red arrows). This suggests that the

macrophage transcriptome not only has a strong locational

component but also a tumor type-specific component. The T

and B cells originating from different locations and mutation

groups appeared rather similar as they clustered together. Finally,

the annotation of the stromal group (Figures S2C, D) revealed

Schwann cells (expressing SOX6, CDH19, and NRXN1),

endothelial cells (FLT1, PECAM1, and PTPRB), and fibroblasts

(TAGLN, ACTA2, and COL1A1).

The numbers of individual immune and stromal cell

populations were deemed too small for an in-depth analysis

and were not further investigated.
RET and SDHB tumor cells display
chromosomal aberrations

We explored inferred Copy Number Variation (iCNV) to

determine large-scale somatic chromosomal changes (Figure 2).

Immune- and stromal cells served as ‘reference’ in the

assumption that large CNVs do not occur in the non-

malignant. In agreement with published whole-genome

sequencing profiles of PCPG tissue (12–15), segmental loss in

the p-arm of chromosome 1 (1p) was present in all examined

tumors regardless of the mutation type. Loss of 1p was not found
Frontiers in Oncology 05
in the TME cells confirming the assignment of the

neuroendocrine cells as PCPG tumor cells. In addition, we

observed widespread loss in other chromosomes for example

the 3q and 6p arms as well as patient-specific aberrations such as

loss in chr21 and gain in 1q, 3q, 13q and 14q (Figure 2). Apart

from a few exceptions (RET-PCPG P66) we found different

iCNV patterns in chr13 and chr15 in a subset of the tumor cells;

in P227 (SDHB-PCPG) we identified small variations in chr3

and chr17 but observed few intra-individual heterogeneities.

In contrast to the extensive inter-individual and tumor-

specific genomic aberrations, the inferred genomic profiles of

tumor cells within each tumor population were largely

homogeneous, suggesting that the genome remained largely

stable following an initial catastrophic event.
Transcription programs separate RET-
and SDHB PCPG tumor cells

To assess the inter-tumoral heterogeneity between RET and

SDHB PCPG tumor cells, we selected and re-clustered tumor

cells. With this finer-grained resolution, we identified UMAP

clusters that consisted of cells mostly from one patient. This

impinged on both the UMAP plots annotated by patient IDs

(Figure 3A) and the heatmap annotation of the hierarchical

clustering of the top20 cluster markers (Figure 3B; Table S3),

reinforcing the strong inter-individual heterogeneity observed in

the iCNV analysis. Selecting the tumor cells allowed us to

determine the genes that were differentially expressed between

the mutation groups (Figure 3C; Table S4). The newly identified

markers were associated with either overlapping KEGG

pathways (‘nervous system development’) or with gene
FIGURE 2

Heatmap of inferred CNVs of NE cells (immune clusters and stromal clusters were applied as reference). The patient IDs are colored by the
mutation groups.
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ontology terms related to the secretory function of chromaffin

cells (‘ion channel activities’, data not shown) (16).

We aimed to determine the transcriptional programs that

are active across tumor cells and then identify the programs

that are differentially enriched between RET and SDHB

tumors. We applied non-negative matrix factorization

(NMF) (7) to the sub-selected tumor cells to determine

the full transcriptional spectrum behind the intratumoral

heterogeneity and to extract the most representative

biological processes in the tumor cells. First, we identified 28

active transcriptional programs in PCPG tumor cells from each

sample based on their transcriptional profiles at the single-cell

level (Figure 4A). The signature enrichment of these 280

programs was calculated for each individual tumor cell of the

entire dataset. Next, based on the enrichment scores, we

hierarchically clustered the programs and identified ten

metaprograms (Figure 4B). Genes were ranked according to

their frequency of presence within one metaprogram. These
Frontiers in Oncology 06
metaprograms spanned a narrow range of functions (Table S5),

including neuronal development (metaprograms and their

most representative genes: M1: BMPR1B, ROBO1; M2:

NRG1, NTNG1; M3: FGF14, ROBO1; M8: SYT1, CTNNA2;

M10: HDAC9, RORA), ion channel activity (M4: RYR2,

PDE4B; M5: CACNA2D3, CHRM3), hormone synthesis (M9:

TH, GCH1), and proliferation (M6: BRIP1, HELLS).

Metaprogram seven (M7) was not associated with a

significant ontology term.

Hierarchical clustering of metaprogram-scored cells revealed

two major clusters separating RET from SDHB tumor cells

(Figure 4C). The subclusters within the RET branch were

segregated among the patient samples. In the SDHB branch,

however, only sample P313 formed a discrete subcluster,

whereas the tumor cells of other SDHB patients formed mixed

subclusters. Surprisingly, SDHB tumor cells (originating from

various anatomical locations) were less heterogeneous than their

RET counterparts (originating from the adrenal gland).
B

C

A

FIGURE 3

(A) UMAP visualization of the PCPG tumor cells subcluster after re-clustering (no batch-correction), annotated by patient ID, tumor location,
mutation group and cluster. (B) Hierarchical clustering of differentially expressed genes for UMAP clusters across PCPG tumor cell subclusters.
(C) Hierarchical clustering of differentially expressed genes for RET and SDHB mutation groups (sn-markers) across PCPG tumor cells.
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The most pronounced differences in the average enrichment

scores between RET (cluster 1) and SDHB (cluster 2) clusters were

evident in the M2, M3, M4, and M5 metaprograms (Figure 4D).

The ‘ion channel activity’ of the M4-M5 metaprograms is highly

enriched among the RET tumor cells indicating a high secretory

activity of the adrenal RET-pheochromocytoma tumor cells. The

M9 ‘hormone synthesis’ program was more enriched among the

SDHB tumor cells, mainly due to patient P313. A very small

fraction of cells scored high for the ‘proliferation’ (M6)

metaprogram, revealing the low but appreciable proliferative

capacity of PCPG tumor cells. Several metaprograms were

associated with the ontology terms of ‘neuronal development’

and were shared in both branches of the tumor group separation.
Frontiers in Oncology 07
In summary, NMF analys is revealed two main

transcriptional programs in PCPG that separate RET from

SDHB tumor cells. Genes associated with ion channel activity

(secretion) were enriched in RET tumors. We also observed that

‘neuronal development’ was a highly represented transcriptional

program in both PCPG tumor cells.
PCPG tumor cells display early adrenal
developmental signatures

The NMF analysis revealed several metaprograms that were

associated with neuronal development but showed different
B

C

A

D

FIGURE 4

(A) Steps of NMF-analysis in PCPG. (B) Heatmap showing the correlation and hierarchical clustering of the 280 factors calculated in our NMF-
analysis of the tumor cells individual samples, across all mutation groups. Metaprograms are numbered M1-M10 and annotated by their
representative ontology terms. (C) Heatmap showing scores of PCPG tumor cells for the 10 metaprograms identified from NMF analysis of
individual samples (clusters from Figure 3A). (D) Violin plots showing scores of PCPG tumor cells for the 10 metaprograms identified from the
NMF analysis grouped per mutation group (black dots mark the mean, Wilcoxon p<2.2e-16 within each Metaprogram).
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enrichment scores among the mutation groups. This implies that

the developmental signature is an important element of the

tumor cell transcriptome; however, the differences between the

mutation groups were not reflected in the ontology terms. To

shed light on the developmental aspects of SDHB and RET-

PCPG tumors, we compared the transcriptome of the cell types

identified in the developing human adrenal gland (8-21 weeks

(17) with PCPG tumors. We applied logistic regression and

calculated the probability scores for cell type matches

(Figure 5A). The analysis revealed that tumor cells were most

similar to the cells at the junction of sympathoblast and

chromaffin cells, called the ‘bridge cells’ (18). The cell types in

the PCPG microenvironment showed high similarity with their

normal cell counterparts in the developmental adrenal

gland dataset.

The difference between SDHB and RET-PCPG became even

more evident when the tumor cells of each patient were

compared to chromaffin developmental cell types (Figure 5B).

Logistic regression confirmed that the RET-PCPGs were more

similar to the reference chromaffin cells, while the SDHB-PCPGs

scored highest with both the chromaffin and bridge cell types,

suggesting an earlier developmental state.
Discussion

We performed snRNA-seq and mapped the transcriptional

landscape of PCPG to investigate tumor heterogeneity and

identify the transcriptomic programs associated with the

mutation group of the tumor. We explored transcriptional
Frontiers in Oncology 08
heterogeneity by analyzing the transcriptomic profiles of 50

868 single nuclei from 11 patients (counting all cell types from

five RET- and six SDHB PCPG tissue samples). This is the first

study to reveal PCPG heterogeneity and the consequences of

germline mutations at the single-cell level.

Neuroendocrine cells, the largest population in the dataset,

were identified as tumor cells based on marker genes, and in

particular, by inferring copy number variations from gene

expression levels (19). The iCNV profiles revealed two

important features. First, the lack of tumor cell sub-clusters

within patients suggests a single initial catastrophic event that

led to the birth of the tumor cells. Second, apart from very few

recurring aberrations, we identified patient-specific iCNV

patterns, marking the level of inter- and intratumoral

heterogeneity in the PCPG cellulome, which provided a

challenge for tumor classification.

To identify the patterns of the single-nuclei transcriptomic

profiles based on tumor cells, we applied NMF, an unsupervised

learning approach that is employed to approximate high-

dimensional datasets in a reduced number of meaningful

components (7, 20, 21). The analysis of single-nuclei

transcriptomes of >30,000 tumor cells resulted in 10

metaprograms across the entire tumor set. The transcription

programs related to ion channel activity (transmembrane

transport) separated the SDHB and RET tumor cells. Based on

biochemical analysis of plasma, urinary, and tissue samples, we

previously (22) found that RET tumors produce (and contain)

higher concentrations of catecholamines, but secrete them at a

lower rate than SDHB tumors. Our cohort was not split by the

hormone synthesis metaprogram; moreover (due to a single
BA

FIGURE 5

(A) Heatmap showing similarity scores (logistic regression and logit scale) of the signatures of developing cell types from (17) (fetal adrenal
dataset) (x axis) to PCPG cells (y axis). (B) Heatmap showing similarity scores (logistic regression and logit scale) of the signatures of developing
adrenal cell types from (17) (fetal adrenal dataset) (x-axis) to PCPG tumor cells by patient (y-axis).
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patient) it showed a higher mean enrichment in the

SDHB subset. However, it is split along the ion channel

(transmembrane transport) programs that are associated with

secretion (23). Metaprograms linked to neuronal development

were active throughout the tumor cells, irrespective of their

mutational groups.

To explore the developmental status of the tumor, we used

published datasets of the developing adrenal gland as a reference.

Logistic regression analysis revealed that RET-PCPG tumor cells

are transcriptionally more similar to developed adrenal

chromaffins, whereas SDHB-PCPG tumor cells appear to be in

an earlier phase of adrenal development. Our results suggest that

PCPG tumor cells had a primarily chromaffin-like phenotype,

suggesting that the chromaffin cell development state may be

related to mutation-associated prognosis.

In summary, we revealed extensive levels of heterogeneity

among PCPG tumor cells and identified transcriptional

programs related to neuronal development as key processes in

these tumor cells. We speculate that in RET-PCPG, the mutation

caused a development block during late chromaffin development

as compared to the ‘more immature’ SDHB-PCPG tumors. To

differentiate this developmental block from alternative

transformative events that could also lead to modified

transcriptomes of tumor cells, investigation of larger cohorts is

needed. Understanding the origin of the tumor and sources of its

heterogeneity may help in the development of targeted therapies.
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SUPPLEMENTARY FIGURE 1

(A) Per-sample QC metrices after filtering (UMI count: nCount_RNA,
Gene count: nFeature_RNA, blue: ‘SDHB group’, red: ‘RET-group’). (B)
UMAP visualization of the merged dataset separately annotated by patient
(blue: ‘SDHB group’, red: ‘RET-group’). (C) Fraction of cells per sample

populating the UMAP-clusters. (D) Fraction of cells per UMAP-clusters
found per sample.

SUPPLEMENTARY FIGURE 2

(A) UMAP visualization of the PCPG immune cells subcluster after re-
clustering (no batch-correction). The arrows point at the cells annotated
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as macrophages, found in tumors from similar anatomical locations.
(blue: from an SDHB-tumor, red: from a RET-tumor). (B) UMAP

visualization and relative expression levels of canonical cell type
markers across the PCPG immune cell subcluster. (C) UMAP

visualization of the PCPG stromal cell sub-cluster after re-clustering (no
batch-correction). (D) UMAP visualization and relative expression levels of

canonical cell type markers across the PCPG stromal cell sub-cluster.

SUPPLEMENTARY TABLE 1

Clinical information and snRNAseq quality parameters of processed/
analyzed samples.
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