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1  | INTRODUC TION

Pancreatic cancer has the poorest prognosis of any cancer. 
Pancreatic cancer is the third leading cause of cancer- related mor-
tality in the United States, with a 5- year overall survival of 9%; 
an estimated 47 050 Americans will die of the disease in 2020.1 
Globally, in 2018, 458 918 pancreatic cancer diagnoses were 
made, comprising 2.5% of worldwide cancer cases, and 432 242 
deaths contributed to 4.5% of worldwide cancer- related deaths.2 
Approximately 95% of pancreatic cancers originate from exocrine 
cells, most commonly pancreatic ductal adenocarcinomas (PDAC).3 
Endocrine pancreatic cancers generally have a more favorable prog-
nosis.4 Ductal adenocarcinoma is the most common malignancy of 

the pancreas. Accordingly, this tumor presents a substantial health 
problem worldwide.5,6

Through exome sequencing of PDAC surgical specimens, in a 
very interesting study, Biankin et al demonstrated that the axon 
guidance gene family was the most frequently altered gene family.7 
Their findings suggest the potential involvement of the nervous sys-
tem in PDAC carcinogenesis.

In clinical pancreatic cancer management, perineural invasion 
(PNI) is the most significant nerve- related problem. PNI has been 
characterized as the neoplastic invasion of tumor cells into or sur-
rounding the nerves.8- 12 It is a characteristic feature of PDAC 
associated with a poor prognosis, tumor recurrence, and pain gener-
ation.13- 16 The prevalence of PNI in PDAC is far higher than in other 
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Abstract
Pancreatic ductal adenocarcinoma (PDAC), with its extremely poor prognosis, pre-
sents a substantial health problem worldwide. Outcomes have improved thanks to 
progress in surgical technique, chemotherapy, pre- /postoperative management, and 
centralization of patient care to high- volume centers. However, our goals are yet 
to be met. Recently, exome sequencing using PDAC surgical specimens has dem-
onstrated that the most frequently altered genes were the axon guidance genes, 
indicating involvement of the nervous system in PDAC carcinogenesis. Moreover, 
perineural invasion has been widely identified as one poor prognostic factor. The 
combination of innovative technologies and extensive clinician experience with the 
nervous system come together here to create a new treatment option. However, evi-
dence has emerged that suggests that the relationship between cancer and nerves in 
PDAC, the underlying mechanism, is not fully understood. In an attempt to tackle this 
lethal cancer, this review summarizes the anatomy and physiology of the pancreas 
and discusses the role of the nervous system in the pathophysiology of PDAC.
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gastrointestinal malignancies.8,17- 19 Furthermore, the PNI severity 
is more severe compared to other gastrointestinal malignancies.17 
However, it remains unclear why PDAC is associated with a higher 
incidence of PNI.

The inhibition of PNI would have the potential for improving 
prognosis in patients with PDAC. However, neither the underly-
ing mechanism of PNI nor the crosstalk between cancer cells and 
nerves within PNI has been fully understood. Furthermore, the role 
of nerves in PDAC initiation and progression has remained unclear. 
It is assumed that the elucidation of these biological phenomena will 
provide new treatment strategies targeting nerve- cancer signaling 
that prevent PNI and improve survival in PDAC patients.

In this review, we describe a brief overview of the anatomy and 
physiology of the pancreas. Then, we discuss novel possibilities 
for the role of nerves in PDAC, mainly focusing on nerve- cancer 
interactions.

2  | CLINIC AL ANATOMY OF THE 
PERIPANCRE ATIC NERVE PLE XUS

The pancreas has an abundant nerve supply. Many nerve branches 
supply the pancreas and form several nerve plexuses.20- 25 In the 
General Rules for the Study of Pancreatic Cancer edited by the 
Japan Pancreatic Society,23 these extrapancreatic nerve branches 
are divided into seven plexuses as follows: the pancreatic head nerve 
plexus Ⅰ (PLphⅠ), the pancreatic head nerve plexus Ⅱ (PLphⅡ), the su-
perior mesenteric nerve plexus (PLsma), the common hepatic nerve 
plexus (PLcha), the hepatoduodenal ligament nerve plexus (PLhdl), 
the splenic artery nerve plexus (PLspa), and the celiac plexus (PLce).

Figure 1 shows the schema of the nervous system around the 
pancreas. The nerves serving the pancreas head mainly derive from 
the celiac plexus. They are divided into the anterior hepatic plexus 
running along the common hepatic artery, and the posterior hepatic 
plexus running through the depths and behind the portal venous 
system.20 Innervation of the pancreas head is largely thanks to the 

posterior hepatic plexus originating from the right celiac ganglion, 
which is equivalent to the “pancreatic head nerve plexus Ⅰ” reported 
by Yoshioka and Wakabayashi.20,26

The innervation of the uncinate process of the pancreas origi-
nates from the superior mesenteric plexus. The nerve is divided into 
two pathways: the direct pathway and the accompanying pathway. 
Pancreatic head nerve plexus Ⅱ from the superior mesenteric arterial 
plexus directly entering the uncinate process is considered the direct 
pathway. The accompanying pathway is the nerve along the inferior 
pancreaticoduodenal artery.20

The innervation of the body and tail of the pancreas is divided 
into two routes. One route, derived from the splenic plexus, branches 
into the body and tail directly or passes along the great pancreatic 
artery and the dorsal pancreatic artery. The other originates from 
the celiac plexus and directly enters the pancreatic parenchyma at 
the neck of the pancreas. One branch of the celiac plexus runs to 
the parenchyma along the inferior pancreatic artery and is distrib-
uted mainly into the lower body and tail of the pancreas. This branch 
achieves communication in the periphery with the branch of the 
splenic plexus. The other celiac plexus branch is distributed around 
the pancreatic duct without the accompanying artery.20

Those peripancreatic nerve plexuses involved in the sensory 
nerve and autonomic nervous system include the sympathetic, para-
sympathetic, and enteric divisions.

3  | THE INNERVATION OF THE PANCRE A S

The pancreas consists of two functional components. The exocrine 
pancreas, occupying a major portion of the pancreas, consists of aci-
nar cells and ductal cells. This part releases digestive enzymes and 
bicarbonate into the duodenum. The endocrine pancreas is organ-
ized into the islets of Langerhans. The endocrine pancreas secretes 
hormones, including insulin, glucagon, ghrelin, pancreatic polypep-
tide, and somatostatin.27,28 Both components of the pancreas are 
innervated by the autonomic nervous system, and regulated by the 
separate pathways for normal activity.

3.1 | Parasympathetic neurons

Preganglionic parasympathetic neurons originate from the dor-
sal motor nucleus of the vagus.29- 31 This activates parasympa-
thetic postganglionic neurons in the pancreatic ganglia, primarily 
via activation of nicotinic acetylcholine receptors.32,33 Various 
neurotransmitters and neuromodulators can regulate these 
transmissions between pre-  and postganglionic neurons.32,34 
The distribution of parasympathetic neurons is wider than that 
of sympathetic neurons, with some overlapping regions.32 The 
postganglionic neurons release several neurotransmitters, which 
are excitatory or inhibitory depending upon the receptor.33 One 
typical neurotransmitter is acetylcholine (Ach), which binds to 
muscarinic receptors and produces a tonic input.35 Nitric oxide 

F I G U R E  1   The schema of the nervous system around the 
pancreas. This figure based on Ref. [14,20,23,24,25]
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(NO), vasoactive intestinal polypeptide (VIP), gastrin- releasing 
peptide, and pituitary adenylate cyclase- activating polypeptide 
(PACAP) are also released from the parasympathetic nerve.30,32,36 
Parasympathetic innervation plays a role in the regulation of pan-
creatic function.37- 39 Activation of the parasympathetic nerve 
mainly leads to excitatory input, which results in increases of both 
exocrine and endocrine secretion.40- 46

3.2 | Sympathetic neurons

Preganglionic sympathetic neurons originate from the lower tho-
racic and upper lumbar segments of the spinal cord.29,31,47- 49 They 
exit the spinal cord through the ventral roots and reach either the 
paravertebral ganglia of the sympathetic chain or the celiac and 
mesenteric ganglia.28,29,32,33,35 The postganglionic sympathetic 
nerve terminates at the intrapancreatic ganglia, islets, and pan-
creatic blood vessels.29,32,50 Although it is modest compared to 
islets and blood vessels, some sympathetic nerves project to aci-
nar cells and ducts.29,51 They release various neurotransmitters, 
including norepinephrine (NE), galanin, and neuropeptide Y.36,52,53 
Sympathetic nerves primarily decrease plasma insulin levels.54- 57 
Conversely, stimulation of the sympathetic nerves increases gluca-
gon secretion.54,57- 60 These findings suggest that the overall effect 
of the sympathetic nerves on endocrine function is to maintain gly-
cemic levels during stressful conditions.33 The sympathetic nerve 
primarily inhibits pancreatic exocrine secretion; however, what the 
definitive effect is remains controversial.32,33

3.3 | Enteric neurons

The enteric nervous system is the third division of the autonomic 
nervous system.61 The enteric nerve from within the gastric antrum 
wall and the proximal duodenum wall reaches the intrapancreatic 
ganglia.62,63 The enteric fiber can release multiple neurotransmitters 
and neuromodulators, including Ach, serotonin, PACAP, and NO.62,64 
Some studies have indicated a relationship between the enteric 
nerve and pancreatic function.63,65- 67 However, the role of the nerve 
in controlling the endocrine and exocrine functions in humans is not 
yet fully understood.

3.4 | Sensory neurons

The sensory nerves of the pancreas reach the central nervous sys-
tem via both the vagal and spinal routes.21,31,33,68 Although the 
central targets of vagal afferents have not been fully established, 
the nucleus of the solitary tract is the strongest candidate.21,64 
Sympathetic and parasympathetic afferent nerves are capsaicin- 
sensitive, and contain substance P and calcitonin gene- related pep-
tide, or both.68- 71 Mechanosensitive fibers are primarily associated 
with blood vessels.72 Some studies have suggested that sensory 

nerves may inhibit insulin secretion73,74 and exocrine secretion.75 
However, the role of sensory nerves on pancreatic functions has not 
been fully proven.

4  | THREE-  DIMENSIONAL MICROSCOPIC 
FINDINGS OF THE PANCRE ATIC 
INNERVATION

Thanks to two innovative technologies, tissue clearing and ad-
vanced microscopy, we have been able to distinctly visualize three- 
dimensional (3D) anatomy and pathology.76 These technological 
advances definitely contribute to further organizing knowledge of 
the pancreatic nerves. Tang et al visualized the neuro- insular net-
work via 3D histology.77,78 They demonstrated that both the sym-
pathetic and parasympathetic nerves enter the islet and reside in 
the islet cell's immediate microenvironment. They also found the in-
trapancreatic ganglia (perilobular and intraparenchymal ganglia) and 
the islet- ganglionic association around the islets.78 Intrapancreatic 
ganglia include pancreatic neurons, glial cells, and extrinsic and 
intrinsic nerve fibers.78 These results provide novel insights into 
human pancreatic disease.

On the other hand, the relationship between the nerves and exo-
crine components has not been a center of focus. With 3D histol-
ogy, our colleagues have visualized the nerve fiber networks around 
the pancreatic acinar cells and duct cells in the human pancreas 
(Figure 2).

5  | NERVE-  C ANCER CROSSTALK WITHIN 
PNI IN PDAC

A century ago, PNI was identified as one of the routes for metastatic 
spread.9,10 Recently, our ability to understand the molecular mecha-
nisms behind PNI has become clearer. Several lines of evidence from 
current studies have caused a paradigm shift in our recognition of 
PNI. In short, they have indicated that PNI is a metastatic route as 
well as a critical command center during the progression of PDAC. 
We next discuss the role of nerves in PDAC. We attempt to clarify 
how nerves contribute to the pathogenesis of PDAC.

5.1 | Nerve- mediated development and organ 
patterning in the pancreas

During the initial phase of cancer progression, tumors activate 
nerve- dependent pathways similar to those in normal develop-
ment.79 Thus, we first provide a brief overview of nerve- mediated 
development and organ patterning. To understand nerve- mediated 
development and organ patterning in the normal pancreas, research 
findings using the submandibular gland, which also has acini and 
ducts, are helpful.79 During gland development, a variety of cells, 
including the epithelial, mesenchymal, and stromal cells, secrete 



626  |     WAKIYA et Al.

various neurotrophins to elicit the recruitment of the peripheral 
nerves. This phase is called the nerve recruitment phase.79

To date, several neurotrophins and their cognate receptors have 
been identified. There are four neurotrophins recognized in humans: 
the prototypical nerve growth factor (NGF), brain- derived neuro-
trophic factor (BDNF), neurotrophin 3 (NT- 3), and neurotrophin 4/5 
(NT- 4/5).80 In addition, some polypeptide factors, including ciliary 
neurotrophic factor (CNTF)81 and glial cell line- derived neurotrophic 
factor (GDNF),82 possess neurotrophic activity.80 The biological 
effects of each of the four neurotrophins are mediated through 
activation of one or more of the three members of the tropomyosin- 
related kinase (Trk) family of receptor tyrosine kinases (TrkA, TrkB, 
and TrkC). In addition, all neurotrophins activate the p75 neurotro-
phin receptor (p75NTR), a member of the tumor necrosis factor re-
ceptor superfamily.80 The cognate receptor of GDNF is GDNF family 
receptor- α2 (GFRα2).83 Neurotrophin binding to the receptor on 
nerves leads to retrograde signals that travel from the distal axon to 
the cell body and dendrites. These signals promote gene expression 
and axogenesis.84,85

After the nerve recruitment phase, parasympathetic nerves 
initiate ductal epithelial tubulogenesis through VIP signaling.86 
Additionally, parasympathetic nerves also regulate glandular or 
acinar epithelium growth and patterning through ACh signaling by 
activating SRY- box 2 (SOX2).87 On the other hand, sympathetic 
nerves are necessary for patterning the vasculature in gland devel-
opment.88,89 In the developing pancreas, adrenergic innervation is 
associated with a rapid phase of glandular growth and maturation. 
Conversely, the deletion of neurotrophin or their receptors leads 
to the disruption of the glandular architecture.90,91 In summary, the 
nerve and nerve- mediated pathways are essential to the develop-
ment and organ patterning of the pancreas.

5.2 | Vicious cycle between the nervous system and 
cancer cells

In cancer, to continue to grow and be maintained, tumor cells and 
the surrounding reactive stroma release neurotrophins to recruit 
nerves.79,92 These tumor- derived neurotrophins result in axono-
genesis of the autonomic nerve and the sensory nerve.93 After the 

nerve recruitment phase in cancer, each nerve contributes to the 
growth phase of the cancer. Sympathetic nerves generate neovas-
culature, similar to what happens in tissue development.94 Through 
mitosis, parasympathetic nerves activate tumor cells, which starts 
growth expansion.95 Parasympathetic nerves also give tumor cells 
migratory cues for metastasis.96 Furthermore, cancer cells mi-
grate along the nerve and invade into nerves in response to vari-
ous mediators released by the peripheral nerves and nerve resident 
macrophages.8,93,97- 103

In short, cancer cells themselves create a favorable environ-
ment for cancer by modulating neural systems. Unfortunately, these 
nerve- cancer interactions can cause a fatal vicious cycle in PDAC. 
Based on characteristic findings, including the abundant nerve sup-
ply to the pancreas and the higher frequency and degree of PNI, 
this lethal downstream spiral in PDAC may be greater than in other 
cancers, which may be one reason that PDAC has one of the poorest 
prognoses.

5.3 | Increased nerve density in PDAC specimens

During cancer progression from preneoplastic lesions to cancer, 
increased nerve density is a significant feature in neoplastic tis-
sue.94,104 Furthermore, increased nerve density has been found to 
correlate consistently with more aggressive disease,105,106 includ-
ing pancreatic cancer.107 In the pancreatic intraepithelial neopla-
sia (PanIN), increased nerve density has been demonstrated.108,109 
Moreover, as expected from the result in PanIN, a drastically in-
creased number and size of intrapancreatic nerves were observed in 
PDAC.9,110 This observation is termed pancreatic cancer- associated 
neural remodeling (PANR).102,111,112 Several lines of evidence re-
vealed that an increase in nerve density is paralleled by an increase 
in neurotrophin production.94,104,108,113 Stopczynski et al reported 
that neurotrophins as well as their cognate receptors increased early 
in the development of PDAC.109 In human PDAC specimens, inter-
estingly, neurotrophin expression was primally within the stromal 
compartment, not within the epithelial compartment.114,115 Our 3D 
image of cleared human PDAC, visualized by Dr Yoshizawa, clearly 
demonstrated the increased nerve density compared to the normal 
pancreas, which accurately confirms previous reports (Figure 2).

F I G U R E  2   Representative 3D image 
of multicolor immunofluorescent labeling. 
Comparison of the nerve distribution in 
the normal pancreas (A) with pancreatic 
cancer (B). Markers: CK19 (epithelial cells), 
green; S100 (nerves), red

(A) (B)
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5.4 | Evidence for neural modulation in PDAC

To date, there have been several lines of evidence for the neural 
modulation effect in PDAC (Table 1). Furthermore, neural modu-
lation, by the denervation of the vagus nerve or sensory nerves, 
would potentially inhibit progression from the PanIN stage to 
PDAC.108,116- 119 Targeting these signaling pathways may prove use-
ful in the treatment of PDAC.

Regarding axon guidance molecules, there have been some find-
ings of semaphorin and its receptors, plexin. Jurcak et al demon-
strated that a PNI mechanism is associated with the semaphorin and 
plexin gene family in PDAC using mice.11 They further reported in-
creased levels of semaphorin and plexin in human PDAC specimens 
associated with PNI. Moreover, human PDAC semaphorin expres-
sion is associated with poor survival and metastasis.120 These re-
sults suggest that strategies to disrupt the axon guidance pathway 

Target Findings Ref.

Parasympathetic 
nerves

Nicotine induces tumor metastasis via the α7nAChR/JAK2/STAT3 
downstream signaling cascade

132

Subdiaphragmatic vagotomy accelerates tumorigenesis
Muscarinic agonist suppresses tumorigenesis via MAPK and PI3K/

AKT signaling

118

Sympathetic 
nerves

NE inhibits migratory activity via imbalanced activation of PKC/PLC 
signaling

133

Catecholamines promote the secretion of NT, which in turn 
promotes increased NE and tumor growth

114

NE promotes PNI via β- AR/PKA/STAT3 signaling 134

Sensory nerves Ablation of sensory neurons slows initiation and progression 116

SP induces PNI via NK- 1R signaling 135

Increased sensory innervation and NT linked with disease 
progression from premalignant stages to cancer

109

Sensory nerves promote PanIN tumorigenesis via NK- 1R signaling 108

NT GDNF/GFRα1- RET signaling in a paracrine manner promotes PNI via 
MAPK

99

GDNF/GFRα1- RET signaling derived from endoneurial macrophages 
promotes PNI via MAPK/PI3K

136

nerve- released GFRα1 enhances PNI through GDNF/RET signaling 97

NRTN/GFRα2 signaling derived from tumor cells promotes 
invasiveness

137

Artemin/GFRα3- RET signaling promotes cancer invasion 138

Schwann cells are chemoattracted to cancer cells via NGF/p75NTR 
interaction

139

NGF/TrkA expression is associated with PNI 140

Other factors SDC- 2 expression is associated with PNI 141

PSCs affected by paracrine SHH signaling promote PNI 142

TGFβ/SMAD signaling derived from Schwann cells enhance 
aggressiveness and PNI

102

Axon guidance factor SLIT2/ROBO signaling inhibits PNI and 
metastasis

121

Axon guidance factor SEMA3/PLXNA1 promotes tumor 
dissemination

143

Axon guidance factor SEMA3D/PLXND1 induces tumor invasion 11,120

Abbreviations: Ach, acetylcholine; AKT, serine/threonine kinase or protein kinase B; GDNF, glial 
cell- derived neurotrophic factor; GFRα, GDNF family receptor- α; JAK2, janus kinase 2; MAPK, 
mitogen- activated protein kinase; nAChR, nicotinic acetylcholine receptor; NE, norepinephrine; 
NGF, nerve growth factor; NK- 1R, neurokinin- 1 receptor; NRTN, neurturin; NT, neurotrophin; 
PanIN, pancreatic intraepithelial neoplasms; PI3K, phosphoinositide 3- kinase; PKA, protein kinase 
A; PKC, protein kinase C; PLC, phospholipase C; PLXN, plexin; PNI, perineural invasion; PSCs, 
pancreatic stellate cells; RET, Ret proto- oncogene; ROBO, roundabout; SDC, syndecan; SHH, Sonic 
Hedgehog; SLIT2, slit guidance ligand 2; SP, substance P; STAT3, signal transducer and activator of 
transcription 3; TGFβ, transforming growth factor beta; Trk, tropomyosin- related kinase.

TA B L E  1   Evidence for neural 
regulation in PDAC
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F I G U R E  3   Targeting neurotrophins is one candidate for a new treatment strategy for PDAC. We retrieved associated molecules 
from QIAGEN Ingenuity Pathway Analysis. This network was generated, mainly focusing on TRK, through the use of QIAGEN Ingenuity 
Pathway Analysis. Direct interactions are shown in this network (excluding indirect interactions). The molecules with the green outline 
are components of the canonical pathway of axon guidance signaling. The nodes filled in with yellow are neurotrophins, their receptors. 
Emerging evidence has shown that TRK inhibitors (blue) link together with the yellow nodes (blue arrow lines). Furthermore, we have 
delineated the molecules of axon guidance signaling, which previously have demonstrated a direct relationship to not only cancer growth 
but also neurotrophins and their receptors. This network reveals that neurotrophins and their receptors are linked to PDAC progression via 
various molecules and signaling pathways. The established network reveals that several tropomyosin receptor kinase inhibitors would have 
anti- cancer effects by suppressing the neurotrophin- related pathways in PDAC
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mediated by semaphorin might be developed to slow the progression 
of PDAC. However, SLIT2/ROBO signaling, one of the axon guidance 
factors, inhibits PNI and metastasis in PDAC.121 When considering 
this conflicting information together, it becomes evident that the 
role of the axon guidance molecules in PDAC is complicated. More 
precise characterization is needed to explore new pharmacological 
approaches targeting molecules.

Tropomyosin receptor kinase (TRK) has been focused on as 
a new treatment target, because there are actionable inhibitors 
such as larotrectinib and entrectinib.122- 125 To visualize the role 
of TRK and the entire relationship with PDAC, we generated 
a TRK- related network through the use of QIAGEN Ingenuity 
Pathway Analysis126 (Figure 3). The evidence that emerged has 
demonstrated the efficacy of TRK inhibitor in patients with the 
neurotrophic tyrosine receptor kinase (NTRK) gene fusion- 
positive.123,127,128 Although rare, NTRK gene fusions are identified 
as oncogenic drivers in <1% of PDAC cases,122,129- 131 thus provid-
ing a potential treatment target.

6  | FUTURE DIREC TIONS

Based on several lines of evidence elucidated here, what we next 
want to find out is how neural regulation progresses after curative 
surgery. Because we have generally performed peripancreatic nerve 
plexus dissection, a better understanding of how nerve dissection 
affects the remnant pancreas and tumor microenvironment is highly 
significant to preventing local recurrence after curative surgery.

Unfortunately, there has not been a clinical or experimental 
study to assess the effect of residual nerves on tumor recurrence 
after curative surgery. Based on the previous reports, we can spec-
ulate that residual nerves induced/activated by cancer cells could 
continue to stimulate oncogenesis, cancer growth, and cancer pro-
gression even after R0 resection. Furthermore, an immune system 
modified by tumor- induced nerves could also contribute to increase 
cancer growth.93 We really want to know whether the modification 
applied to the nerve by the switch from cancer cells is reversible 
or irreversible. If this modification remains irreversible even after 
R0 resection and promotes postoperative recurrence, we need to 
inhibit the nerve- induced positive regulation in cancer growth. For 
that purpose, potential therapeutic options would be based on stop-
ping aberrant tumor neurogenesis and disrupting communication 
among cancer cells, leukocytes, and neurons.

Innovative pharmacological strategies targeting the nervous sys-
tem and neurotrophins may improve the prognosis of PDAC patients 
by inhibiting carcinogenesis, invasiveness, metastasis, and local re-
currence. Therefore, a further, deeper understanding of the nerve- 
cancer interaction is needed for clinicians treating PDAC and their 
patients.
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