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Abstract

The development of 3C-based techniques for analyzing three-dimensional chromatin structure dynamics has driven
significant interest in computational methods for 3D chromatin reconstruction. In particular, models based on Hi-C
and its single-cell variants, such as scHi-C, have gained widespread popularity. Current approaches for reconstructing
the chromatin structure from scHi-C data typically operate by processing one scHi-C map at a time, generating a
corresponding 3D chromatin structure as output. Here, we introduce an alternative approach to the whole genome 3D
chromatin structure reconstruction that builds upon existing methods while incorporating the broader context of dynamic
cellular processes, such as the cell cycle or cell maturation. Our approach integrates scHi-C contact data with single-cell
trajectory information and is based on applying simultaneous modeling of a number of cells ordered along the progression
of a given cellular process. The approach is able to successfully recreate known nuclear structures while simultaneously
achieving smooth, continuous changes in chromatin structure throughout the cell cycle trajectory. Although both Hi-C-
based chromatin reconstruction and cellular trajectory inference are well-developed fields, little effort has been made to
bridge the gap between them. To address this, we present ChromMovie, a comprehensive molecular dynamics framework
for modeling 3D chromatin structure changes in the context of cellular trajectories. To our knowledge, no existing
method effectively leverages both the variability of single-cell Hi-C data and explicit information from estimated cellular
trajectories, such as cell cycle progression, to improve chromatin structure reconstruction.
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Introduction

The modeling of three-dimensional (3D) chromatin structure

has garnered significant attention in recent years, largely

due to the development of advanced techniques that provide

deeper insight into chromatin organization. Methods for

analyzing 3D genome organization can be broadly categorized

into microscopic imaging-based approaches, sequencing-based

techniques, and their accompanying computational models [1].

While microscopic methods, such as super-resolution

imaging combined with fluorescence in situ hybridization

(FISH) [2], 3D-EMISH [3] or iPALM [4], have been applied

to 3D chromatin structure reconstruction [5], sequencing-

based computational approaches have been far more widely

adopted. These methods have led to a diverse range of

computational strategies for chromatin modeling [6, 7] and have

been extensively reviewed in the literature [8, 9, 10, 11, 12].

Single-cell Hi-C
Several sequencing-based methods have been developed to

provide genome-wide information on chromatin conformation.

These include ligation-based techniques such as Hi-C [13],

HiChIP [14], Micro-C [15] or ChIA-PET [16], as well as non-

ligation approaches such as SPRITE [17], ChIA-Drop [18] or

GAM [19]. Among these, Hi-C and its derivatives have been

the most widely used for chromatin structure reconstruction,

offering invaluable insights into chromatin conformations across

genomic scales [13, 20, 21]. However, reconstructing 3D

chromatin structures from Hi-C data presents challenges, for

example in resolving ambiguous knotting patterns [22] or in

addressing the ergodicity of interaction frequencies [23]. To

overcome at least some of these limitations, single-cell and

single-nucleus Hi-C techniques have been developed [24, 25,

26, 27], enabling novel insights into chromatin conformation

heterogeneity at the single-cell level. For a detailed overview
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of published single-cell and single-nucleus datasets, see [28, 29,

30, 31].

While Hi-C data is commonly used for chromatin structure

reconstruction, single-cell approaches offer distinct advantages

by bridging the gap between bulk Hi-C’s averaged view

and microscopy-based studies of single-cell conformations [24].

Several methods have been developed for reconstructing the

3D chromatin structure from single-cell data [24, 32, 33,

34, 27, 35, 36, 37, 38, 39, 40, 41] which were reviewed

in [42], and new ones are constantly being developed

[43]. Despite their methodological diversity, these approaches

share key similarities. Notably, most models reconstruct

chromatin structure using a single scHi-C map at a time,

potentially overlooking contextual information from other

cells. Incorporating this broader context could improve

reconstruction accuracy—for example, by integrating bulk Hi-

C data, as demonstrated in [35]. Another method of using

this context information indirectly is by applying imputation

techniques for which several notable examples include Higashi

[44], Fast-Higashi [45], ScHiCEDRN [46], HiC-SGL [47],

ScHiCAtt [48] or HiCENT [49]. These methods, and other

general deep learning models developed for Hi-C resolution

enhancement [50, 51], can be used in tandem with chromatin

reconstruction algorithms to enrich the resulting structures.

However, most do not explicitly model structural changes along

a continuous cellular trajectory or process of interest.

Trajectory inference methods
Broadening our perspective beyond Hi-C studies within

cellular genomics, we find significant advances in single-

cell analysis. For instance, single-cell RNA sequencing

(scRNA-seq) has revolutionized transcriptomics by offering

advantages over traditional bulk analysis [52, 53]. Single-cell

transcriptomics has provided key insights into the inherent

heterogeneity of dynamic cellular processes, including cell

differentiation, maturation, activation, response to stimuli, and

cell cycle progression. To study the transitions cells undergo

during these dynamic processes, numerous computational

methodologies—collectively known as trajectory inference (TI)

methods—have been developed and extensively reviewed [54,

55, 56], alongside methods focused more specifically on single-

cell clustering [57]. The field continues to expand, with dozens

of TI methods already established and new ones continually

emerging [58, 59, 60, 61, 62, 63, 64].

While RNA-seq-based TI methods have been widely applied

to studying cell cycle trajectories, cell maturation, and

differentiation, much less effort has been made to integrate

these approaches with single-cell Hi-C data and, consequently,

3D chromatin modeling. One of the first attempts to

reconstruct a cell cycle trajectory using scHi-C data was

by Nagano et al. (2017) [65], who introduced the ’repli-

score’ to estimate pseudo-trajectories of cell cycle progression.

Subsequently, methods such as CIRCLET [66] or scHiCPTR

[67] were developed with similar objectives. Additionally,

several approaches have been proposed for clustering or

classification of scHi-C data, particularly for identifying cell

cycle phases. Notable recent examples include scHiCluster [68],

Kim et al. (2020) [69], scHiCyclePred [70] or scHiClassifier [71].

Bridging the gap
Beyond trajectory inference and clustering, other key areas of

single-cell Hi-C analysis include embedding, imputation, and

denoising, all of which remain active research topics. Most scHi-

C analyses begin with dimensionality reduction and embedding

(for a review of embedding methods in scHi-C, see [72]). These

embeddings serve as a foundation for subsequent analyses, such

as imputation [44, 45] and denoising [73, 74], and are also

valuable starting points for reconstructing cell cycle trajectories

and other dynamic cellular processes.

We propose that integrating cellular trajectory information

obtained from TI methods adapted for scHi-C could

significantly enhance 3D chromatin reconstruction. To date,

no existing method explicitly incorporates trajectory data

into chromatin structure reconstruction from scHi-C. Most

reconstruction methods are based on Hi-C, with only a few

attempting to integrate microscopy data [75] or additional

genomic datasets such as CHIP-seq or RNA-seq [76, 77]. While

an increasing number of approaches incorporate single-cell or

single-nucleus Hi-C data [42], they generally treat each scHi-

C map independently, thereby losing valuable information

embedded in cellular trajectories.

Here, we introduce ChromMovie, the first 3D chromatin

conformation modeling method — to our knowledge — that

explicitly incorporates cellular trajectory information, such

as cell cycle or maturation dynamics. ChromMovie uses

an OpenMM framework [78] and builds upon widely used

molecular approaches in scHi-C-based chromatin structure

reconstruction [42] by modeling multiple scHi-C maps

simultaneously and leveraging their ordering, as determined by

a TI method or the scHi-C experiment itself (see Fig. 1A). The

method incorporates the knowledge about cell order by adding

meta-restraints to the molecular dynamics simulation which

itself is based on a previous methods for 3D chromatin structure

reconstruction from scHi-C data such as NucDynamics [27].

In this way the simulation of a 3D chromatin structure from

a particular scHi-C map is influenced by neighboring scHi-

C maps within the dataset, with neighbors defined as the

immediate predecessor and successor in the trajectory order.

Rather than treating each scHi-C map independently, this

approach allows chromatin contacts from adjacent pseudo-time

points to influence structure formation, capturing continuity

along the trajectory. By incorporating this temporal context,

ChromMovie enhances robustness against the inherent noise

in scHi-C data and serves as an implicit normalization

strategy. This prevents reconstructed chromatin structures at

any pseudo-time point from becoming trapped in local optima

of molecular dynamics simulations, leading to more biologically

meaningful results.

Method description

We identified three fundamental approaches for molecular

dynamics (MD) simulations of chromatin structures based on

multiple scHi-C maps, which are graphically illustrated in Fig.

1C, D and E.

1. Independent Approach – Each scHi-C map is processed

separately using any existing chromatin reconstruction

method, without incorporating information from other

maps.

2. Sequential Approach – Modeling begins with the first

scHi-C map in the presumed order. The output of each

simulation serves as the starting structure for the next,

incorporating constraints from the subsequent scHi-C map.

3. Semi-Dependent Approach – Each scHi-C map is modeled

with its own set of constraints, but additional restraints
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Fig. 1. (A) Overview of the ChromMovie algorithm. The algorithm takes an ordered list of scHi-C maps representing different time points of a cellular

process. It then simulates all time points simultaneously, generating an ordered list of 3D structures as the result. (B) The four main types of forces used

in the ChromMovie simulation: repulsive forces, backbone forces, contact forces, and frame forces. (C, D, E) Three approaches to modeling multiple

ordered scHi-C maps: independent modeling (C), sequential modeling (D), and parallel simultaneous modeling (E). ChromMovie implements a form of

simultaneous modeling, which, to our knowledge, is the first of its kind in the field of chromatin modeling.

ensure that structures from consecutive maps remain

spatially aligned by applying forces that link corresponding

chromatin beads.

The independent approach is highly susceptible to

overfitting due to noise in individual scHi-C maps. This

limitation makes the sequential and semi-dependent approaches

potentially more advantageous, as they incorporate information

from neighboring matrices, providing a more coherent and

biologically meaningful reconstruction of chromatin dynamics.

The two alternative approaches aim to reduce the risk of

overfitting while incorporating contextual information from

neighboring scHi-C maps. The sequential approach achieves

this by explicitly integrating structural information from

previous frames, using each reconstructed chromatin structure

as the starting point for the next phase of modeling. As

a result, although indirectly, information from all preceding

frames influences the reconstruction of a given frame.

However, while the independent approach disregards both

preceding and subsequent frames when modeling single-cell

chromatin structures, the sequential approach also fails to

incorporate information from later frames that could further

refine the reconstruction. To fully leverage the available

information encoded in cellular trajectories, we developed

a third strategy: the simultaneous approach (Fig. 1E). By

introducing connections between consecutive frames along the

cellular trajectory, this approach utilizes information from

both earlier and later pseudo-time points. ChromMovie is

the first method designed to integrate this temporal context,

enhancing the accuracy of single-cell chromatin conformation

reconstruction while capturing its dynamic changes throughout

a cellular process.

Force field
As outlined in a recent review [42], most existing methods for

3D chromatin structure reconstruction define their potential

function using a few fundamental components. These typically

include repulsive forces applied to all possible pairs of

chromatin beads, as well as attractive forces. The attractive

forces are primarily applied to (i) the chromatin polymer

backbone, ensuring connectivity between consecutive beads

along the chromatin chain, and (ii) interactions between beads

linked by scHi-C contacts. Our simulation follows this general

force field framework while introducing an additional fourth

type of force (Fig. 1B). This force is designed to connect

corresponding chromatin beads across different pseudo-time

frames, capturing the continuity of chromatin dynamics during

processes such as the cell cycle or cell maturation.
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Let n be the number of pseudo-time frames to be modeled

and m the number of chromatin beads in each frame. The

input to our simulation consists of an ordered list of n binary

matrices Hi each of size m × m, encoding the loci connected

by single-cell contacts. Let vi,j = (xi,j , yi,j , zi,j) denote the

three-dimensional position of the j-th chromatin bead of the i-

th pseudo-time frame, corresponding to the single-cell contact

matrix Hi. Furthermore, let d(v1,v2) represent the Euclidean

distance between the vectors v1 and v2.

With these definitions, the four main components of our

general potential function, in its simplest form, are as follows:

VEV =
n∑

i=1

m−1∑
j1=1

m∑
j2=j1+1

(d(vi,j1
,vi,j2

) − dEV )
2

· 1(d(vi,j1
,vi,j2

) < dEV )

VBB =
n∑

i=1

m−1∑
j=1

(d(vi,j ,vi,j+1) − dBB)
2

VSC =
n∑

i=1

m−1∑
j1=1

m∑
j2=j1+1

(d(vi,j1
,vi,j2

) − dSC)
2
1(Hi

j1,j2
= 1)

VFF =

n−1∑
i=1

m∑
j=1

(d(vi,j ,vi+1,j) − dFF )
2
1(d(vi,j ,vi+1,j) > dFF )

with the general potential V taking the form:

V = kEV VEV + kBBVBB + kSCVSC + kFFVFF

where kEV , kBB , kSC and kFF are all user-specified

coefficients controlling the relative importance of each of the

four force field components. Similarly, the distances dEV , dBB ,

dSC and dFF are user-specified ”optimal” distances for each of

these forces.

The equations above represent the most basic form of the

ChromMovie force field, featuring harmonic or harmonic-like

potentials applied to the four main components of the force

field. However, drawing from a wide range of established

methods for 3D chromatin reconstruction from scHi-C data,

we incorporated several enhancements into these basic force

components.

First, the strict harmonic potential is often considered too

stringent, as it can strongly influence simulation dynamics

[36]. This potential function rapidly increases to large values

with even small deviations from the optimal target distance

dopt, which could lead to significant conflicts with other

forces in the system and make it harder for the simulation

to reach a satisfactory potential optimum. To address this

issue, ChromMovie incorporates several effective strategies

from previous studies. One such strategy is replacing parts of

the quadratic function with linear sections. This is done by

introducing a ”flat bottom” potential between 0.8 · dopt and

1.2 · dopt (similarly to [27]), or approximating the quadratic

function with a linear function for larger distances (e.g. [24]

or [27]). These modifications create a less stringent restraint,

allowing for a wider range of possible distances and a more

gradual increase in energy when the distance requirement is

not met during the simulation. Finally, if an upper limit on

the force is required, a Gaussian potential can also be used (as

in [36]). In ChromMovie, the choice between using Gaussian,

harmonic, or harmonic with linear end potentials is left to the

user.

Following the example of several previous methods (e.g.

[79, 27, 35, 38, 41]), ChromMovie is also a hierarchical model.

Starting at the lowest resolution, the simulation is performed

at each resolution specified by the user. After each round of

molecular dynamics (MD) simulation, the resulting structure

is interpolated so that the number of beads in the structure

matches the corresponding resolution. Naturally, the optimal

distances for all forces must be rescaled after each resolution

change and interpolation. In this case, we assumed that the

optimal distances provided by the user represent the distances

between beads at the final (and lowest) resolution. The optimal

distances for intermediate resolutions are determined using a

power-law relationship with a coefficient of 1/3 to ensure a

smooth transition between resolutions.

The final improvement pertains to the handling of single-

cell contact information. An enhancement to the classical MD

chromatin simulation involves tuning the optimal distance for

single-cell contacts according to the number of contacts in the

corresponding scHi-C map entry. This allows us to effectively

utilize the number of contacts between each pair of beads

without resorting to the binarization of contact matrices, as

seen in some previous methods [34]. Following the approach

outlined in [27], we set the optimal distance for contact loci

to be proportional to c−1/3 where c is the number of contacts

between two chromatin beads. Additionally, ChromMovie offers

an optional feature that discards ”violated” contacts—those for

which the 3D distance fails to converge to the desired range

within the simulation time.

Simulation
The MD simulation in ChromMovie is performed using a

standard Langevin integrator. The initial structure for the

simulation is a self-avoiding random walk. To avoid issues with

initial discordance and violations of the forces that connect

consecutive cellular beads, the same initial structure is applied

to all frames. The simulation is performed hierarchically,

meaning that after the simulation is over for a particular

resolution, the structure beads are interpolated in preparation

for the next phase of the simulation with a finer resolution. Each

simulation phase is parallelized to enhance computational time

and take advantage of GPU computing.

Avoiding local minima in simulations is a common challenge,

particularly in MD simulations and optimization tasks. In

our algorithm, the goal of a successful cellular trajectory

reconstruction is to satisfy the restraints on chromatin

backbone closeness, single-cell contacts, and the forces keeping

consecutive cellular frames together. The force counteracting

these restraints is the excluded volume (EV) force, which is

applied to all structure beads within a given frame (but not

between frames).

To enhance the algorithm’s ability to reach the potential

minimum without violating the imposed restraints, some

models (e.g. [41]) gradually reinforce the force coefficients

throughout the simulation. Based on this idea, we have

found that adjusting coefficients during simulation may help

the model satisfy single-cell restraints (see Results section).

ChromMovie allows users to enable or disable gradual

reinforcement of the coefficients across all four force field

components. The coefficient reinforcement scheme is similar to

the one used in [27], and is based on arctan function. During the

simulation, the initial coefficient kXX,init specified by the user

is multiplied by this function, starting with a small coefficient
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and gradually reaching the full value of kXX,init towards the

end, as described below:

kXX(f) = kXX,init

(
arctan(α(2f − 1))/π +

1

2

)
Here the f is the elapsed proportion of simulation and α is

the parameter controlling the steepness of the transition. In our

model we used α = 10 same as in [27].

Results

To evaluate the performance of our model, we conducted several

analyses using both in silico examples and real-life single-

cell contact data, incorporating cellular trajectory context

derived from [80]. The in silico studies enabled us to fine-tune

the hyperparameters of ChromMovie, while the real-life data

helped us demonstrate the algorithm’s effectiveness in studying

changes in single-cell chromatin conformation.

Benchmarking on in silico models
To validate our model, we first tested it on an artificial in

silico model. We chose a process involving the contraction

of a ring-like zigzag structure (see Fig. 2A) with a constant

distance between consecutive beads. Based on this ’ground

truth’ structure, we generated a number of contacts for each

frame, proportional to the 3D distance between loci, which

were then used as input for ChromMovie. This allowed us to

assess how well the model reconstructed the original structure

by comparing it to the modeled structures using the Root Mean

Square Deviation (RMSD) measure.

We initially used this approach to validate the core concept

of ChromMovie, which is to enhance general MD chromatin

reconstruction by using connections between frames. For this,

we performed 1, 000 runs of ChromMovie algorithm with

different hyperparameter sets. The coefficients for EV, BB, and

SC were kept constant at 103, while coefficient for FF was

drawn randomly on a logarithmic scale between 0 and 106. For

smaller values of kFF the model should generally behave as

an independent modeling strategy, similar to how most models

operate by treating each single-cell contact map separately.

The results of this analysis are shown in Fig. 2B. Each

point on the plot represents a single hierarchical ChromMovie

simulation. A Loess curve was fitted to the data, with a zoom-

in view provided in the top-left corner. The analysis revealed

a clear minimum RMSD around kFF ≈ 94.1. Notably, at

this FF coefficient value, the reconstruction was significantly

enhanced compared to the independent modeling with kFF ≈ 0.

Although this result was obtained from an in silico example,

it provides initial evidence that our approach can improve

MD chromatin reconstructions. It also suggests that the FF

coefficient should be set approximately one order of magnitude

smaller than the other force coefficients.

This result was obtained with all force potentials being

harmonic, along with linearization at larger distances. However,

alternative formulas for force potentials can also be used. Fig.

2C shows example set of forces that can be used. ChromMovie

also automatically computes a variety of metrics based on

the simulation results, which are summarized in PDF reports.

Fig. 2D showcases some of these metrics. These include the

structures’ Radius of Gyration (Rg) and the α coefficient from

the estimated contact probability scales curve P (s) ∝ s−α (as

defined in, for example, [13]), both of which are computed

across all structure frames and simulation time. Other metrics

include local loci variability, local violations of SC contacts,

mean violations of all four main force field components, as well

as general MD metrics such as energy and temperature during

the simulation.

We hypothesize that the local violation detected by

ChromMovie (Fig. 2D bottom-right corner) could help identify

loci with problematic local topology and knotting. This could

also be useful in studies exploring the role of topoisomerases

in organizing mitotic chromosomes [81]. However, further

investigation is required.

The validity of gradually increasing force coefficients

was also tested. In this study, we performed 1, 000

hierarchical ChromMovie simulations, with force coefficients

either gradually increasing or remaining constant. The results

of this analysis are presented in Fig. 2E. We successfully

confirmed that applying a gradual increase of the EV coefficient

during the simulation significantly improved reconstruction

reliability, as measured by the sum of single-cell contact

violations (distances between the 3D simulation results and

the upper bound for the flat-bottom of the SC potential).

This finding supports similar claims made in previous studies

[27, 41], where adding a gradual increase of the EV coefficient

(”EV” group) significantly reduced contact violations compared

to constant coefficients (”constant” group). However, the

effectiveness of this approach was dependent on the specific

set of force hyperparameters, and the gradual increase did

not consistently enhance the simulation results. Moreover, we

were unable to validate the efficacy of a gradual increase for

other forces, despite its application in certain studies [41]. We

conclude that, in the case of ChromMovie, the overall success of

this approach may be context-dependent and is not guaranteed

to improve every simulation scenario.

Benchmarking on ChAIR dataset
ChAIR [80] is a high-throughput method that simultaneously

measures gene expression, chromatin accessibility, and

chromatin interactions in single cells. By leveraging a

microfluidic platform, it can analyze 6, 000–8, 000 cells in a

single reaction, providing insights into the 3D epigenomic

mechanisms that regulate transcription. Cells with similar

transcriptomic profiles during the cell cycle or maturation

process were grouped into metacells with same amount of

chromatin contacts to increase data volume and reduce

stochasticity (see Fig. 3A and B). This dataset was selected

to validate our model using real single-cell contact data with

specific information about a particular cellular process, namely,

cell cycle progression. The dataset comprised 102 metacells,

representing the progression through the interphase trajectory

phases of the cell cycle, specifically G1, S, and G2M.

Based on the contact data derived from these metacells (see

Fig. 3C and D), we generated three-dimensional chromatin

structure models using both ChromMovie and NucDynamics.

For both algorithms, hierarchical modeling was applied with a

consistent final resolution of 100kb. Our analysis revealed that

both methods were capable of reconstructing the chromosome

compaction pattern observed during cell cycle progression, as

described in previous studies [65], from early G1 to late G2m

phase (Fig. 3G). Chromatin compaction was quantified using

the mean radius of gyration of overlapping structural bead

segments. Notably, while both methods successfully captured

cell cycle dynamics, the structures produced by ChromMovie

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 21, 2025. ; https://doi.org/10.1101/2025.05.16.654550doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.16.654550
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 Krzysztof H. Banecki et al.

A
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E

Fig. 2. ChromMovie in silico analysis. (A) In silico example of a ring-forming contracting zigzag structure used for initial validation. (B) Results

of 1, 000 runs of the ChromMovie simulation on the in silico model. Root Mean Square Deviation (RMSD) was used to compare with the original

structure. The top-right corner shows a zoomed-in view of the fitted Loess curve, indicating a clear minimum. (C) Examples of the force potentials

used in ChromMovie. From top to bottom: harmonic excluded volume (EV) potential, harmonic backbone (BB) potential with linear approximation

for larger distances, Gaussian single-cell (SC) potential, and harmonic frame-force (FF) potential. (D) Selected diagnostic plots from the ChromMovie

reporter. The mean radius of gyration indicates greater compaction for frames closer to the end, consistent with the original structure. P (s) curve allows

for analysis of the contact frequency distribution. Local loci variability helps visualize regions of the structure that experience the greatest changes

during the studied cellular process. (E) Single-cell contact violations across different ChromMovie runs, comparing cases with the gradual increase of

the respective force coefficient turned on or kept constant.

exhibited considerably lower variability, which aligns with the

expected regularizing effect of the frame forces.

Furthermore, we evaluated whether ChromMovie could

not only accurately recreate cell cycle progression dynamics,

but also achieve smoother transitions and greater similarity

between consecutive frames, thereby producing a more

biologically relevant evolution of 3D chromatin structure.

To this end, the RMSD was computed for all frame pairs

in both ChromMovie and NucDynamics structures. The

mean RMSD differences were used to assess the degree

of metacell displacement between consecutive frames. This

analysis provided insights into the correlation of each frame’s

structure within the overall ”movie” of cell cycle progression.

The results demonstrated that the ChromMovie-generated

structures exhibited significantly higher similarity across

frames compared to those obtained from the independent

NucDynamics simulations, thereby validating the robustness of

our approach.

Spatial modeling of genomic features in single cells
Having confirmed that ChromMovie can successfully reproduce

key chromatin dynamics associated with cell cycle progression,

as reported in previous studies, and does so in a smoother

and more continuous manner, we next aimed to evaluate

whether the method can also capture other established features

of nuclear chromatin compaction. To this end, we tested

ChromMovie using diploid cell maturation contact data from

[80], derived from vascular mouse brain tissue. The mouse cells

were analyzed at 2, 11, 95, 365 and 720 days, resulting in

five distinct frames for the ChromMovie simulation. Since the

original dataset did not exclusively represent a single cell type,

we subsampled the contact data to 5, 000 contacts per frame to

ensure consistency. This dataset allowed us to assess whether

ChromMovie could recapitulate well-known phenomena such as

the emergence of chromosomal territories within the nucleus

and the segregation of chromatin compartments.

Figure 4A shows an example frame of the results of

this analysis with distinct chromosomal territories marked

by contrasting colors. To check whether the chromosomal

territories pattern correspond to those reported by the
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Fig. 3. Validation of ChromMovie using ChAIR data. (A) Visualization of single-cell ChAIR data for the k562 cell line using 2D principal component

analysis (PCA) (see [80]). (B) The same single-cell data with metacells highlighted as alternating stripes to indicate grouping. (C) and (D) Representative

single-cell contact maps for chromosome 12, illustrating a more relaxed chromatin state during the S phase (C) and a more condensed state in the G2M

phase (D). (E) and (F) Corresponding 3D chromatin structures generated by ChromMovie for the contact maps shown in (C) and (D), respectively. (G)

The mean radius of gyration across all 102 metacells throughout cell cycle progression, comparing ChromMovie and NucDynamics. (H) Mean RMSD

values plotted as a function of frame shifts, assessing structural consistency between consecutive frames in both ChromMovie and NucDynamics models.

previous studies we estimated the degree of inter-chromosomal

intermingling. We followed the definition of intermingling

as defined in [38] as the percentage of chromosome beads

surrounded by at least four other beads from a different

chromosome within a threshold distance of 2 bead diameters.

In our case, the bead diameter can be defined as the optimal

distance of the backbone force dBB described previously.

The results of this analysis are summarized in Figure 4B.

We observed intermingling values ranging from approximately

5% to 20%, consistent with previously reported ranges [27, 38].

However, we note that some chromosomes in our diploid model

exhibited a comparatively higher degree of intermingling. Using

the same simulation, we also demonstrated that ChromMovie is

capable of capturing key features of compartment segregation.

Specifically, we observed that the transcriptionally active

compartments A preferentially localize toward the nuclear

center, while the B compartments tend to occupy the peripheral

regions of the nucleus (Figure 4C and D).

Additionally, ChAIR data provide a unique opportunity

to simultaneously analyze single-cell contact data along

with transcriptomic (RNA-seq) and chromatin accessibility

(ATAC-seq) information. To assess whether our computational

framework can generate meaningful spatial distributions for

these genomic features, we conducted an integrative analysis

using a subset of 15 Patski mouse cells. These cells were selected

to meet the following criteria: (1) each contained at least 6, 000

chromatin contacts; (2) all three interphase stages (G1, S, and

G2/M) were equally represented with five cells each; and (3) the

selected cells formed a closed ring of consecutive points on the

PCA plot in Figure 3 A, representing a continuous trajectory

through the cell cycle.

We performed a ChromMovie simulation at 200kb resolution

using 15 frames, each corresponding to one of the selected

cells, thereby modeling a full cycle of cell progression. For each

simulation frame, we computed the average number of single-

cell RNA-seq reads mapped to chromatin beads as a function

of their radial distance from the center of mass of the nucleus.

The same analysis was repeated for the ATAC-seq signal.

We observed that both RNA-seq and ATAC-seq signals were

most concentrated at close to intermediate radial distances

from the nuclear center (5 − 20 bead diameters), with

the signal intensity gradually decreasing at larger distances

(Figure 4E and F). These observations align with established

biological knowledge: the nuclear periphery is typically

associated with densely packed, transcriptionally inactive

heterochromatin, whereas the nuclear interior is enriched with

open, transcriptionally active euchromatin. Consequently, both

higher ATAC-seq signal and RNA-seq read density are expected

to localize closer to the nucleus center, reflecting regions of

increased chromatin accessibility and active gene expression.

Validation with 3D-FISH
Following the example of several previous studies [36, 38, 39],

we used the 3D-FISH dataset from Beagrie et al. (2017) [19]

as an independent means of validating our methodology. This

dataset includes eight pairs of fluorescent probes located on

chromosomes 3 and 11, with each pair associated with a set

of spatial distance measurements. For validation purposes, the

median value of these distances was used, serving as a ground

truth reference for comparison with our modeled chromatin

structures. Although 3D-FISH data were obtained from mouse

embryonic stem cells (mES), whereas contact data were derived

from the Patski mouse fibroblast cell line, both datasets used

for this validation originate from the mouse embryo.

We performed this validation using the same 15 mouse cells

representing cell cycle progression as described in the previous

section. Prior studies have commonly assessed model accuracy

by computing the Pearson correlation between the median
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Fig. 4. Analysis of ChromMovie-derived structural features using single-cell data. (A) ChromMovie reconstruction of a single-cell, whole-genome diploid

mouse nucleus. Individual chromosomes are shown in distinct colors to visualize chromosomal territories. (B) Quantification of inter-chromosomal

intermingling based on the structure in (A). Maternal chromosomes are labeled with the suffix “-M” and paternal chromosomes with “-P”. (C)

ChromMovie model of the same cell highlighting chromatin compartmentalization. Compartment A (red) and compartment B (blue) are visualized in a

central nuclear cross-section. Grey segments represent regions with unknown compartment (mostly centromeres and telomeres). (D) Radial distribution

of compartments A and B based on the model in (C), demonstrating preferential localization of active (A) and inactive (B) regions within the nuclear

volume. (E) Radial distribution of RNA-seq signal from the ChAIR dataset, showing that transcriptionally active regions are enriched closer to the

nuclear center. (F) Radial distribution of ATAC-seq signal from the same dataset, indicating increased chromatin accessibility near the nuclear interior.

(G) Validation of ChromMovie structural models using 3D-FISH probe data from Beagrie et al. (2017) [19]. Each point represents a unique combination

of cell, frame force coefficient, and the corresponding quantile (0.50, 0.75, or 0.95) of the correlation distribution between modeled and experimental

distances. Loess trend lines are shown for each quantile to highlight the effect of frame force regularization.

3D-FISH distances and the corresponding Euclidean distances

derived from computationally reconstructed chromatin structures.

However, since our data are diploid, we adapted this procedure

to account for the presence of both maternal and paternal

chromosome copies. Rather than computing a single Pearson

correlation, we evaluated all possible pairwise combinations

of maternal and paternal chromosome copies for each probe

pair. For each combination, we computed a Pearson correlation,
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resulting in a distribution of correlation values for each probe

pair.

From these distributions, we extracted quantiles at the

0.5, 0.75, and 0.95 levels to assess model performance.

While the specific chromosome pairing observed in the

3D-FISH experiment remains unknown, a more accurate

chromatin model should exhibit increased values across these

correlation quantiles, indicating stronger concordance with the

experimentally derived spatial constraints.

We employed this approach to validate the core concept

underlying ChromMovie, namely, the inclusion of an additional

force that connects consecutive frames in the simulation. Using

the aforementioned 15 mouse cells, we performed ChromMovie

simulations across 100 different values of the frame force

coefficient, ranging from 10−3 to 103, to determine whether this

parameter could improve the concordance with 3D-FISH data

and, therefore, enhance the accuracy of chromatin structure

reconstruction.

Figure 4G presents the three quantiles (q = 0.5, q =

0.75, q = 0.95) of the correlation distributions between

modeled distances and the experimental FISH probe distances,

plotted against varying frame force coefficients. Across all

quantiles, we observed that low frame force values—where

the force is effectively negligible—consistently resulted in

weaker correlations with the FISH data. In contrast, higher

frame force coefficients yielded stronger correlations, with the

trend plateauing around 102, which is a value comparable

to the coefficients of other force field components. To assess

statistical significance, we performed Wilcoxon rank-sum tests

comparing quantile values for simulations with kFF < 1

versus those with kFF ≥ 1. All quantiles yielded highly

significant p-values (p < 10−10), confirming that the inclusion

of the frame force significantly improves model performance.

These results support the conclusion that applying temporal

regularization across single-cell simulations, by linking frames,

can meaningfully enhance the fidelity of chromatin structure

reconstruction, as measured by agreement with independent

3D-FISH data.

Computational time
We evaluated the computational time for the GPU simulation of

the whole genome ChromMovie simulation of the diploid mouse

genome from [80]. Figure 5 shows the results of this analysis

with respect to the number of cells used for the simulation

and a number of resolutions: 5Mb, 2Mb, 500kb and 200kb. All

cells were selected so that their total number of contacts was

around 2000(±30). The calculations were performed on a single

NVIDIA A100 GPU. We note that on average 2-fold increase of

the simulation resolution and 2-fold increase in the number of

cells in the simulation result in ∼ 4-fold and ∼ 2.5-fold increase

in computational time, respectively.

Discussion

The challenge of reconstructing chromatin folding at the

chromosome level is a critical issue in biology and

bioinformatics [82]. Significant attention has been given to

deciphering the 3D chromatin structure at single-cell resolution,

which reveals patterns related to the cell cycle and cell

maturation [65]. In this work, we present ChromMovie:

a comprehensive tool designed for studying 3D chromatin

structures at the chromosome level throughout any linear

cellular process, such as the cell cycle or cell maturation.

While some methods, like HSA [83], integrate multiple Hi-

C data tracks, they primarily focus on integrating data from

different restriction enzymes, rather than incorporating single-

cell information within the context of a specific cellular process.

This focus on cellular process context is a core innovation

of ChromMovie, and we consider it a novel contribution to

the field. We believe that our software will be valuable for

researchers studying the changes in 3D chromatin structure

during various cellular processes.

We demonstrated that the frame force, a novel feature of our

method compared to other approaches, improves the quality

of chromatin structure reconstruction, both in the in silico

studies and in real single-cell data. Additionally, we showed

that ChromMovie effectively recreates chromosome compaction

during cell cycle progression in a manner comparable

to existing methods. Furthermore, we demonstrated that

ChromMovie achieves reduced variance in single-cell structures,

potentially capturing more biologically meaningful chromatin

conformational changes.

In creating ChromMovie, we drew inspiration from various

methods for 3D chromatin structure reconstruction that were

developed previously [42]. A particularly influential model for

us was NucDynamics [27], which we emulated in several ways.

In our algorithm, we aimed to incorporate the best practices

from earlier models that provided valuable insights into single-

cell chromatin dynamics. These practices include hierarchical

modeling, manipulation of the excluded volume force, contact

force proportional to the number of contacts in a bin, and the

use of different formulas for attractive forces with linearization

for long distances. ChromMovie represents an attempt to

combine these established practices from the scHi-C modeling

field into a novel idea of simultaneous scHi-C modeling.

We also believe that both the fields of 3D chromatin

modeling from single-cell Hi-C data (or from 3D contact

data in general) and cellular trajectory inference methods can

benefit from the development of joint models that leverage

the strengths of both fields. To the best of our knowledge,

ChromMovie is the first attempt at such a fusion. By developing

ChromMovie, we aim to contribute to a more holistic approach

to modeling chromatin changes in the context of the specific

cellular processes they undergo. Finally, ChromMovie was

designed to work with single-cell Hi-C data that have already

been ordered in a linear fashion. While this linear assumption

is suitable for modeling processes like cell maturation, it may

not capture the full scope of the spatio-temporal relationships

between cells engaged in various cellular processes. We believe

that, in the future, methods that incorporate a broader range

of cellular trajectory topologies will be valuable to researchers

studying chromatin structure dynamics at the single-cell level.

Data and code availability

The source code of the method is publicly available on Github:

https://github.com/SFGLab/ChromMovie.

The compartments used in this study were taken from the

4D Nucleome Data Portal (https://data.4dnucleome.org/) and

are freely accessible under the accession code 4DNFI24OBK5V.

Visualizations of in silico and ChromMovie structures in

Figure 1 A, C, D, E, Figure 2 A, Figure 3 E, F and Figure

4 A, C were performed using the UCSF Chimera software [84].
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Fig. 5. Benchmarking of ChromMovie computational time on a single NVIDIA A100 GPU. For each number of cells a multi-resolution simulation was

conducted for resolutions 5Mb, 2Mb, 500kb and 200kb.

Competing interests

No competing interest is declared.

Author contributions statement

K.H.B. and D.P. conceived the idea of the study. K.H.B.

performed the experiments, implemented the method, and

conducted the experiments. K.H.B. and D.P. analyzed the

results. K.H.B., H.C., Y.R. and D.P. wrote and reviewed the

manuscript.

Acknowledgments

Research was funded by Warsaw University of Technology

within the Excellence Initiative: Research University (IDUB)

programme. This work has been supported by Polish National

Science Centre (2020/37/B/NZ2/03757). Computations were

performed thanks to the Laboratory of Bioinformatics

and Computational Genomics, Faculty of Mathematics and

Information Science, Warsaw University of Technology using

Artificial Intelligence HPC platform financed by Polish

Ministry of Science and Higher Education (decision no.

7054/IA/SP/2020 of 2020-08-28). The work was co-supported

by National Institute of Health USA 4DNucleome grant

1U54DK107967-01 and “Nucleome Positioning System for

Spatiotemporal Genome Organization and Regulation”.

References

1. Ivana Jerkovic and Giacomo Cavalli. Understanding 3d

genome organization by multidisciplinary methods. Nature

Reviews Molecular Cell Biology, 22:511–528, 2021.

2. Cremer T, Cremer C, Schneider T, Baumann H, Hens L,

and Kirsch-Volders M. Analysis of chromosome positions

in the interphase nucleus of chinese hamster cells by laser-

uv-microirradiation experiments. Hum Genet., 62:201–209,

1982.
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