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Ebola virus disease (EVD), caused by Ebola viruses, resulted in more than 11500 deaths

according to a recent 2018 WHO report. With mortality rates up to 90%, it is nowadays

one of the most deadly infectious diseases. However, no Food and Drug Administration‐
approved Ebola drugs or vaccines are available yet with the mainstay of therapy being

supportive care. The high fatality rate and absence of effective treatment or vaccination

make Ebola virus a category‐A biothreat pathogen. Fortunately, a series of investigational

countermeasures have been developed to control and prevent this global threat. This

review summarizes the recent therapeutic advances and ongoing research progress from

research and development to clinical trials in the development of small‐molecule antiviral

drugs, small‐interference RNA molecules, phosphorodiamidate morpholino oligomers, full‐
length monoclonal antibodies, and vaccines. Moreover, difficulties are highlighted in the

search for effective countermeasures against EVD with additional focus on the interplay

between available in silico prediction methods and their evidenced potential in antiviral

drug discovery.
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1 | INTRODUCTION

The Filoviridae family consists of three genera, namely

Marburgvirus, Cuevavirus, and Ebolavirus (EBOV).1 The Ebolavirus

includes five virus species included Sudan ebolavirus, Tai Forest

ebolavirus, Bundibugyo ebolavirus, Reston ebolavirus, and Zaire

ebolavirus.2,3

High mortality rates associated with Ebola virus disease (EVD)

outbreaks in humans illustrate their extreme vulnerability as host for

filoviruses. Bodily fluids of an infected animal or individual serve as a

mode of transmission, through exposure to cuts, wounds, and mucous

membranes, direct or accidental injection,4-7 and recently suspected

cases of sexual transmission.8,9 During disease prognosis, macro-

phages, monocytes, and dendritic cells are generally infected first,

which later progressed to major cellular targets.10-13 The action of

viral proteins (VP24 and VP35) causes suppression of type‐I
interferon resulting in dysregulation of the immune response and

activation of T‐cells as result of EBOV infection,14,15 with various

disease manifestations.16-19

Among clinical signs, initial nonspecific symptoms arise (malaise,

fever, and gastrointestinal infection19,20 followed by the state of

shock, severe uveitis, vision loss,7,21 organ failure, and ultimately

death.22,23 Disease progression towards the EBOV disease accounts

for 90% mortality rate in humans.24-27 Due to hypovolemic shock and

multiorgan damage, death typically occurs between 6 and 16 days

after the chronic symptoms of hemorrhagic illness.28

EVD outbreaks tend to rely on supportive care measures with

fluid and electrolyte replacement. During the 2014‐2016 outbreak

(which resulted in 28 616 infections and 11 310 deaths), a coordi-

nated and collaborative global effort with some stakeholders and

agencies have been carried out resulting in some vaccine candidates

and therapeutics capable of protecting high‐risk populations with

unprecedented efficiency. In 2018, the Ministry of Heath of

Democratic Republic of Congo (DRC) reported two consecutive
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EVD outbreaks, of which the first on 8 May (May‐June 2018

Equateur province DRC outbreak) and the second on 1 August

(August‐present, 2018, Kivu province DRC outbreak). The first

outbreak resulted in 54 EVD cases (38 confirmed and 16 probable)

and 33 deaths (overall case‐fatality ratio of 61%) as of 24 July, 2018

(declared the end of this outbreak),29 while the latter is ongoing,

which includes 238 cases (203 confirmed and 35 probable) and 155

deaths resulting in a case‐fatality rate of 65.1% (as of 21 October,

2018).30 Preclinical efforts toward specific EBOV countermeasures

have been enduring for years with first treatment and vaccine clinical

trials conducted during the 2013 to 2016 EBOV outbreak in

West‐Africa.31-37 During the DRC outbreaks, the countermeasures

were evaluated in West‐Africa EVD outbreak and demonstrated

their clinical efficacy. In addition, a small number of studies (case

reports) exists for the experi countermeasures has been enduring

mental use of anti‐Ebola antiviral and vaccine leads.38-41 EBOV

vaccine development has already been covered in previously

published reviews.34,42-45 In brief, the recent update includes the

development of replication‐competent rVSV‐ZEBOV (rVSV) used in

May‐June 2018 Equateur DRC outbreak in a ring vaccination trial

(Phase III; NCT03161366), which proved to be well tolerated with

improved efficacy and safety.35,36 Currently, rVSV is being investi-

gated along with other investigational therapeutics in the ongoing

Kivu DRC outbreak (Phase II; NCT03719586). A second update

includes Ad26‐ZEBOV/MVA‐BN‐Filo prime‐boost vaccine evidenced

as safe and well tolerated.46,47 Both rVSV and Ad26‐ZEBOV/MVA‐
BN‐Filo prime‐boost vaccine have been evaluated in Phases I, II, and

III clinical trials. Other nonreplicating vaccines are virus‐vector‐based
evidenced to be highly effective in non‐human primates (NHPs).48-53

The current study is focused on the therapeutic advancement

towards EVD and the challenges encountered.

1.1 | Biological targets of EBOV

Identification of suitable biological drug targets is the primary step

towards therapeutic development.54,55 Validated through a

combination of genetic,56 biochemical,57,58 structural, and compu-

tational strategies,54,55 a variety of drug targets have been

identified in both host and pathogen.59

Encased in a lipid envelope, filoviruses are filamentous in shape.60

Linear, nonsegmented, negative‐sense single‐stranded RNA encodes

a 19‐kb genome containing the genetic information for seven

structural proteins and considered as potential drug targets, namely

transcription activator VP30, polymerase cofactor VP35, matrix

proteins VP40 and VP24, nucleoprotein (NP), glycoprotein (GP), and

RNA‐dependent RNA polymerase (L).61,62 The structure and function

of these proteins aided in deciphering the molecular mechanisms of

filovirus lifecycle and have been explanatorily reviewed in a series of

three reviews by Martin et al., describing aspects of filovirus entry,63

replication cycle,64 assembly, and budding.65 Briefly, GP, a hetero-

dimeric complex of GP1,2 surface protein, orchestrates viral entry

into the host cell and participates in virus egress.66 Due to the major

role of GP1,2 in viral entry, numerous approaches targeting the entry

process have been explored to block EBOV replication at an early

stage, namely immune‐based therapies,67-70 peptide‐based antiviral

molecules, a broad range of small molecules, reviewed by Rhein and

Maury,71 and more specific entry inhibitors targeting the fusion

events characterized by the GP2/NPC1 (Niemann‐Pick C1) inter-

action.72,73

After entry by macropinocytosis, replication and transcription

cycles involve the releasing of viral nucleocapsids into the host cell

cytoplasm, resulting in the synthesis of new viral proteins and

genomes. The whole process of assembly and budding is coordi-

nated by NP, VP24, and VP40, and enhanced by GP.74 NP binds to

the viral RNA and creates RNP complex with polymerase L and viral

proteins VP24, VP30, and VP35.75 VP30 and NP play an important

role in the RNA‐binding activity.75 The multifunctional protein,

VP35, suppresses host‐innate immunity and has been found to be

involved in transcription/replication processes together with

nucleocapsid assembly.76,77 The interactions between these

proteins (ie, NP‐NP and NP‐VP35) are essential to regulate the

formation of the EBOV replication complex for efficient transcrip-

tion/replication. Blocking this nucleocapsid formation by protein‐
protein interaction inhibitors can lead to potential inhibition of

EBOV. for example, VP35‐derived peptide (first identified NP

ligand) that specifically binds to NP, blocks NP oligomerization

and causes the release of RNA from NP‐RNA complex.78,79 Other

studies identified 18β‐glycyrrhetinic acid and licochalcone‐A80 to

potentially disrupt the association of NP‐RNA complexes, apta-

mers,81 pyrrolidinone compounds,82 and recently MCCB4

(ene‐thiazolidinedione group‐containing compound),83 that specifi-

cally lead to specific VP35‐NP interaction. VP24 functions as

nucleocapsid maturation factor84 and transcription/replication

modulator.85 Additionally, it has been identified as a target for

protein‐protein interaction inhibitors, namely for a macrocyclic

peptide inhibitor VP24‐KPNA5 (karyopherin α5) which specifically

disrupt VP24‐KPNA interaction.86 VP40 is a matrix protein which

coordinates with VP24 toward viral assembly, budding,87 and

regulation of viral transcription.88 All structural/functional features

and recent advances for these crucial regulatory proteins, essential

in viral messenger RNA (mRNA) synthesis and genome replication,

have been critically reviewed64 and therefore constitute key targets

for designing EBOV‐specific drugs.

1.2 | Current experimental therapeutics
against EVD

Key strategies recognized to combat EBOV include: (i) directly

targeting the virus, (ii) modulating the host factors or immune

response, and (iii) disease management. Critically targeting the

viral lifecycle is among the most popular strategies for EBOV

therapeutics.61,63,89-91 This is done either by targeting the

initial binding and/or entry of the virus into the host cells or the

later viral replication and packaging. EBOV antiviral compounds

mainly encompass small molecules, antisense therapies, and

immunotherapeutic drugs.
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Current treatment of EVD is centered upon modulating coagulation

and maintaining oxygen levels in Ebola patients.13,92-94 Because of these

therapeutic interventions, sustenance and recovery have been reported.

However, significant improvement might be observed as a result of an

adequate level of support care.27,92,93,95,96 To date, no commercial

vaccines or specific therapies are available for EBOV. However, various

studies have been reported that explain the comprehensive develop-

ment of vaccines,11,42,43,61 small‐molecule inhibitors,90,91,97-103 and

repurposed Food and Drug Administration (FDA) approved drugs

against Ebola.90,100,104-110 Table 1 provides an overview of anti‐EBOV

compounds and their level of efficacy, reported in either IC50 or EC50, in

vitro assays against EBOV, clinical status, and observational studies.

1.3 | Small molecules: direct EBOV inhibitors

Development of potent small molecules directed against the

RNA‐dependent RNA polymerase L required for viral replication is

the most promising therapeutics. The three most potent nucleotide

viral polymerase inhibitors, GS‐5734, BCX4430, and favipiravir

(T‐705), have demonstrated in vitro and animal efficacy in EBOV‐
infected mice and NHPs. They have reported antiviral effects due to

intracellular conversion to their corresponding nucleoside tripho-

sphate for incorporation into the viral genome and inhibition of viral

polymerase.

By the end of the West‐Africa EBOV outbreak, GS‐5734 clearly

indicated 100% protection of rhesus monkeys following lethal EBOV

challenge113 and an improved highly potent in vitro efficacy against

Mayinga and Makona strains as compared to favipiravir.112 Moreover,

GS‐5734 has been recently administered for the first time to a newborn

baby.127 BCX4430 has been tested against for its broad‐spectrum
inhibition of various viruses including, arenaviruses, bunyaviruses,

coronaviruses, paramyxoviruses, and flaviviruses.89,128,129 Additionally,

animal survival efficacy accounted for 90% to 100% in mice128 and 67%

to 100% in rhesus monkeys using increased doses of BCX4430.111

Favipiravir (T‐705) remained a potential anti‐EBOV candidate during

the West‐Africa outbreak94,130 and has reported up to 100% survival

rate in EBOV‐infected mice even with the lowest oral dose of 37.5mg/

kg once daily. In comparison, NHP resulted in 17% to 50% survival

rate.94,115

Among various FDA screens, multiple compounds including

amodiaquine, diphenylpyraline, ketotifen, diphenoxylate were

reported to inhibit EBOV replication, while others including,

verapamil, dronedarone, sertraline, toremifene, chloroquine,

teicoplanin, and amiodarone were considered EBOV entry inhibi-

tors.90,100,104,110 Very recently, tilorone (EC50 = 0.23 μM) was

reported to be the most potent small‐molecule inhibitor with a

single‐daily dose of 25 and 50 mg/kg intraperitoneal and proved

efficacious in protecting 90% of mice from a lethal EBOV

challenge.116 Some of these inhibitors are shown in Figure 1.

Other studies include the identification of coumarin‐based anti-

histamine‐like molecules,131 benzoquinoline compounds (SW456

compound reported to be the most potent compound in the

infectious EBOV assay, IC50 = 0.5 μM),132 ellagic acid (IC50 = 1.4 μ

M),133 and vindesine (IC50 = 0.34 μM),134 that proved to have

potential EBOV inhibition.

1.4 | Immunotherapeutics and other treatments

Direct antivirals preventing viral entry incorporate large numbers

of immune‐therapeutics under development.64,98,135 EVD treat-

ment has recently been linked with the modulation of the immune

system. Cytokines and chemokines play an immunomodulatory

role during EBOV infection promote viral clearance by an

enhanced immune response. However, an overwhelming

inflammatory cytokine release can cause an undesirable effect.

Therefore, numerous research groups have currently identified

and studied a variety of anti‐Ebola monoclonal antibodies (mAbs),

leading to the development of several commercialized mAb

cocktails as recently reviewed.136

EBOV GP constitutes a prime target for therapeutic antibodies.

ZMAb, a cocktail of three mouse mAbs (1H3, 2G4, and 4G7), resulted

in 50% to 100% protection,67,69 while MB‐003, a cocktail of three

mouse‐human chimeric mAbs (13C6, 13F6, and 6D8), demonstrated

67% protection after EBOV (Kikwit strain) infection in rhesus

monkeys.68 To identify the most protective combination, ZMapp

was introduced as a combination of three EBOV‐GP mAbs (13C6,

2G4, and 4G7) and demonstrated 100% protection for rhesus

monkeys.70 The functional mechanism of binding of ZMapp has been

described for its neutralizing activity targeting the GP base and

glycan cap.137 Further studies reported the further optimization of

ZMapp against NHPs by using two chimeric mAbs (13C6 and 2G4),

designated as MIL77, which protected all EBOV (Makona strain)

infected rhesus monkeys.138

Very recently, adeno‐associated virus‐mediated mAb 5D2 or 7C9

delivers 100% protection against mouse‐adapted EBOV infection,

whereas neutralizing mAb 2G4 revealed 83% protection.139 Also, a

coformulated cocktails REGN3470‐3471‐3479 (three human 3‐mAb

cocktails REGN3470, REGN3471, and REGN3479 in 1:1:1 ratio) is

currently being evaluated and proved safe and well tolerated with no

observed immunogenicity after a randomized, first‐in‐human Phase I

clinical trial (NCT002777151).37

Other therapeutics include the nucleic acid‐based inhibitors with

phosphorodiamidate morpholino oligomers (PMOs) and small‐inter-
ference RNAs (siRNAs), involved in promoting degradation of mRNA

transcripts and constitute two essential classes of antisense

therapies.102,140,141 Both compounds target vital proteins involved

in EBOV transcription/translation processes VP24, VP35, and viral

polymerase L. The development underlying the modification of PMOs

and siRNA has been elaborated142 and recently reviewed.143 PMO

combination, as in AVI‐6002 (AVI‐7537 and AVI‐7539), has shown

significant efficacy and safety in NHP126 when directed against both

VP35/VP24 (63% protection) and VP24 alone (75% protection)126

without further development. TKM‐100803, a lipid siRNA nanopar-

ticle product that targets viral RNA polymerase L, VP35, and VP24

demonstrated no survival advantage after Phase II single‐arm trial122

without further development of TKM‐EBOV modifications.

MIRZA ET AL. | 2031



T
A
B
L
E

1
E
b
o
la

vi
ru
s
(E
B
O
V
)
d
ru
g
ca
n
d
id
at
es
,t
h
ei
r
ef
fi
ca
ci
es

(E
C
5
0
o
r
IC

5
0
)
an

d
cl
in
ic
al

st
at
u
s

C
o
m
p
o
u
n
d
/d
ru
g

E
B
O
V

ta
rg
et

an
d
d
es
cr
ip
ti
o
n

E
B
O
V

cl
in
ic
al

tr
ia
l
p
h
as
e

R
es
u
lt
s/
st
at
u
s

E
b
o
la

p
re
cl
in
ic
al

d
at
a

In
vi
tr
o
ef
fi
ca
cy

d
at
a

A
n
im

al
ef
fi
ca
cy

d
at
a

B
C
X
4
4
3
0

A
n
o
ve

la
d
en

o
si
n
e
n
u
cl
eo

ti
d
e
an

al
o
gu

e
th
at

in
h
ib
it
s
R
N
A

p
o
ly
m
er
as
e
L
ac
ti
vi
ty

b
y

in
co

rp
o
ra
ti
n
g
in
to

n
ew

vi
ra
l
R
N
A

ch
ai
n
s

an
d
ca
u
se

ch
ai
n
te
rm

in
at
io
n

P
h
as
e
I
(N

C
T
0
2
3
1
9
7
7
2
)

P
h
as
e
I
co

m
p
le
te
;
ge

n
er
al
ly

sa
fe

an
d
w
el
l
to
le
ra
te
d
u
p
to

1
0
m
g/
kg

d
ai
ly

fo
r
7
d

E
C
5
0
:
1
1
.8
μM

M
ic
e:

9
0
%

su
rv
iv
al

at
1
5
0
m
g/
kg

B
ID

P
O
;

E
C
9
0
:
2
5
.4
μM

(I
M

K
ik
w
it
)

1
0
0
%

su
rv
iv
al

at
1
5
0
m
g/
kg

B
ID

IM
;

N
H
P
:
1
0
0
%

su
rv
iv
al

at
2
5
m
g/
kg

B
ID

;
d
ay

s
0
‐1
4
;

E
C
5
0
:3
.4
μM

1
0
0
%

su
rv
iv
al

ra
te

at
1
0
0
m
g/
kg

lo
ad

in
g
d
o
se

B
ID

;
d
ay

s
2
‐3
;

E
C
9
0
:
1
0
.5
μM

(B
o
n
if
ac
e)

8
9

6
7
%

su
rv
iv
al

at
m
ai
n
te
n
an

ce
d
o
se

o
f
2
5
m
g/
kg

B
ID

ti
ll
d
ay

s
3
‐1
7
1
1
1

G
S‐
5
7
3
4

a
n
o
ve

l
m
o
n
o
p
h
o
sp
h
o
ra
m
id
at
e
p
ro
d
ru
g
o
f

ad
en

o
si
n
e
an

al
o
gu

es
,i
t
se
le
ct
iv
el
y
in
h
ib
it
s

E
B
O
V

re
p
lic
at
io
n
b
y
ta
rg
et
in
g
it
s
R
N
A
‐

d
ep

en
d
en

t
R
N
A
p
o
ly
m
er
as
e
an

d
co

n
ve

rt
s

it
in
to

ac
ti
ve

tr
ip
h
o
sp
h
at
e
n
u
cl
eo

ti
d
es

in

ef
fi
ci
en

t
ce
lls

P
h
as
e
II
(N

C
T
0
2
8
1
8
5
8
2
)

P
h
as
e
I
co

m
p
le
te
;
P
h
as
e
II
,

gi
ve

n
in
tr
av

en
o
u
sl
y
in

su
rv
iv
o
rs

w
it
h
vi
ra
l

p
er
se
ve

ra
n
ce

in
th
ei
r
se
m
en

E
C
5
0
re
p
lic
at
io
n
:

0
.0
2
1
‐0
.0
6
6
μM

N
H
P
:
1
0
0
%

p
ro
te
ct
io
n
at

1
0
m
g/
kg

IV
d
ay

s
3
‐1
5
(e
xt
en

si
ve

ly

su
m
m
ar
iz
ed

in
W

ar
re
n
et

al
1
1
3

E
C
9
0
:
0
.0
5
3
‐

0
.2
0
3
μM

(M
ay

in
ga

)

E
C
5
0
:
0
.0
1
4
μM

E
C
9
0
:
0
.0
4
5
μM

(M
ak

o
n
a)

V
T
R
:

E
C
5
0
:
0
.0
0
3
μM

R
ep

o
rt
er

A
ss
ay

E
C
9
0
:
0
.0
1
3
μM

(M
ak

o
n
a)

1
1
2

F
av

ip
ir
av

ir
(T
‐7
0
5
;
av

ia
n
)

a
p
yr
az
in
e
d
er
iv
at
iv
e
th
at

w
as

d
is
co

ve
re
d

d
u
ri
n
g
a
sc
re
en

o
f
co

m
p
o
u
n
d
s
ag

ai
n
st

in
fl
u
en

za
vi
ru
s
A
/P
R
/8
/3
4
(H

1
N
1
);
it

m
o
d
if
ie
d
in
tr
ac
el
lu
la
rl
y
to

p
u
ri
n
e

d
er
iv
at
iv
e
an

d
in
h
ib
it
s
R
N
A

p
o
ly
m
er
as
e
L

w
it
h
si
gn

if
ic
an

t
ef
fi
ca
cy

P
h
as
e
II
I
(N

C
T
0
2
3
2
9
0
5
4
an

d

N
C
T
0
2
3
6
3
3
2
2
)

Li
m
it
ed

ef
fi
ca
cy

in
p
at
ie
n
ts

w
it
h
lo
w
er

to
m
o
d
er
at
e

le
ve

ls
o
f
vi
ru
s
(C

t
>
2
0
);
T
‐

7
0
5
w
as

w
el
l
to
le
ra
te
d
1
1
4

E
C
5
0
:
4
4
.2
μg

/m
L1

1
4

M
ic
e:

3
0
0
m
g/
kg

q
D

P
O
;
d
ay

1
;

9
0
%

su
rv
iv
al
;

1
5
0
,7

5
,a

n
d
3
7
.5
m
g/
kg

q
D

P
O
;

d
ay

s
0
‐1
4
;
1
0
0
%

su
rv
iv
al

3
0
0
,1

5
0
,
7
5
,a

n
d
3
7
.5
m
g/
kg

B
ID

P
O
;
d
ay

s
0
‐1
4
;
1
0
0
%

su
rv
iv
al

(W
h
ile

m
ic
e
ga

in
ed

w
ei
gh

t)

8
,
1
.6
,0

.3
2
5
m
g/
kg

P
O

q
D
;
su
rv
iv
al

ra
te

9
0
%
,
1
0
%
,a

n
d
0
%
,

re
sp
ec
ti
ve

ly
1
1
5

N
H
P
:
4
0
0
/2
0
0
q
D

P
O
;
d
ay

s
0
‐1
0
;

1
7
%

su
rv
iv
al

2
5
0
/1
5
0
m
g/
kg

P
O

B
ID

;
d
ay

s
0
‐1
4
;

an
d
1
2
5
/7
5
m
g/
kg

P
O

B
ID

;d
ay

s
0
‐

(C
o
n
ti
n
u
es
)

2032 | MIRZA ET AL.



T
A
B
L
E

1
(C
o
n
ti
n
u
ed

)

C
o
m
p
o
u
n
d
/d
ru
g

E
B
O
V

ta
rg
et

an
d
d
es
cr
ip
ti
o
n

E
B
O
V

cl
in
ic
al

tr
ia
l
p
h
as
e

R
es
u
lt
s/
st
at
u
s

E
b
o
la

p
re
cl
in
ic
al

d
at
a

In
vi
tr
o
ef
fi
ca
cy

d
at
a

A
n
im

al
ef
fi
ca
cy

d
at
a

1
4
;
A
ll
N
H
P
s
su
cc
u
m
b
ed

b
et
w
ee

n

d
ay

s
1
1
‐1
5
an

d
d
ay

s
8
‐1
1
1
1
5

1
5
0
an

d
1
8
0
m
g/
kg

B
ID

d
ay

s
1
‐2
1

(w
it
h
1
‐d

lo
ad

in
g
d
o
se

o
f

2
5
0
m
g/
kg

);
~
5
0
%

su
rv
iv
al

A
m
io
d
ar
o
n
e

C
at
io
n
ic

am
p
h
ip
h
ili
c
d
ru
g
(C
A
D
)

am
io
d
ar
o
n
e
is

a
w
id
el
y
u
se
d

an
ti
ar
rh
yt
h
m
ic

d
ru
g
w
h
ic
h
in
h
ib
it
s
E
B
O
V

in
fe
ct
io
n
(i
n
vi
tr
o
)a

t
an

ea
rl
y
st
ag

e
o
f
vi
ra
l

re
p
lic
at
io
n

P
h
as
e
II
(N

C
T
0
2
3
0
7
5
9
1
)

T
er
m
in
at
ed

:
u
n
kn

o
w
n

st
at
is
ti
ca
lly

si
gn

if
ic
an

t

IC
5
0
en

tr
y:

5
.6
μM

M
ic
e:

N
o
su
rv
iv
al

ra
te

o
f
6
0
m
g/
kg

.

IC
5
0
en

tr
y

(l
en

ti
vi
ru
s)
:
2
.2
μM

;

0
%

to
4
0
%

su
rv
iv
al

at
9
0
m
g/
kg

.1
0
1

IC
5
0
re
p
lic
at
io
n
:

0
.4
μM

9
0

N
P
H
:
N
/A

A
m
o
d
ia
q
u
in
e

C
A
D

1
0
3

P
re
cl
in
ic
al

Sh
o
w
ed

si
gn

ifi
ca
n
tl
y
lo
w
er

m
o
rt
al
it
y
(5
0
.7
%
)
fo
r

am
o
d
ia
q
u
in
e
co

m
p
ar
ed

w
it
h

lu
m
ef
an

tr
in
e
(6
4
.4
%
)

E
C
5
0
en

tr
y:

2
.6
μM

;
M
ic
e:

N
o
in
cr
ea

se
d
su
rv
iv
al

at

6
0
m
g/
kg

B
ID

IP
;
d
ay

s
0
‐7
.1
0
1

E
C
5
0

re
p
lic
at
io
n
:
3
4
μM

N
P
H
:
N
/A

C
h
lo
ro
q
u
in
e

C
A
D

N
/A

W
el
l
to
le
ra
te
d

E
C
5
0
en

tr
y:

4
.7
μM

M
ic
e:

M
ix
ed

re
su
lt
s
ac
ro
ss

se
ve

ra
l

d
o
se
/s
tu
d
ie
s;

IP
an

d
P
O

w
it
h
0
%

to
8
0
%

su
rv
iv
al

ra
te
.

E
C
5
0
re
p
lic
at
io
n
:

1
6
μM

1
1
6

H
am

st
er
s:

N
o
ef
fi
ca
cy

at
5
0
m
g/
kg

IP
in

co
m
b
in
at
io
n
w
it
h
d
o
xy

cy
cl
in
e

(2
.5
m
g/
kg

)
an

d
az
it
h
ro
m
yc
in

(5
0
m
g/
kg

).
G
u
in
ea

p
ig
s:

n
o

p
ro
te
ct
io
n
u
p
to

1
0
0
m
g/
kg

.

H
yd

ro
xy

ch
lo
ro
q
u
in
e

C
A
D

N
/A

N
/A

E
C
5
0

re
p
lic
at
io
n
:
2
2
μM

N
/A

E
C
5
0
en

tr
y:

9
.5
μM

1
1
7

C
lo
m
ip
h
en

e
C
A
D
;
en

tr
y
in
h
ib
it
o
r

N
/A

U
se
d
in

co
m
b
in
at
io
n

tr
ea

tm
en

t
to
ge

th
er

w
it
h

ir
b
es
ar
ta
n
an

d
at
o
rv
as
ta
ti
n

fo
r
so
m
e
p
at
ie
n
ts
.W

el
l

to
le
ra
te
d
at

p
re
sc
ri
b
ed

d
o
se
s

E
C
5
0

re
p
lic
at
io
n
:
1
1
μM

M
ic
e:

1
0
%

su
rv
iv
al

at
6
0
m
g/
kg

IP

B
ID

.1
1
6

E
C
5
0

en
tr
y:
1
.3
μM

1
1
6

N
P
H
:
N
/A

T
o
re
m
if
en

e
C
A
D
;
en

tr
y
in
h
ib
it
o
r

N
/A

N
/A

E
C
5
0
:
1
.7
3
μM

(K
ik
w
it
)

M
ic
e:

5
0
%

su
rv
iv
al

at
6
0
m
g/
kg

IP

q
D

o
n
d
ay

s
0
,1

,3
,
5
,7

,9
.1
0
0

E
C
5
0
:0
.9
7
3
μM

(M
ay

in
ga

)1
0
0

E
C
5
0
:1
.1
0
μM

(M
ak

o
n
a)

1
1
8

N
P
H
:
N
/A

(C
o
n
ti
n
u
es
)

MIRZA ET AL. | 2033



T
A
B
L
E

1
(C
o
n
ti
n
u
ed

)

C
o
m
p
o
u
n
d
/d
ru
g

E
B
O
V

ta
rg
et

an
d
d
es
cr
ip
ti
o
n

E
B
O
V

cl
in
ic
al

tr
ia
l
p
h
as
e

R
es
u
lt
s/
st
at
u
s

E
b
o
la

p
re
cl
in
ic
al

d
at
a

In
vi
tr
o
ef
fi
ca
cy

d
at
a

A
n
im

al
ef
fi
ca
cy

d
at
a

A
m
io
d
ar
o
n
e

C
A
D
;
en

tr
y
in
h
ib
it
o
r

P
h
as
e
II
(N

C
T
0
2
3
0
7
5
9
1
)

T
er
m
in
at
ed

ea
rl
y;

re
d
u
ct
io
n
in

ca
se
‐fa

ta
lit
y
ra
te
;
n
o
t

st
at
is
ti
ca
lly

si
gn

if
ic
an

t

IC
5
0
en

tr
y:

5
.6
μM

M
ic
e:

9
0
m
g/
kg

;
0
‐4
0
%

su
rv
iv
al
.1
0
1

IC
5
0
en

tr
y

(l
en

ti
vi
ru
s)
:
2
.2
μM

IC
5
0
re
p
lic
at
io
n
:

0
.4
μM

9
0

N
P
H
:
N
/A

A
zi
th
ro
m
yc
in

C
A
D

R
eg

is
te
re
d
as

N
C
T
0
2
3
8
0
6
2
5
(n
o
t

ye
t
o
p
en

to
re
cr
u
it
m
en

t)

W
el
l
to
le
ra
te
d
in

cr
it
ic
al
ly

ill

p
at
ie
n
ts

E
C
5
0
re
p
lic
at
io
n
:

5
.1
μM

1
0
1

M
ic
e:

1
0
%
‐6
0
%

su
rv
iv
al

at

1
0
0
m
g/
kg

B
ID

IP
.

E
C
5
0
V
LP

en
tr
y:

2
.7
9
μM

0
%

su
rv
iv
al

b
y
P
O

ro
u
te
.

E
C
9
0
V
LP

en
tr
y:

1
5
.8
μM

1
1
9

G
u
in
ea

p
ig
s:

n
o
ef
fi
ca
cy
.1
0
1

Se
rt
ra
lin

e
C
A
D
;
en

tr
y
in
h
ib
it
o
r

N
/A

W
el
l
to
le
ra
te
d
in

h
ea

lt
h
y

ad
u
lt
s
an

d
ch

ild
re
n

IC
5
0
:
3
.1
3
μM

(V
er
o
)

M
ic
e:

7
0
%

su
rv
iv
al

at
1
0
m
g/
kg

P
O

q
D
.

IC
5
0
:
1
.4
4
μM

(H
ep

G
2
)

N
P
H
:
N
/A

B
ep

ri
d
il

G
ly
co

p
ro
te
in

1
2
0

N
/A

N
/A

IC
5
0
:
5
.0
8
μM

(V
er
o
)

M
ic
e:

1
0
0
%

su
rv
iv
al

at
1
2
m
g/
kg

IC
5
0
:
3
.2
1
μM

(H
ep

G
2
)

(M
ay

in
ga

)1
2
0

N
P
H
:
N
/A

B
ri
n
ci
d
o
fo
vi
r
(B
C
V
,

C
M
X
0
0
1
)

M
o
n
o
p
h
o
sp
h
o
ra
m
id
at
e
p
ro
d
ru
g
o
f
an

ad
en

o
si
n
e
an

al
o
gu

e
se
le
ct
iv
el
y
in
h
ib
it
s

vi
ra
l
R
N
A

(L
)
p
o
ly
m
er
as
e

P
h
as
e
II
(N

C
T
0
2
2
7
1
3
4
7
)

C
lin

ic
al

tr
ia
l
h
al
te
d
d
u
e
to

lo
w

en
ro
llm

en
t

E
C
5
0
:
0
.8
8
μM

(M
ak

o
n
a)

N
o
p
re
cl
in
ic
al

ef
fi
ca
cy

re
p
o
rt
ed

so
fa
r3

1

A
n
d
w
it
h
d
ra
w
n
b
y
th
e

co
m
p
an

y
fo
r
fu
rt
h
er

d
ev

el
o
p
m
en

t
as

E
B
O
V

th
er
ap

eu
ti
c3

1

E
C
5
0
:
0
.6
6
‐0
.7
9
μM

(k
ik
w
it
,H

u
h
7
)1
2
1

T
K
M
‐1
0
0
8
0
2
/T
K
M
‐

1
3
0
8
0
3

Sm
al
l
in
te
rf
er
in
g
R
N
A
‐li
p
id

n
an

o
p
ar
ti
cl
e

p
ro
d
u
ct

th
at

ta
rg
et
s
vi
ra
l
R
N
A

p
o
ly
m
er
as
e
L,

V
P
3
5
,a

n
d
V
P
2
4

T
K
M
‐1
0
0
8
0
2
:
P
h
as
e
I

(N
C
T
0
2
0
4
1
7
1
5
)

T
K
M
‐1
0
0
8
0
2
:
T
er
m
in
at
ed

E
C
5
0
:
5
0
n
g/
m
L

(M
ak

o
n
a)

N
H
P
:
1
0
0
%

su
rv
iv
al

ag
ai
n
st

K
ik
w
it

(0
.5
m
g/
kg

q
D

IV
)
an

d
M
ak

o
n
a;

(0
.5
m
g/
kg

q
D

IV
)
af
te
r
vi
ra
l

ch
al
le
n
ge

1
2
3

T
K
M
‐1
3
0
8
0
3
:
P
h
as
e
II

(P
A
C
T
R
2
0
1
5
0
1
0
0
0
9
9
7
4
2
9
)

T
K
M
‐1
3
0
8
0
3
:
T
er
m
in
at
ed

;

fa
ilu

re
to

ac
h
ie
ve

a
su
rv
iv
al

p
ro
b
ab

ili
ty

an
d
d
id

n
o
t

d
em

o
n
st
ra
te

ef
fi
ca
cy

1
2
2

E
C
5
0
:
5
0
‐1
0
0
n
g/
m
L

(K
ik
w
it
)

E
C
5
0
:
1
0
0
‐2
5
0
n
g/
m
L

(M
ak

o
n
a)

E
C
5
0
:
1
‐5
0
n
g/
m
L

(M
ak

o
n
a)

1
2
3
,1
2
4

(C
o
n
ti
n
u
es
)

2034 | MIRZA ET AL.



T
A
B
L
E

1
(C
o
n
ti
n
u
ed

)

C
o
m
p
o
u
n
d
/d
ru
g

E
B
O
V

ta
rg
et

an
d
d
es
cr
ip
ti
o
n

E
B
O
V

cl
in
ic
al

tr
ia
l
p
h
as
e

R
es
u
lt
s/
st
at
u
s

E
b
o
la

p
re
cl
in
ic
al

d
at
a

In
vi
tr
o
ef
fi
ca
cy

d
at
a

A
n
im

al
ef
fi
ca
cy

d
at
a

Z
M
ap

p
A

co
ck
ta
il
o
f
th
re
e
h
u
m
an

ch
im

er
ic

n
eu

tr
al
iz
in
g
m
A
b
s
(c
1
3
C
6
,c

2
G
4
,a

n
d

4
G
7
)
se
le
ct
ed

fr
o
m

M
B
‐0
0
3
an

d
Z
M
ab

an
ti
b
o
d
y
co

ck
ta
ils
.S

el
ec
ti
ve

ly
ta
rg
et
s
th
e

vi
ra
l
gl
yc
o
p
ro
te
in

P
h
as
e
II
(N

C
T
0
2
3
6
3
3
2
2
)

Su
sp
en

d
ed

:
d
u
e
to

n
o

co
n
cl
u
si
o
n
o
n
ef
fi
ca
cy

av
ai
la
b
le

E
C
5
0
:
<
0
.1
‐1

μg
/m

L

(G
u
ec
ke

d
o
u
)

N
H
P
:
1
0
0
%

su
rv
iv
al

at
5
0
m
g/
kg

,3

d
o
se
s
w
it
h
3
‐d

in
te
rv
al

IV
7
0

C
o
n
va

le
sc
en

t
w
h
o
le

b
lo
o
d
/p
la
sm

a
(E
b
o
la
‐T
x)

A
B
O
‐c
o
m
p
at
ib
le

p
la
sm

a
fr
o
m

a
se
p
ar
at
e

co
n
va

le
sc
en

t
d
o
n
o
r,
T
ar
ge

ts
w
h
o
le

vi
ru
s/

gl
yc
o
p
ro
te
in

P
h
as
e
II
/I
II
(N

C
T
0
2
3
4
2
1
7
1
)

C
o
m
p
le
te
d
;
N
o
ad

ve
rs
e

re
ac
ti
o
n
s
as
so
ci
at
ed

an
d

fo
u
n
d
n
o
si
gn

if
ic
an

t

im
p
ro
ve

m
en

t
in

ef
fi
ca
cy

in

su
rv
iv
al

1
2
5

N
/A

N
H
P
:
N
o
ef
fi
ca
cy

o
b
se
rv
ed

w
it
h

w
h
o
le

b
lo
o
d
;
ef
fi
ca
cy

o
f

co
n
ce
n
tr
at
ed

Ig
G

fr
o
m

su
rv
iv
o
rs

A
V
I‐7

5
3
7

V
P
2
4

P
h
as
e
I
(N

C
T
0
1
5
9
3
0
7
2
)

W
it
h
d
ra
w
n
b
ef
o
re

en
ro
llm

en
t;

fu
rt
h
er

d
ev

el
o
p
m
en

t
h
as

b
ee

n
su
sp
en

d
ed

d
u
e
to

fu
n
d
in
g
co

n
st
ra
in
ts

E
C
5
0
:
0
.5
8
5
μM

N
H
P
:
7
5
%

su
rv
iv
al

at
4
0
m
g/
kg

q
D

IV
.1
2
6

T
ilo

ro
n
e
h
yd

ro
ch

lo
ri
d
e

(t
ilo

ro
n
e)

N
/A

N
/A

N
/A

E
C
5
0
:
0
.2
3
μM

1
1
6

M
ic
e:

2
5
an

d
5
0
m
g/
kg

q
D

IP
D
0
‐8
;

p
ro
ve

d
ef
fi
ca
ci
o
u
s
in

p
ro
te
ct
in
g

9
0
%

o
f
m
ic
e
fr
o
m

a
le
th
al

E
B
O
V

ch
al
le
n
ge

1
1
6

A
b
b
re
vi
at
io
n
s:
B
ID

,t
w
ic
e
d
ai
ly
;I
M
,i
n
tr
am

u
sc
u
la
r
in
je
ct
io
n
;I
P
,i
n
tr
ap

er
it
o
n
ea

li
n
je
ct
io
n
;I
V
,i
n
tr
av

en
o
u
s
in
je
ct
io
n
;m

A
b
,m

o
n
o
cl
o
n
al

an
ti
b
o
d
y;

N
H
P
,n

o
n
‐h
u
m
an

p
ri
m
at
e;

P
O
,o

ra
la

d
m
in
is
tr
at
io
n
;q

D
,o

n
ce

d
ai
ly
;

si
R
N
A
,s
m
al
l
in
te
rf
er
in
g
R
N
A
;
V
T
R
,h

er
p
es
vi
ru
s
te
lo
m
er
as
e
R
N
A
.

MIRZA ET AL. | 2035



Additionally, managing EVD includes treatment of clinical

manifestations like hemorrhage or coagulation abnormalities.24,92

Electrolyte balance gets disturbed as soon as the virus starts to

reproduce and spreads across the body. Patients require fluid intake

(intravenous or oral) rich in electrolytes, to treat dehydration and to

restore electrolyte balance.21,92,93,144 Moreover, EBOV infection

results in disturbed blood clotting. For that purpose, anticoagulants

like recombinant nematode anticoagulant protein c2 (rNAPc2) and

recombinant human‐activated protein C (rhAPC)145 known to affect

coagulation pathways have been investigated and resulted in

reduced morbidity and fatality.146

1.5 | 2014‐2016 EBOV outbreak—an overview

Regardless of no effective treatment against EVD, potential drug

candidates indicated promising results in animal models after the West‐
Africa 2014‐2016 outbreak.31,64,81,89,90,94,99,100,113,126,128,130,147,148

Safety and efficacy concerns arose due to the limited duration of the

outbreak. For this reason, EBOV therapeutics in advanced development

had only been evaluated in the initial two phases of the clinical

trials.31,32,149 Bafilomycin, chlorpromazine, cytochalasin B, mannose‐
binding lectin, and ZMapp were reported to inhibit viral

entry,70,100,150-152 while other mAbs and cocktails are under develop-

ment and most are now in preclinical stages.138,139,153-156 Because of

F IGURE 1 Few drug candidates to treat Ebola virus disease
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successful preclinical NHPs data,70,138 ZMapp was recently used on four

patients evacuated from West‐Africa157 and successfully treated two

patients repatriated to the United States.93 In 2015, a randomized

controlled trial (Prevail II; NCT02363322) of 72 patients demonstrated

22% deaths (8 of 36 patients), who were treated with ZMapp compared

with the group of patients who received standard care alone (37%

deaths; 13 of 35 patients).

During the outbreak, two prominent vaccines, rVSVΔG‐ZEBOV‐
GP (rVSV) and cAd3‐EBO, were tested in clinical trials and proved to

be efficacious.35,36,158,159 rVSV is currently in Phase II

(NCT02876328 and NCT02788227) and is being tested in the

United States and Africa. Against viral polymerase, several drugs

have been reported and tested.81,99,128 BCX4430 and GS‐5734 have

successfully crossed Phase I clinical trials (Table 1). In male EBOV

patients, GS‐5734 is currently being tested for the reduction of viral

load in semen.89,113 Very recently, the antiviral activity of drugs was

discovered, and selected molecular probes have been identified for

EBOV infection. Clomiphene and toremifene, selective estrogen

receptor modulators (SERMs), have been identified as a result of this

in vitro screening.100 SERMs block Ebola entry by causing a reduction

in the accumulation of endolysosomal calcium and the concentration

of cellular sphingosine160 and have been approved by the FDA for

treating EBOV infections.

Although the 2014‐2016 outbreak highlighted several therapeutic

compounds161 that successfully crossed Phase I clinical trials, some of

them indicated safety concerns.34,44,117,162 The clinical trials con-

ducted during the outbreak lacked proper controls and statistical

power due to the severity and urgency of the disease.163 TKM‐130803
and amiodarone reached Phase II of clinical trials in Sierra Leone,

which were later terminated due to lack of demonstrating efficacy and

statistical power.122,163 FDA halted TKM‐100802 because of the

release of cytokines triggered by the action of the siRNA causing flu‐
like symptoms in treated individuals.164,165 Likewise, brincidofovir, an

oral bioactive molecule, failed to cross the Phase II clinical trials for

efficacy, safety, and tolerability, resulting in discontinuation.31 Another

study, the JIKI trial, was carried out in 2014 to test the efficacy of

favipiravir. The current favipiravir data suggests its efficacy for low to

moderate viral loads.32 This trial which was conducted in four Ebola

treatment centers in Guinea and relied on the use of historical

controls. Because of the ambiguity of the results, JIKI was criticized for

its design.32 Another clinical trial of nonrandomized Ebola‐Tx, carried
out in Guinea evaluating convalescent plasma, failed to demonstrate

an improved survival rate.125,166 Similarly, amodiaquine showed

good invitro efficacy in inhibiting EBOV activity104 but showed liver‐
related toxic effects during artesunate‐amodiaquine combinatory

treatment.167

1.6 | 2018 EBOV outbreak (May‐June 2018,
August‐present)—an update

Two consecutive outbreaks are reported in the following year. On 8

May 2018, the Government of the Democratic Republic of Congo

(DRC) reported an EVD outbreak (Zaire EBOV strain) in the

north‐west of the country. According to the last updated situation

report of Equateur DRC outbreak (24 July 2018), a total of 54 EVD

cases (38 laboratories confirmed and 16 probable) were reported

since the beginning of this outbreak on 4 April 2018 till 2 June. Of

these

54 cases, (29 from Iboko, 21 from Bikoro and 4 from Wangata health

zones), 33 died resulting in a case‐fatality ratio of 61%.29 This is the

ninth outbreak in DRC in the last four decades (since 1976), with the

last outbreak dated in May 2017 (8 cases with 4 deaths). Due to

improved efficacy and safety of rVSV (evaluated in more than 10 000

individuals),35,36 the test treatment was administered during the

May‐June 2018 DRC outbreak, currently being investigated in a ring

vaccination trial (Phase III; NCT03161366). After the declaration of

the end of Equateur DRC outbreak, another EVD outbreak was

reported in Kivu and Ituri provinces of DRC on 1st August 2018. As

of 21st October 2018, a total of 238 cases (203 laboratories

confirmed and 35 probable) have been reported, including 155

deaths, resulting in a case‐fatality ratio of 65.1%.30 To date, the 10th

ongoing outbreak in DRC has raised serious concerns due to the

spread in surrounding regions. In this outbreak, investigational

therapeutics including ZMapp, remdesivir(GS‐5734), and mAB114

(a monoclonal antibody used for the very first time to treat infected

individuals) are being investigated together with rVSV (Phase II;

NCT03719586).

1.7 | In silico methods for anti‐EBOV drug
discovery

In silico methods in drug discovery hold great potential and may

prove beneficial at any stage in the preclinical development of drug

candidates.168 Especially, areas like target validation, the design of

compound libraries,169,170 hit identification,171-173 hit‐to‐lead
optimization,174 and preclinical candidate identification can essen-

tially benefit from exponentially increasing in silico tools, with

unprecedented accuracy. A report from Bayer HealthCare175

illustrates the significance of integrating computational drug design

in pharmaceutical companies. This report states that computer‐aided
design methods (CADD) have aided in approximately half of the 20

new chemical entities currently being tested in Phase I clinical trials.

Figure 2 highlights the interconnected stages and different phases in

the drug discovery process mapped with EBOV updates.

1.8 | Homology modeling

Protein modeling plays a significant role in the drug discovery

process. The goal of homology modeling is structure prediction from

a known sequence with accuracy comparable to experimentally

resolved structures.176-178 Restrictions linked with this technique are

the presence of inserts and loop sequences, which cannot be

accurately predicted in the absence of a three‐dimensional (3D)

crystal structure.179 The gap between known protein sequences and

identified protein structures is significantly growing. Given an

enormous amount of data through a vast array of DNA sequencing
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techniques available, experimental structure identification techni-

ques require attention.180 Computational techniques are actively

exploited in the pharmaceutical industry for the prediction of 3D

protein models.124,168 To expand the scope of computational

methods and to improve model accuracy, efforts are being made

continuously. These approaches help to predict the tertiary structure

of a protein through its amino acid sequence to combat this issue.176

Depending on the available information, these methods can be

characterized as either de novo or homology modeling. Template‐
based modeling also referred to as homology modeling or compara-

tive modeling, is the most trusted method for model design.176

Similar folding properties of the members of a protein family with the

core structure unaffected by modifications in the sequence are

fundamental criteria governing homology modeling.181 Models are

generated given target‐protein sequences and X‐ray, cryo‐EM, or

NMR‐determined structures. Even with a low sequence similarity

(~20%), accurate models can be obtained using homology model-

ing.182-185 For this, a template structure is initially selected to

identify similar experimentally determined structures, after which

template‐target sequence alignment is performed. The 3D model is

then energetically refined to optimize model quality. The refinement

of the model includes optimizing bond lengths and angles and

removing clashes in geometry. If required, additional structural

modifications can be applied, until a relevant and accurate model is

obtained. However, the refinement of the model often does not meet

the desired level of accuracy.186 A number of potential in silico

studies have been documented over last few years which include

homology modeling of unresolved EBOV polymerase187,188 and

docking‐based virtual screening of compounds that have potential

to bind with important residues lining the binding pocket of EBOV

VP40, VP24, VP30, and VP35.82,108,189-194

1.9 | Molecular dynamics simulation to elucidate
ligand‐protein interactions

Although optimal ligand‐receptor interactions can be predicted

through molecular docking,195 not all key interactions between the

ligand and the active site of the receptor will be accurately depicted.

Hence, molecular docking followed by molecular dynamics (MD)

simulations of the obtained complexes can help in understanding

interaction modes. Rastelli et al196 reported sulfonamide derivatives

to bind effectively within the active site of aldose reductase.

Contrary to these predictions, the experiments demonstrated lower

activity and binding potential of these compounds, therefore,

negating the prediction made. Later, the in silico refinements of

these compounds using MD revealed the interruption of key

F IGURE 2 Stepwise drug discovery process from target identification, hit‐to‐lead optimization, and clinical trials along with the progress in

the development of small‐molecule inhibitors against EBOV. ADMET, absorption, distribution, metabolism, excretion, and toxicity; HTS, high
through‐put screen; PDB, protein data bank; PK, pharmacokinetics; QSAR, quantitative structure‐activity relationship; R&D, research and
development; SAR, structure‐activity relationship
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interactions between sulphonamide ligands and the receptor due to

an additional water molecule. The migration of this water molecule

from outside explained the reduced activity of these compounds

when tested experimentally.196 In another study by Cavalli et al,197

MD simulations were used as a platform to discern several different

docked complexes of propidium and human acetylcholinesterase and

most stable structures identified which correlated with the experi-

mentally verified binding modes.

Interestingly, MD simulation assisted in the discovery and

development of antiviral drugs.198-200 For the first time, a

combination of MD refinements of postdocking complexes and

ensemble‐based molecular docking has helped to reveal a unique

symmetrical binding mode of daclatasvir with hepatitis C virus

(HCV) NS5A protein. This drug is currently in Phase III clinical trials

and is being tested for different HCV genotypes.201 Moreover,

through MD simulations, identification of a trench adjacent to the

active site of HIV‐1 integrase has been made possible.202 The role of

the trench in ligand binding later became evident when a

site‐directed mutagenesis study was carried out. These findings

helped in the design of potent HIV‐1 integrase inhibitors with

enhanced antiviral activity. A 3D structure model of major

coreceptor of HIV‐1, CCR5, has been constructed through the use

of MD simulations.203 Furthermore, the development of antiviral

drugs against influenza virus (IFV) has also benefitted from MD

simulations. Through the use of this method, a universal cavity (150‐
cavity) adjacent to the binding site of the natural substrate has been

reported with neuraminidase (NA) proteins of human 2009

pandemic H1N1, avian H5N1, and human H2N2 strains.204

Recently, MD simulations have been used to study the molecular

behavior of ZIKV NS3‐helicase, both in the presence and absence of

single‐stranded RNA, and the potential implications for NS3‐helicase
activity/inhibition.205 Recent studies have reported notable examples

of MD‐driven drug discovery.199 These studies prove the usefulness

of MD simulation in understanding molecular interactions and the

mechanism of drug binding,206,207 especially against the drug‐
resistant viruses.206,208,209

1.10 | Hit‐to‐lead optimization

Hit‐to‐lead optimization is the most essential phase to closely

examine the chemical scaffold concerning its absorption, distribution,

metabolism, and excretion (ADME) challenges in the drug discovery

process. In silico ligand‐profiling210,211 benefited from the boost of

repurposing drugs91,104,108,194 and the notion of designing drugs with

controlled selectivity profiles.212 This approach is aimed at: (i) The

utilization of phenotypic screening hits to predict potential targets

and their mechanism of action, (ii) identifying off‐targets potentially

responsible for adverse reactions and side effects, and (iii) careful

analysis of ADMET (absorption, distribution, metabolism, excretion,

and toxicity) parameters to propose potential hits.

Another useful in silico method, particularly beneficial for lead

optimization, is quantitative structure‐property relationship (QSPR)

modeling which is useful for the identification of key structural

features responsible for interacting with the target protein. For many

ADME endpoints measured in the pharmaceutical industry, QSPR

models have prospectively shown their ability to extract knowledge

from a wide variety of chemical scaffolds proving their utility as

predictive models.213 QSPR models, based on machine learning

techniques, are desirable to achieve the optimal potency and ADME

properties. To reduce the risk of failure in trials, a useful QSAR/QSPR

model is necessary to accurately predict the activity of a compound

for each drug discovery project. However, these models do not

provide adequate information about the modifications that should be

made to the tested compound in the next cycle of drug design. To

address this issue, the matched molecular pair analysis technique is

another promising approach. This method assesses the mean effect

of different substituents on various ADME parameters, such as: (i)

permeability,214 (ii) solubility,215 (iii) clearance,214 and (iv) cyto-

chrome P450 inhibition.147 The design of a new scaffold that

interacts with the desired pharmacological target can be benefitted

based on these findings. Molecular substitutions that are closely

linked with the molecular properties can guide the design of such

scaffolds. Several studies are reporting the use of quantitative

structure‐activity relationship modeling in lead optimization.216-219

Computational drug discovery has proven to accelerate the

challenging process of designing and optimizing new drug candidates.

Hierarchical virtual screening of ligand‐based and structure‐based
methods delineated their validity in finding potential hits, even in the

early phase of drug discovery. Because of the increased efficiency on

Ebola hit‐to‐lead optimization, an interplay between the several stages

of in silico drug design has been depicted in Figure 3. Because of the

rapid development of faster architectures and comprehensive algo-

rithms for high‐level computations, the impact of computational

structure‐based drug design on antiviral drug discovery and lead

optimization will have a more profound impact in future years. Not only

hit identification but also elucidation of its biological target has provided

information for use in drug discovery research. In this perspective,

Perilla et al,220 have described the physical properties of the HIV‐1
capsid protein using the all‐atom MD simulations. Andoh et al,221

performed the all‐atom MD calculation study of entire poliovirus and

found rapid equilibrium exchange of water molecules across the capsid,

finally concluded the capsid to function as a semipermeable membrane.

The next study by Le et al,222 less restrictive to a single target, studied

drug interactions of Tamiflu and Relenza to multiple evolutionary

correlated proteins. More specifically swine influenza A/H1N1, Spanish

H1N1, and avian H5N1 flu N1 NAs were investigated using MD

techniques for possible drug resistance mechanisms, in combination

with electrostatic analysis. The research group created a molecular

model of the swine influenza A/H1N1 type‐I NA based on the avian

H5N1 type‐I NA, after which all three NAs were simulated as apo‐
conformation and compared with its bound state with oseltamivir

(Tamiflu) or zanamivir (Relenza). When compared with each other the

simulations identified conserved and unique drug‐protein interactions

across all three proteins mediated by hydrogen bonds. This elucidation

of key molecular interactions was used to predict mutations that could

lead to drug resistance.
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1.11 | Some advances in MD simulations

More advanced nudge elastic band or catalytic MD techniques

identify reaction or conformational transition paths.223 Advanced

hybrid QM/MM MD simulations have been proven extremely

beneficial to gain more profound insights into the reaction mechan-

isms involved in the investigated biosystems. To more specifically

asses which amino acids are interacting, per‐residue energy

decoupling has the potential to identify key interactions with the

target. Many drug candidates are known to bind to less populated

structures within the target’s conformational space. In this view,

ensemble‐based docking describes a method in which the ligand is

docked to multiple conformational forms a biomolecular target

instead of only one. Based on the hypothesis of the influence of

induced fit in enzymes, the normal‐mode analysis could prove to be

helpful in the elucidation of the collective motions of protein domains

that underlie their conformational changes upon binding a ligand.224

In other research, slow motions have been extracted from MD

trajectories by using principal component analysis and MD simulation

clustering.225,226 The same technique might be incorporated in the

elucidation of interacting amino acids of the target with the ligand of

interest, as described using per‐residue energy decoupling. Steered

MD simulations applying predefined degrees of freedom can be used

after identifying the catalytic important domain movements of the

target and the relation with ligand binding. The refinement quality of

postdocking complexes is generally assessed by plotting the root‐
mean square deviation and root‐mean square fluctuation of obtained

trajectories. For comparison purposes between MD‐refined complex

systems, binding‐free energy calculations using the molecular

mechanics Poisson‐Boltzmann surface area/generalized born surface

area can be incorporated in the workflow. Like these, numerous

recent studies have been performed with the aid of MD simulations

in search of direct antivirals205,218,226-233 and investigating drug

resistance mechanisms.226,227,234-237

Furthermore, computational power has increased exponentially

over the past 30 years with the sequential development of more

powerful supercomputer units (high‐performance computing). With the

assumption of a continuation of Moore’s law, which is reasonable given

the latest advancements in computing power, a one–million‐fold
increase in processing power is expected. However, until quantum

computing becomes a reality, a maximum level of processing power is

expected due to limitations in computational resources. Specialized

F IGURE 3 Detailed comprehensive workflow toward efficient anti‐EBOV drug discovery. ADMET, absorption, distribution, metabolism,

excretion, and toxicity; CoMFA, comparative molecular field analysis; CoMSIA, comparative molecular similarity indices analysis;
GBSA, generalized born surface area; MM, molecular mechanics; PAINS, filters for removal of pan assay interference compounds; PBSA,
Poisson‐Boltzmann surface area; PCA, principal component analysis; PDB, protein data bank; QM; quantum mechanics; QSAR, quantitative
structure‐activity relationship; Rg, radius gyration; RMSD, root‐mean‐square deviation; RMSF, root‐mean‐square fluctuation
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supercomputers designed especially for all‐atom MD simulations have

been developed that show to the ability to reach millisecond timescales

that represent interesting biological processes.238,239 Efforts being

made in quantum computing offer an exciting outlook.240 To date,

actual quantum computers are still in their initial stage of development

with quantum computational operations executed only experimentally

on a very small number of quantum bits. With these timewise

developments, it might become possible to simulate large biological

systems and determine, computationally, the 3D folding of proteins

starting from their amino acid sequence.241 In drug discovery processes

the applicability is very promising, especially in target identification and

interaction analysis.

2 | PROPOSED CHALLENGES

The success rates for drug discovery pipeline involving target

identification, screening, hit‐to‐lead optimization, and preclinical

candidate selection are within the range of 69% to 85%.242 Failure

of a discovery project accounts for several reasons; notably,

(i) unclear underlying mechanism of target protein, (ii) lack of

leads, (iii) poor potency, (iv) lack of efficacy, (v) inappropriate drug‐
like properties, and (vi) unexpected high animal‐toxicity levels.

However, the success rates of the clinical development of drugs

vary distinctly. An experimental drug in Phase I clinical trials has

approximately 10% chance to reach the market.242 Inadequate

efficacy of drugs accounts for two‐thirds of recent Phase III clinical

trial failures, half of the trials for Phase II trials and approximately

16% for Phase I trials.242 Most drugs fail during clinical trials even

though all experimental drugs enter human clinical trials based on

extensive preclinical data indicating the efficacy in vivo. Moreover,

experiments with Ebola strains require a BSL4 safety level, which

narrows the possibilities and slows the progress in anti‐EBOV drug

research. The complexities of human biology, amplified by the

limitations of target‐based drug discovery approach243 poses a

significant challenge.

The magnitude of the recent EBOV outbreak, coupled with drug

discovery and development challenges has necessitated the need to

explore broad‐spectrum alternative strategies. Despite no current

countermeasures, experimental drug and vaccine development is

progressing with some in the earliest stages of product development.

Repurposing drugs provide an alternative way to accelerate the

process of drug design and discovery. Investigation of FDA‐approved
compounds in new directions opens avenues for devising a strategy

against challenging diseases, in particular, EVD. Drugs gain FDA

approval after rigorously being screened through a set of criteria

including pharmacokinetic and pharmacodynamics, dosage, toxicity,

safety, and efficacy. Repurposed drugs bypass Phase I of clinical trials

accelerating the drug discovery process and additionally eliminating

the logistic considerations like manufacturing and distribution.

However, when repurposing such drugs, any unfavorable data gained

from these clinical trials may not serve any purpose against the

approved drug, it might cut down on the development timeline.

Furthermore, studying the mechanism of action of such repur-

posed drugs may be difficult. Therefore, experiments specifically

designed to identify the mechanism of action of repurposed

compounds may provide insights into the EBOV lifecycle, and can

help devise new trials against EVD pandemic. Additionally, drug

resistance can also be a major clinical problem for the treatment of

EBOV‐infected individuals, as only a small number of mutations can

drastically change the biological properties of RNA viruses,244 HIV

virus,245 and influenza viruses.246

The statistical power of preclinical studies is crucial for the

efficiency of clinical studies, preventing the unnecessary testing of a

large number of compounds.247 A large proportion of drugs

proceeding into clinical trials never showed animal efficacy which

leads to a large number of useless therapeutics.248 Moreover, the

statistical power of clinical studies poses an additional challenge to

enroll a sufficient number of participants in a clinical trial to

demonstrate a statistically significant study.249 EBOV‐infected
animal models need to be reliable enough to reflect the patient’s

situation. Furthermore, the overall aspects of experimental proce-

dures and efficacy should be estimated to a higher level.250

Additionally, pharmacokinetics properties particularly plasma

half‐life, are representative of drug efficacy. With the use of animal

models, the importance of interspecies translation of half‐life
becomes more evident. In the light of recent clinical trials, although

many treatment options for EVD have been proposed, there exists no

FDA‐approved drug yet. The genetics and immunological profile vary

from one population to another. This poses a further challenge for

evaluating drug safety profile in different populations. Identifying

viable hits through in silico hit identification and screening is almost

achievable for any target, however, hit‐to‐lead optimization remains

cumbersome. A reasonable argument is that computational methods

that accurately predict binding constants for chemically diverse

compounds and large datasets, still need to be optimized. Second,

ADMET properties are difficult to predict for large datasets because

it is impossible to simplify them to a single molecular event.

Incontrovertibly, it is the ADMET properties that cause the failure

of most drug candidates. Increased attention has been paid to the

pharmacokinetic properties during lead optimization. As a result,

poor pharmacokinetic properties, once a major issue, today account

for only 10% of clinical failures, mostly in Phase I.251 With the joint

efforts by regulatory institutions, meta‐analytic analysis with

controlled experimental protocols and performance can yield safe

and unprecedented predictive results for human clinical trials.

3 | CONCLUDING REMARKS

After the largest, most devastating Ebola outbreak (2014‐2016),
efforts toward EVD treatment have gained vital importance. This

outbreak has highlighted an urgent need to develop an efficacious

treatment that can be used to curtail future outbreaks. As a result of

clinical research, numerous countermeasures have been developed

including vaccines (rVSV‐ZEBOV and Ad26‐ZEBOV/MVA‐BN‐Filo
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prime‐boost vaccine), nucleoside and nucleotide analogues

(BCX4430, favipiravir, and GS‐5734), plasma transfusions

(Ebola‐Tx), immunotherapeutics (Zmapp and MIL77), nucleic acid‐
based drugs, and repurposed drugs. The scientific community has to

overcome multiple challenges to ensure a licensed efficacious drug

for future outbreaks. In this regard, it is required to widen the

prospects in the development of therapeutic agents with broad‐
spectrum activity against filoviruses like Marburg virus, Sudan virus,

or other viral pathogens. However, the drug discovery and develop-

ment pipeline lead to only a small number of compounds that enter

clinical trials, thus making it not just a challenging but also a time‐
consuming process. Until the next outbreak, drug development

efforts rely on efficacy characterization in animal models of EVD. The

EBOV outbreaks have also reconfirmed the significance of the

immunological basis of vaccine protection to the scientific commu-

nity. This will not only help to assist the progression of vaccine

candidates in development, but also vaccine efficacy can be assessed

for potential outbreaks of genetically diverse strains in the coming

episodes.

Within the entire process from drug discovery to authorization, a

great potential can be attributed to in silico methods of drug

discovery and may prove beneficial at any stage in the preclinical

development of drug candidates. In silico drug discovery methods

have already changed the perception of drug design and develop-

ment. Methods in computational chemistry, particularly MD simula-

tions and QSPR, will significantly impact the trajectory of the drug

discovery process in the pharmaceutical industry. With an increased

understanding of human biology, clinical trials are expected to gain

success. MD simulations, in this case, will make useful contributions

in understanding the underlying molecular processes and biological

functions. Through the application of QSPR modeling, improvising

the ability to design better molecules is an achievable goal. With the

presence of an enormous amount of data, computational approaches

are the most sought after methods to answer biological problems.

With advancement in understanding the mechanism and mode of

action of EBOV, future in silico work will have an essential role in the

development of drug candidates against the devastating EVD.
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