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Original Article

Integrative bioinformatics approach for identifying key genes and 
potential therapeutic targets in the concurrent manifestation of 
hypertrophic cardiomyopathy and pulmonary hypertension
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Background: Hypertrophic cardiomyopathy (HCM), identified as a primary cause of sudden cardiac 
death (SCD), intertwines with pulmonary hypertension (PH) to amplify cardiovascular morbidity. This 
complex synergy poses significant therapeutic challenges due to the absence of drugs specifically targeting 
their concurrent manifestation. This study seeks to unravel the molecular intricacies linking HCM and PH, 
aiming to lay the groundwork for targeted therapeutic interventions.
Methods: Through the analysis of gene expression profiles from datasets GSE36961 (HCM) and 
GSE113439 (PH) within the public data repository of Gene Expression Omnibus (GEO), this research 
systematically identified differentially expressed genes (DEGs), conducted extensive functional annotations, 
and constructed detailed protein-protein interaction (PPI) networks to uncover crucial hub genes. Further, 
co-expression analyses, alongside drug prediction and molecular docking simulations, were employed to 
pinpoint potential therapeutic agents that could ameliorate the combined pathology of HCM and PH.
Results: Our comprehensive analysis unearthed 79 DEGs shared between HCM and PH, highlighting 
fourteen as pivotal hub genes. Validation across three additional datasets (GSE35229, GSE32453, and 
GSE53408) from GEO accentuated secreted phosphoprotein 1 (SPP1) as a key gene of interest. Remarkably, 
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Introduction

Hypertrophic cardiomyopathy (HCM) is a significant cause 
of sudden cardiac death (SCD), particularly prevalent among 
adolescents and young adults. This complex condition 
arises from interactions among various cell types, leading to 
a characteristic pathological state (1). Globally, unexplained 
left ventricular hypertrophy (LVH), a hallmark of HCM, 
is observed in approximately one in every 500 adults, 
representing 0.2% of the general population. This finding 

has been consistently reported across diverse regions, 
including the USA, Europe, Asia, and East Africa (2).  
The primary anatomical feature of HCM is asymmetric 
LVH, predominantly affecting the interventricular 
septum more than the left ventricular free wall (3-5). This 
hypertrophy stems from an increase in myocyte size rather 
than myocyte number and is accompanied by extensive 
myocardial fibrosis. The fibrotic changes are not only 
widespread throughout the myocardial interstitium but also 
manifest in discrete foci (6). Clinically, HCM presents with 
a spectrum of symptoms, including amaurosis, syncope, 
and chest tightness due to outflow tract obstruction. Other 
manifestations include chest pain, often attributed to 
relative myocardial ischemia and hypoxia, and palpitations, 
commonly resulting from atrial fibrillation or other 
malignant arrhythmias (7). If left unaddressed, HCM may 
progress to heart failure (HF) and is a potential precursor to 
SCD (8). This progression underscores the critical need for 
early detection and effective management of this condition.

While echocardiography and other imaging techniques 
can diagnose HCM by detecting a left ventricular end-
diastolic wall thickness exceeding 13 mm, these methods 
present several limitations (9). Differentiating HCM from 
ventricular hypertrophy due to pressure overload can 
be challenging with imaging alone, as both conditions 
may appear similar (10). Notably, cardiac hypertrophy 
in HCM can have a late onset and may not reach the 
13 mm diagnostic threshold (11). Moreover, a subset of 
patients exhibits a positive genotype for HCM but lacks 
corresponding phenotypic expressions (12), suggesting that 
the phenotype may emerge later or remain unexpressed 
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in some individuals. Gene detection plays a crucial role 
in HCM diagnosis. Research indicates that about 60% 
of HCM cases result from mutations in eight sarcomere-
associated genes: MYH7, MYBPC3, ACTC1, TPM1, MYL2, 
MYL3, TNNI3, and TNNT2 (13). Furthermore, mutations 
in non-sarcomeric protein genes have been identified in 
approximately 5% of patients with unexplained HCM by 
a molecular genetic study (14). Variability in phenotype 
expression among first-degree relatives of HCM patients 
highlights the potential influence of modifier genes, a 
domain that remains inadequately explored (15,16). This 
genetic complexity underscores the need for comprehensive 
genetic analysis in the assessment and management  
of HCM.

Pulmonary hypertension (PH) is clinically defined by 
a resting mean pulmonary artery pressure of 20 mmHg 
or higher (17-19). The World Health Organization 
categorizes PH into five distinct groups: pulmonary arterial 
hypertension (PAH), PH due to left heart disease, PH 
caused by chronic lung conditions, chronic thromboembolic 
PH (CTEPH), and PH resulting from unclear or 
multifactorial causes (17). Common symptoms associated 
with PH encompass exertional dyspnea, fatigue, weakness, 
anginal pain, precursors to syncope, and syncope itself (20). 
Diagnostic routines for suspected PH cases typically include 
electrocardiography, chest radiography, and pulmonary 
function tests (21). PH, a life-threatening condition, is 
linked to elevated mortality rates across all its classifications 
and etiologies (22). It is estimated to affect about 1% of the 
global population, with over half of HF patients potentially 
impacted (21). The coexistence of PH in patients with 
HCM is recognized; however, its clinical implications, 
pathophysiological mechanisms, effect on disease 
progression, response to therapies, and prognostic outcomes 
have only recently started to be understood (23-25).  
HCM concurrent with PH is known to elevate risks for 
thromboembolic events, atrial fibrillation, and HF (25). A 
study indicated that HCM patients with PH face higher 
incidence rates and mortality than those without PH, 
establishing PH as an independent risk factor for adverse 
outcomes in HCM (23). Current research offers preliminary 
insights into the mechanisms underlying the combination 
of obstructive and non-obstructive HCM with PH, noting 
asymmetric ventricular septal hypertrophy and diastolic 
dysfunction due to ventricular non-compliance, coupled 
with varying degrees of mitral regurgitation. In obstructive 
HCM, the heightened atrial pressure results from left 
ventricular outflow tract (LVOT) obstruction leading to 

diastolic dysfunction and mitral regurgitation. Conversely, 
in non-obstructive HCM, the primary cause of increased 
atrial pressure is diastolic dysfunction (24,26). The interplay 
between post-capillary and precapillary pressures also plays 
a role in HCM patients with PH (27). Nevertheless, the 
full scope of the underlying mechanisms and prognostic 
significance of the concurrent occurrence of HCM and PH, 
particularly in terms of targeted gene identification, remains 
an area necessitating further exploration.

In our comprehensive analysis, we meticulously examined 
two robust datasets, GSE36961 and GSE113439, to identify 
key genetic players in the overlapping pathology of HCM 
and PH. Through this examination, we pinpointed fourteen 
pivotal hub genes. To further validate these findings, we 
utilized three additional datasets, GSE35229, GSE32453 
and GSE53408, reinforcing the significance of our initial 
observations. Notably, among these hub genes, SPP1 
emerged as the most significant differentially expressed gene 
(DEG), suggesting its pivotal role in the joint manifestation 
of HCM and PH. Delving deeper, we embarked on drug-
gene interaction (DGI) analyses to unlock the therapeutic 
potential of SPP1. This included evaluating the affinity 
and interaction between small molecule drugs and the 
proteins encoded by SPP1 through advanced molecular 
docking techniques. Our exploratory efforts have not only 
shed light on the genetic landscape underlying HCM and 
PH but have also paved the way for innovative therapeutic 
strategies. By highlighting SPP1’s role and identifying 
potential drug candidates, this study marks a significant 
stride towards developing tailored treatment options for 
patients suffering from the dual burden of HCM and PH. 
We present this article in accordance with the STREGA 
reporting checklist (available at https://jtd.amegroups.com/
article/view/10.21037/jtd-23-1822/rc).

Methods

Data acquisition

Gene expression profiles (GSE36961, GSE35229, 
GSE113439, GSE53408) were downloaded from Gene 
Expression Omnibus (GEO) database (http://www.
ncbi.nlm.nih.gov/geo/). The test samples of these gene 
expression profiles were of human origin. GSE36961 
and GSE113439 were obtained to screen DEGs, while 
GSE35229 and GSE53408 were obtained to validate 
DEGs. GSE36961 contained 106 HCM and 39 non-HCM 
samples. GSE113439 contained fifteen PH and eleven 

https://jtd.amegroups.com/article/view/10.21037/jtd-23-1822/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-23-1822/rc
http://www.ncbi.nlm.nih.gov/geo/
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non-PH samples. In the validation dataset, nine HCM 
and two non-HCM samples were obtained in GSE35229. 
GSE53408 dataset was generated from PH (twelve samples) 
and matched unaffected tissue (eleven samples). We added 
another gene expression profile (GSE32453) to further 
validate DEGs. GSE32453 contained eight HCM and three 
non-HCM samples. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Identification of DEGs

GEO2R based on R language “limma” package, is a 
function recently updated by the GEO. It was used to 
screen DEGs by calculating and visualizing the differential 
expression multiple [settings: P<0.05, absolute fold change 
(FC) ≥1.5]. Volcano plot and hierarchical clustering were 
analysed and performed by the Hiplot platform (https://
hiplot.cn/), which was an online diagram tool.

Functional enrichment analysis

Gene Ontology (GO, http://www.geneontology.org) and 
Kyoto Encyclopaedia of Genes and Genomes database 
(KEGG, http://www.genome.jp/kegg/) was used to classify 
the identified genes. Biological process (BP), molecular 
function (MF) and cellular component (CC) were identified 
as well as the pathways associated with the DEGs in the 
most significant modules.

Establishment of protein-protein interaction (PPI) network 
of DEGs

Search Tool for the Retrieval of Interacting Genes/Proteins 
database (STRING; version 12.0; http://string-db.org/) 
was used to construct PPI networks, which was a database 
for online analysis of protein interactions. Among these 
interactions, PPI plays a particularly important role due to 
their versatility, specificity, and adaptability.

Filtering and analysis of hub genes

The PPI networks were analysed by Cytoscape (version 
3.6.1). According to the network topology, hub genes were 
screened by CytoHubba plug-in of Cytoscape. Maximal 
Clique Centrality (MCC), Maximum Neighborhood 
Component (MNC), Degree, Stress and Betweenness 
algorithms were used to identify hub genes. 

Construction of a co-expression network and module 
analysis

GeneMANIA (http://www.genemania.org/) was used 
to construct co-expression networks of hub genes. 
GeneMANIA is a reliable tool for inferring gene function 
and conducting functional analysis of hub genes. 

Validation of hub genes

The GSE35229 and GSE53408 datasets were applied 
to confirm the expression of the selected hub genes. 
The GSE35229 dataset consisted of nine HCM and 
two non-HCM (NHCM) samples. GSE53408 consisted 
of twelve PH tissue and eleven non-PH (NPH) tissue 
samples. Another gene expression profile (GSE32453) 
was downloaded to further validate DEGs. GSE32453 
contained eight HCM and three non-HCM samples. 
Normality testing was initially conducted on the expression 
levels of the obtained hub genes. Heatmaps and bean plots 
were used for visual analysis.

DGI of potential genes

The DGI database (DGIdb: http://www.dgidb.org) was 
used to explore that how mutant genes can be targeted 
for therapy or drug development according to exploit the 
available resources. The significant genes, as the potential 
targets, were pasted into the drug-gene database to search 
for existing drugs or compounds. These potential genes 
with matching drugs were obtained.

The correlation between drugs and diseases was 
measured by network distance (28,29). Based on the drug 
target pairs in the Drugbank database and the PPI network 
(threshold score of 400) in the STRING database, the 
similarity between drugs and diseases was calculated. We 
used a similar method to evaluate distance between drugs 
and HCM with PH. Here, we gave S (the set of hub genes), 
D (degree of hub genes nodes in PPI), T (the set of drug 

target genes), and distance ( ),d s t  the shortest path length 

between s (HCM with PH related genes in our case, s S∈ ) 
and t (drug target in our case, t T∈  as below:

( ) ( )1, min ,s St T
d s T d s t

T
ω∈∈

= +  ∑ 	 [1]

where ω, the weight of a target gene, was defined as 

( )ln 1Dω = − +  if the target was one of the HCM with PH 

https://hiplot.cn/
https://hiplot.cn/
http://www.geneontology.org
http://www.genome.jp/kegg/
http://string-db.org/
http://www.genemania.org/
http://www.dgidb.org
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related genes; else, 0ω = .
To evaluate the importance of the association between 

drugs and HCM with PH, we generated a simulated 
reference distance distribution corresponding to drugs. A 
set of proteins (represented as R) matching the size of drug 
targets were randomly selected in the network. Then the 
distance ( ),d S R  was calculated between these simulated 
drug targets (represented simulated drugs) and HCM 
with PH related genes (defined by Eq. [1]). A reference 
distribution was generated by repeating the process 
10,000 times. Average of reference distribution ( ),d S Rµ  
and standard deviation ( ),d S Rσ  was used to convert the 
observation distance corresponding to the real drug into a 
normalized distance, which is the approximate value:

( ) ( ) ( )
( )

, ,
,

,
d

d

d S T S R
z S T

S R
µ

σ
−

= 	 [2]

We conducted visual analysis through online website 
(http://www.sxdyc.com/drugGeneset).

Molecular ligand docking analysis

The crystal structures of target proteins were downloaded 
from the RCSB Protein Data Bank (https://www.rcsb.
org/) and Uniprot (https://www.uniprot.org/). Molecular 
Operating Environment (MOE, version 2022.02) software 
was used for molecular docking. The binding activities of 
small molecule drugs and target proteins were evaluated 
based on docking energy values. Score <−5 was considered a 
significant combination.

Statistical analysis

In this investigation, bioinformatics statistical evaluations 
were conducted utilizing the R programming environment 
(version 4.3.0) and the other aforementioned online 
analytical tools. A P value threshold of less than 0.05 was set 
to denote statistical significance.

Results

Identification of DEGs and functional enrichment analysis

A total of 629 DEGs were identified in GSE36961, in 
which 244 genes were upregulated while 385 genes were 
downregulated. A total of 3,113 DEGs were filtered from 
GSE113439. Volcano maps showed the total number of 

upregulated and downregulated DEGs (Figure 1A,1B). GO 
analysis showed that the DEGs between HCM group and 
NHCM group were significantly enriched in “inflammatory 
response”, “positive regulation of inflammatory response”, 
“extracellular space”, “extracellular exosome”, “protein 
binding” and “RAGE receptor binding” (Figure 1C). 
KEGG pathway enrichment analysis showed that the 
DEGs mainly played a role in pathways about “Phagosome”, 
“Apoptosis” and “Gap junction” in the HCM/NHCM 
comparison (Figure 1C). In the PH/NPH comparison, 
DEGs were closely related to “cellular response to 
DNA damage stimulus”, “protein transport”, “cytosol”, 
“nucleoplasm”, “protein binding” and “RNA binding” 
(Figure 1D). KEGG pathway enrichment analysis showed 
that DEGs in PH/NPH comparison were mainly clustered 
in “Nucleocytoplasmic transport”, “NOD-like receptor 
signalling pathway” and “Cell cycle” (Figure 1D).

Functional enrichment analysis of common DEGs

Subsequently, a total of 79 DEGs were found to be common 
between HCM and PH using the Venn diagram (Figure 2A).  
Heatmap showed the expression of the 79 DEGs in HCM/
NHCM group and PH/NPH group (Figure 2B). To 
further understand the function of the common DEGs, 
we performed GO and KEGG enrichment analysis. GO 
analysis showed that the common DEGs were significantly 
enriched in “positive regulation of tumor necrosis factor 
production”, “platelet-derived growth factor receptor 
signalling pathway”, “extracellular space”, “extracellular 
matrix”, “extracellular matrix structural constituent” and 
“receptor binding” (Figure 2C), while KEGG pathway 
enrichment analysis showed that the common DEGs were 
associated with “TGF-beta signalling pathway”, “Focal 
adhesion” and “PI3K-Akt signalling pathway” (Figure 2C).  
These  79  common DEGs may be  re la ted  to  the 
simultaneous occurrence of HCM and PH. 

Construction of PPI network and identification of hub genes

The PPI network was constructed by STRING to explore 
the interactions between proteins encoded by those common 
DEGs (Figure 3A). We found that 79 common DEGs 
formed a complex interaction network, including 79 nodes  
and 101 edges. The average node degree was 2.56, and 
the local clustering coefficient was 0.372. The expected 
number of edges for this analysis was 37. Moreover, the 

http://www.sxdyc.com/drugGeneset
https://www.rcsb.org/
https://www.rcsb.org/
https://www.uniprot.org/
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Figure 1 Enrichment analysis of DEGs in HCM/NHCM and PH/NPH. (A) Volcano plot of DEGs in HCM/NHCM; (B) Volcano plot of 
DEGs in PH/NPH; (C) GO and KEGG analysis of DEGs in HCM/NHCM; (D) GO and KEGG analysis of DEGs in PH/NPH. HCM, 
hypertrophic cardiomyopathy; NHCM, non-HCM; FC, fold change; PH, pulmonary hypertension; NPH, non-pulmonary hypertension; 
BP, biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes; MRNA, 
messenger RNA; DEGs, differentially expressed genes; GO, Gene Ontology.
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Figure 2 Identification of DEGs between HCM/NHCM and PH/NPH. (A) Venn diagram of overlap of common DEGs between HCM/
NHCM and PH/NPH; (B) the heatmap and cluster analysis of common DEGs. Upregulated DEGs were in red, and downregulated DEGs 
were in blue. (C) GO and KEGG analysis of common DEGs. PH, pulmonary hypertension; NPH, non-pulmonary hypertension; HCM, 
hypertrophic cardiomyopathy; NHCM, non-HCM; BP, biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; TGF, transforming growth factor; ECM, extracellular matrix; DEGs, differentially expressed genes; 
GO, Gene Ontology.
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Figure 3 Construction of PPI network and identification of hub genes. (A) Mapping of DEGs onto a composite network based on predicted 
PPI; (B) the top 20 DEGs were screened by MCC, MNC, Degree, Stress and Betweenness algorithms of the cytoHubba plug-in; (C) Venn 
diagram of overlap of 20 DEGs among 5 algorithms. MCC, Maximal Clique Centrality; MNC, Maximum Neighborhood Component; PPI, 
protein-protein interaction; DEGs, differentially expressed genes.
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PPI enrichment P value was less than 1.0×e−16, which 
indicated that the common DEGs were at least partially 
biologically connected as a group. Then the PPI network 
file was subsequently imported in Cytoscape. The top 20 
DEGs were screened by MCC, MNC, Degree, Stress 
and Betweenness algorithms of the cytoHubba plug-in. 
We focused on the pivotal hub genes identified by five 
distinct, yet complementary, bioinformatics algorithms. 
This rigorous, multi-dimensional approach led us to the 
discovery of fourteen shared hub genes including POSTN, 
TYROBP, JAK2, THBS1, COL6A3, CD163, SPP1, CYBB, 
RAC2, PTPN11, FMOD, PDGFRA, TFRC and F13A1 
(Figure 3B,3C). 

The co-expression network and related functions of hub 
genes were revealed through the GeneMANIA database. 
The complex PPI network showed 50.56% co-expression, 
26.63% physical interaction, 20.67% prediction, 2.10% co-
localization, and 0.04% shared protein domains (Figure 4A). 
GO analysis showed that in terms of biological processes, 
the most important GO terms were “positive regulation 
of tumor necrosis factor production” and “platelet-
derived growth factor receptor signalling pathway”. In 
terms of cell components, it mainly involved extracellular 
components. GO terms about molecular functions were 
“protein kinase binding” and “peptide hormone receptor 
binding” (Figure 4B). KEGG pathway enrichment analysis 
showed that 14 hub genes significantly enriched in fifteen 
signalling pathways, which were closely related to “Focal 
adhesion”, “PI3K-Akt signalling pathway”, “ECM-receptor 
interaction”, TGF-beta signalling pathway”, “Leukocyte 
transendothelial migration” and “Natural killer cell 
mediated cytotoxicity” (Figure 4B). 

Validation of hub genes

Among the fourteen hub genes, the expression of the five 
genes including POSTN, SPP1, COL6A3, PDGFRA and 
RAC2 were found to be statistically significant in two other 
validation databases (Figure 4C), in which SPP1 was the 
sole most significant DEG (P<0.05 and absolute FC ≥1.5) 
in both GSE35229 and GSE53408 compared to healthy 
tissue (Figure 4D-4G). GSE32453 was added to illustrate 
the important role of SPP1, which was consistent with the 
results (Figure S1). Therefore, our findings highlight that 
SPP1 can be a crucial gene closely associated with the co-
morbidity of HCM and PH.

DGI analysis of potential gene

SPP1 was loaded to DGIdb to search for potential drugs. 
We found that SPP1 had interactions with some exist small 
molecule drugs (Table 1). To figure out the relationship 
between drug targets and the disease protein (osteopontin, 
OPN, encoded by SPP1), we applied relative proximity 
values to quantitatively measure the network-based 
relationship between drugs and disease related protein. 
Through this procedure, we excluded those irrelevant 
drugs with HCM combined with PH in the network and 
constructed a rank list of the proximal drugs (Figure 5,  
Table 2). We then selected the top ten drugs with the 
shortest distance and five drugs obtained from the DGIdb 
for subsequent analysis.

The molecular docking landscape on potential drugs 
against HCM combined with PH

We searched for the optimal conformation for the 
interaction between small molecule drugs and target protein 
through molecular docking. We downloaded the crystal 
structure of OPN (Uniprot ID: P10451) from the RCSB 
Protein Data Bank. MOE was used for molecular docking. 
Tacrolimus, ponatinib, bosutinib, dasatinib, doxorubicin and 
zanubrutinib were revealed as the top six candidate drugs to 
have a therapeutic potential on HCM combined with PH 
(Figure 6, Table 3). 

Discussion

HCM is a key risk factor for HF, characterized by abnormal 
myocardial enlargement due to increased myocardial cell 
size and non-myocyte proliferation (30,31). It is widely 
acknowledged that various mutations in gene coding regions 
may potentially cause HCM (32). Therefore, employing 
bioinformatics to screen, analyze, and identify significant 
genes for the early diagnosis and treatment of HCM is 
of paramount importance. PH serves as an independent 
predictor of all-cause mortality in both obstructive and non-
obstructive HCM cases. Pulmonary artery systolic pressure 
(PASP), as a non-invasive and readily accessible method, 
plays a crucial role in estimating pulmonary artery pressure. 
Elevated PASP levels are known to predict mortality in 
HCM patients and aid in stratifying embolism risk (25). 
In a pivotal study, Ahmed et al. explored the prevalence of 
PH in obstructive HCM patients undergoing septectomy, 

https://cdn.amegroups.cn/static/public/JTD-23-1822-Supplementary.pdf
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investigating their survival rates and the postoperative 
progression of PH. The study unveiled that preoperative 
PH independently correlates with increased late mortality 
post-septectomy, and the magnitude of preoperative 
right ventricular systolic pressure aligns with reduced 
postoperative pulmonary pressure (33). Furthermore, 
Chakraborty et al. examined the influence of PH on 
hospitalization outcomes among HCM patients admitted 
for acute decompensated HF or cardiogenic shock. Their 
findings suggest that PH in HCM patients is linked with 
heightened incidence rates, including an increased risk 
of transient ischemic attack and respiratory failure (34). 
Collectively, these insights affirm PH as a recognized 
complication of HCM and a strong mortality predictor.

The utilization of bioinformatics for identifying key 
genes in HCM combined with PH is not only pivotal 
for diagnosis and treatment but also enhances our 
comprehension of the disease’s pathogenesis. A notable case 
report involving a male Caucasian patient with recurrent 
c.1168G>A (p.Ala390Thr) and a novel biallelic missense 
variant c.2758T>C (p.Tyr920His) in the VARS2 gene, as 
revealed by whole exome sequencing, exemplifies this. The 
patient presented with clinical symptoms of HCM and PH. 
The VARS2 gene, known for encoding mitochondrial Valyl-
tRNA synthase, saw an expansion in its mutation spectrum 
and phenotypic expression with this new discovery (35). 
Another gene, TMEM70, typically associated with nuclear 
adenosine triphosphate (ATP) synthase deficiency, leads 

Table 1 The DGI of potential genes

Gene Drugs Mechanism Interaction score

SPP1 Gentamicin Gentamicin is an aminoglycoside used to treat a wide variety of aerobic infections in the body 0.98

Wortmannin Wortmannin is a steroid metabolite of Penicillium funiculosum and Talaromyces wortmannii 
fungi. This drug acts as a nonspecific, covalent inhibitor of PI3Ks

0.74

Tacrolimus Tacrolimus is a calcineurin inhibitor used to prevent organ transplant rejection and to treat 
moderate to severe atopic dermatitis

0.61

DGI, drug-gene interaction; PI3Ks, phosphoinositide 3-kinase enzymes.

Figure 4 The co-expression network and validation of hub genes. (A) The co-expression network and related functions of hub genes; (B) 
GO and KEGG analysis of hub genes; (C) Venn diagram of overlap among hub genes and two other validated datasets; (D) the heatmap and 
cluster analysis of POSTN, SPP1, COL6A3, PDGFRA and RAC2 in GSE35229. Upregulated DEGs were in red, and downregulated DEGs 
were in blue; (E) the heatmap and cluster analysis of POSTN, SPP1, COL6A3, PDGFRA and RAC2 in GSE53408. Upregulated DEGs were 
in red, and downregulated DEGs were in blue; (F) the expression of POSTN, SPP1, COL6A3, PDGFRA and RAC2 in GSE35229; (G) the 
expression of POSTN, SPP1, COL6A3, PDGFRA and RAC2 in GSE53408. ECM, extracellular matrix; TGF, transforming growth factor; BP, 
biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes; PH, pulmonary 
hypertension; NPH, non-pulmonary hypertension; HCM, hypertrophic cardiomyopathy; NHCM, non-HCM; GO, Gene Ontology; 
DEGs, differentially expressed genes.
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Table 2 The rank list of the proximal drugs

Drugs Distances P value FDR

Bosutinib 1.13 7.06E−09 3.87E−05 

Minocycline 1.37 2.48E−12 1.36E−08

Dextromethorphan 1.37 1.78E−13 9.78E−10

Ponatinib 1.40 1.09E−09 5.95E−06

Foreskin keratinocyte (neonatal) 1.40 1.62E−07 8.89E−04

Dasatinib 1.50 1.49E−10 8.17E−07

Zanubrutinib 1.53 1.58E−07 8.62E−04

Tamoxifen 1.56 7.32E−08 4.01E−04

Marimastat 1.61 3.11E−09 1.70E−05

Resveratrol 1.62 2.93E−10 1.60E−06

Acetylsalicylic acid 1.70 1.77E−08 9.68E−05

Zinc chloride 1.74 1.70E−21 9.34E−18

Zinc sulfate, unspecified form 1.74 1.70E−21 9.34E−18

Zinc 1.76 3.56E−26 1.96E−22

Zinc acetate 1.76 3.56E−26 1.96E−22

Guanosine-5'-diphosphate 1.77 2.09E−08 1.14E−04

Fostamatinib 1.84 5.97E−39 3.28E−35

Copper 1.84 3.10E−20 1.70E−16

Artenimol 1.89 2.48E−10 1.36E−06

FDR, false discovery rate.

Figure 5 Proximity between drug targets and disease proteins 
(OPN, encoded by SPP1). OPN, osteopontin.

to a distinct phenotype characterized by severe neonatal 
hypotonia, HCM, facial dysmorphisms, and acute lactate 
acidosis. Catteruccia et al. highlighted that severe persistent 
pulmonary hypertension of the newborn (PPHN) was 
observed in children with TMEM70 deficiency. Intriguingly, 
PPHN can manifest in these children even in the absence of 
apparent cardiomyopathy, thus serving as an early indicator 
and diagnostic clue. This finding broadens both the clinical 
and genetic spectrum of the syndrome (36), emphasizing the 
complexity and the interconnectedness of genetic factors in 
HCM and PH.

In our integrative bioinformatics analysis, we identified 
SPP1 as a key hub gene co-expressed in both HCM and 
PH. SPP1 encodes OPN, a primary non-collagenous bone 
protein that tightly binds to hydroxyapatite, playing a crucial 
role in the mineralized matrix and cell-matrix interactions. 
As a cytokine, OPN is pivotal in type I immunity and is 
expressed in diverse tissues, including epithelia, kidneys, 
bones, and teeth, and is detectable in all bodily fluids such 
as blood (37). OPN is implicated in numerous diseases, 
including myocardial infarction, atherosclerosis, kidney 
injury, diabetes, and chronic inflammatory diseases, as 
observed in various animal models (38-41). Notably, 
OPN serves as a potent predictor of adverse outcomes in 
cardiovascular diseases (42-44). In myocardial infarction 
patients, macrophages infiltrating the myocardium are a 
major source of OPN (39). One previous study has shown 

that macrophages in the hearts of injured neonates secrete 
significant amounts of OPN, stimulating cardiac cells to 
enhance scar formation, left ventricular remodeling, and 
cardiac function post-myocardial infarction (45). In the 
diseased heart, myocardial cells are also a primary source 
of OPN, with its expression elevated in hypertrophic 
myocardium (46). OPN regulates the activation of the p38 
kinases and c-Jun N-terminal kinases (JNK), influencing 
myocardial hypertrophy development in response to chronic 
pressure overload in mice (47). Furthermore, plasma OPN 
levels are elevated in patients with coronary artery disease, 
inversely correlating with left ventricular ejection fraction 
(48-50). Plasma OPN and lymphocytes expressing OPN are 
associated with the severity of HF (51). Serum OPN levels 
also predict the incidence of ventricular fibrillation and 
tachycardia in chronic HF patients (52). Circulating OPN 
levels are linked to PH development in coronary heart 
disease patients (53) and increased OPN levels are reported 
in other heart diseases with concurrent PH and right  
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Figure 6 Binding sites and 3D binding patterns of OPN and small molecule drugs. (A) Binding sites and 3D binding patterns of OPN 
and tacrolimus; (B) binding sites and 3D binding patterns of OPN and ponatinib; (C) binding sites and 3D binding patterns of OPN 
and bosutinib; (D) binding sites and 3D binding patterns of OPN and dasatinib; (E) binding sites and 3D binding patterns of OPN and 
doxorubicin; (F) binding sites and 3D binding patterns of OPN and zanubrutinib. OPN, osteopontin.
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HF (54). Elevated circulating OPN can prognosticate 
right ventricular dysfunction and remodeling in PAH  
patients (55). The accumulating evidence underscores 
OPN’s role as an effective biomarker and mediator for 
cardiovascular disease, PH progression, severity, and 
prognosis (37). Given that OPN is a secreted circulating 
protein, it offers the advantage of non-invasive assessment 
through peripheral blood sampling (56).

In our investigation, we utilized datasets GSE36961 and 
GSE113439 to identify DEGs associated with HCM and 
PH. After comprehensive functional annotation, hub gene 
identification, and co-expression analysis, we pinpointed 
fourteen hub genes. Among these, SPP1 consistently 
demonstrated significant upregulation in GSE35229, 
GSE32453 and GSE53408 datasets, indicating its potential 
as a therapeutic target for HCM combined with PH. To 
explore treatment possibilities, we executed drug prediction 
and small molecule docking simulations. This led to the 
identification of several potential therapeutic agents, 
including tacrolimus, ponatinib, bosutinib, dasatinib, 
doxorubicin, and zanubrutinib. Tacrolimus, known for 
its immunosuppressive properties, has shown promise in 
preclinical models where activation of bone morphogenetic 
protein (BMP) signalling and pharmacological application 
of tacrolimus ameliorate right ventricular function by 

diminishing right ventricular afterload (57). Additionally, 
tacrolimus has stabilized conditions in patients with end-
stage PAH (57). Ponatinib, bosutinib, and dasatinib, 
primarily used in the treatment of chronic myeloid 
leukemia, have also shown potential. For instance, low-
dose dasatinib has been effective in improving HCM 
in Noonan syndrome with multiple lentigines (58). 
However, it is important to note that dasatinib may cause 
pulmonary vascular injury, induce endoplasmic reticulum 
(ER) stress, and elevate mitochondrial reactive oxygen 
species (ROS) production, thereby increasing the risk of 
developing PH (59). Zanubrutinib, utilized in treating 
B-cell malignancies such as chronic lymphocytic leukemia 
and small lymphocytic lymphoma (60), along with 
doxorubicin, an anti-tumor antibiotic that inhibits RNA 
and DNA synthesis, have also been identified as potential  
treatments (61). These drugs, selected based on molecular 
docking results, offer promising therapeutic avenues for 
HCM combined with PH, although their efficacy and safety 
need further validation in clinical settings.

While our study offers novel insights and potential 
therapeutic targets for HCM combined with PH, it also 
acknowledges certain limitations. The primary gene of 
interest, SPP1, along with the OPN protein it encodes, 
were identified through bioinformatics analysis. However, 
their eff﻿icacy as therapeutic targets requires further clinical 
validation. Additionally, the specific effectiveness of the 
identified drugs—selected through molecular docking 
simulations—on HCM combined with PH demands 
thorough clinical evaluation. While these drugs present 
promising avenues for treatment, their actual impact on 
patient outcomes in real-world clinical scenarios remains to 
be ascertained.

Conclusions

In conclusion, this integrative bioinformatics study 
establishes a foundational framework by pinpointing 
potential biomarkers and guiding the development of 
clinical interventions for HCM coexisting with PH. Our 
findings underscore the importance of SPP1 as a crucial 
gene in the progression of this comorbidity. Furthermore, 
the drugs we identified, namely tacrolimus, ponatinib, 
bosutinib, dasatinib, doxorubicin, and zanubrutinib, 
emerge as promising candidates for targeting this specific 
pathological nexus. This research not only contributes 
to the understanding of the molecular interplay in HCM 
and PH but also opens avenues for future clinical trials to 
validate these potential therapeutic agents.

Table 3 The results of MOE

Drugs Score (OPN)

Tacrolimus −6.7 

Ponatinib −5.95

Bosutinib −5.87

Dasatinib −5.85

Doxorubicin −5.63

Zanubrutinib −5.53

Idarubicin −5.32

Gentamicin −5.06

Minocycline −4.89

Tamoxifen −4.88

Wortmannin −4.41

Marimastat −4.36

Dextromethorphan −4.24

Resveratrol −4.24

MOE, molecular operating environment; OPN, osteopontin.
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