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A B S T R A C T

With the onset of the COVID-19 pandemic, the automated diagnosis has become one of the

most trending topics of research for faster mass screening. Deep learning-based

approaches have been established as the most promising methods in this regard. However,

the limitation of the labeled data is the main bottleneck of the data-hungry deep learning

methods. In this paper, a two-stage deep CNN based scheme is proposed to detect COVID-

19 from chest X-ray images for achieving optimum performance with limited training

images. In the first stage, an encoder-decoder based autoencoder network is proposed,

trained on chest X-ray images in an unsupervised manner, and the network learns to

reconstruct the X-ray images. An encoder-merging network is proposed for the second

stage that consists of different layers of the encoder model followed by a merging network.

Here the encoder model is initialized with the weights learned on the first stage and the

outputs from different layers of the encoder model are used effectively by being connected

to a proposed merging network. An intelligent feature merging scheme is introduced in the

proposed merging network. Finally, the encoder-merging network is trained for feature

extraction of the X-ray images in a supervised manner and resulting features are used in

the classification layers of the proposed architecture. Considering the final classification

task, an EfficientNet-B4 network is utilized in both stages. An end to end training is per-

formed for datasets containing classes: COVID-19, Normal, Bacterial Pneumonia, Viral

Pneumonia. The proposed method offers very satisfactory performances compared to

the state of the art methods and achieves an accuracy of 90:13% on the 4-class, 96:45%

on a 3-class, and 99:39% on 2-class classification.
� 2021 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy

of Sciences. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The novel Coronavirus disease 2019 also known as COVID-19

first appeared in Wuhan, Hubei, China in December 2019 [1],

and from then on it turned into a global pandemic affecting

millions of lives worldwide. COVID-19 is a novel severe acute

respiratory syndrome coronavirus which mostly affects the

lungs in the human body [2]. Researchers have found

ground-glass opacities, consolidation, and lower zone pre-

dominance [3] in chest X-rays of COVID-19 patients. Because

of these features in the lung scans, it has been shown that

chest X-ray can be used to detect the virus [4] in patients.

Deep learning based methods have seen significant appli-

cation in chest X-ray image related tasks such as: Nodule

classification [5], Tuberculosis detection [6], rib suppression

[7], Pneumonia detection [8] and Lung segmentation [9].

Even though CT images can also be used for the task of

detecting COVID-19, in comparison to the CT imaging tech-

nique, X-ray imaging technique is less expensive and more

widely available [10]. X-ray imaging can also be used for mass

testing at a faster rate and that is where machine learning

technologies can truly contribute. Moreover, X-ray imaging

offers the ease of interpretation for various chest related

problems. As such, X-ray is used instead of CT images in this

study.

One of the main challenges currently with detecting

COVID-19 from chest X-ray images using deep learning is

the relatively small size of labeled data available. In the deep

learning literature, it has been observed that in these cases

unsupervised learning can be first used to learn representa-

tions which later makes it possible for the supervised learn-

ing to converge and generalize even on a small labeled

dataset. It was shown by [11] that, using a deep convolutional

autoencoder for unsupervised image feature learning made it

possible to detect lung nodules with only a small amount of

labeled data. It was proposed by [12] that, using a multi-

scale representation learning method via sparse autoencoder

networks to capture the intrinsic scales in medical images

leads to better performance in the classification task. In

pathology detection conditional variational autoencoder was

used by [13] to learn the reconstruction and encoding distri-

bution of healthy images and the encoder part used these

learned features later on for classification task.

Autoencoder-based reconstruction techniques are already

being used on chest CT images for COVID-19 detection.

Researchers have successfully used U-Net-based architec-

tures [14] to segment multiple COVID-19 infection regions in

chest CT images. Some studies [15,16] have shown the use

of encoder networks in their system to classify COVID-19

infection from CT images. The method proposed in [17] uti-

lizes contrastive domain invariance enhancement techniques

on the output of the feature extractor to further boost their

classification performance and to make the systemmore gen-

eralized for detecting COVID-19 in CT images.

Given the success of deep learning-basedmethods in chest

X-ray image-related tasks, it is only natural to use it for clas-

sifying COVID-19 from chest X-ray images. A lot of research is

being done in this field. COVID-Net [18], a deep convolutional

neural network trained for classifying COVID-19 in chest X-
ray images on a dataset containing 3 classes (normal, pneu-

monia, and COVID) achieved a 93.3% accuracy across the

classes. DarkCovidNet another CNNmodel for this task devel-

oped by [19] was trained on both 3 classes and 2 classes

(COVID and Non-COVID) and attained an accuracy of 87.02%

and 98.08% respectively. Another CNN model based on the

Xception [20] architecture named CoroNet [21] was trained

on 4 classes (normal, COVID, bacterial pneumonia and viral

pneumonia), 3 classes and 2 classes and its accuracy for each

of this case was 89.6%, 95% and 99%. A method of segmenting

lungs from a chest X-ray image and using random patches

from that segmented image to train a pre-trained ResNet-18

[22] to classify COVID-19 was proposed by [23]. Using a small

dataset of 50 normal and 50 COVID-19 patients images, [24]

trained an InceptionV3, ResNet-50 and Inception-ResnetV2

models and got an accuracy of 97%, 98% and 87% respectively

for 2 classes. To get a very satisfactory COVID-19 image detec-

tion performance from a relatively small number of the avail-

able training dataset is still a difficult and open-ended

challenge.

In this study, in order to overcome the problem of getting a

very accurate trained model from the given small dataset of

patient’s chest X-ray images, a two-stage training scheme is

developed for detecting COVID-19. Firstly an encoder-

decoder based autoencoder network is designed and trained

in an unsupervised manner using the X-ray images. Here,

the autoencoder network learns to reconstruct the given

image and due to the use of an overall optimization scheme,

it is expected that the encoder part can preserve detailed

information of the image in its different levels and learn rel-

evant features for our dataset. Then the different levels of the

encoder part of this autoencoder are connected to the pro-

posed merging network to form an encoder- merging network

where the encoder network part is initialized with the

weights learned in the first stage. The proposed merging net-

work is developed with unique Merging-blocks (M-blocks)

that receive inputs from two different levels of the encoder

and merge it in an intelligent way. These M-blocks are

arranged in a tree pattern. The encoder-merging network

and it is trained in a supervised manner for feature extraction

of the X-ray images. The features obtained at the end of this

encoder-merging network are passed through densely con-

nected classification layers and these layers make the final

prediction. The unique methodology of the proposed method

is presented in Fig. 1. The proposed two stage training scheme

is different from the traditional approach as instead of initial-

izing our encoder model with random weights or transfer

learning from an unrelated dataset, the encoder model first

learns about the features of the dataset in the unsupervised

training stage and it is later initialized with this learned

weight in the second stage. The unsupervised learning using

the autoencoder and initializing our encoder-merging classifi-

cation network with the learnedweights enables the model to

converge and generalize on a small dataset of labeled chest X-

ray images containing the classes: Normal, COVID-19, Bacte-

rial Pneumonia, Viral Pneumonia. An end to end training of

the classification network is performed on a balanced dataset

of these classes. The addition of this unsupervised learning at

the beginning and the use of our uniquely designed encoder-



Fig. 1 – The novel approach of the proposed method is presented. In traditional approach images are passed through a

randomly initialized neural network model and the model learns to classify the images, in the proposed method there are

two phases of training. In the first phase an autoencoder model learns to reconstruct the input X-ray images. In the second

phase the encoder portion of the autoencoder is initialized with the weights learned in phase one and connected to a

proposed merging block network and this combined model is trained for the classification task.
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merging classification blocks result in improved performance

across all the traditional metrics.

2. Methodology

In the proposed method, for the purpose of COVID-19 image

classification, both unsupervised and supervised deep neural

network architectures are utilized in an effective way. The

major blocks involved in the proposed scheme are shown

in Fig. 2. First, a deep convolutional autoencoder network

is designed to perform unsupervised feature extraction from

a given chest X-ray image. Next a supervised deep CNN

architecture is designed utilizing the extracted first phase

features then using these features for supervised learning

was performed on the classification network. The classifica-

tion network is made up of uniquely de- signed smaller

blocks that are arranged in a tree style architecture. Both

these networks are trained on chest X-ray images. One

major challenge in this work is to handle the classification

task in case of limited number of training data, especially

for the COVID-19 cases. Hence, in order to obtain a better

trained model, prior to the network training stage, an effi-

cient feature extraction stage is incorporated. In view of

extracting spatial characteristics of the input image, we pro-

pose to utilize an unsupervised feature extraction stage

based on the autoencoder-decoder structure. The motivation

behind introducing such an additional encoder-decoder step

prior to the conventional classification stage is its capability

of preserving the detailed information of the given image in

its different levels. Since in an autoencoder-decoder struc-

ture, a given image needs to be reconstructed at the output
Fig. 2 – The proposed autoencoder framework consists of two-st

input X-ray images and (2) training the intermediate layers of t

stage) followed by the merging network. Output from the mergi

the final classification.
stage by using an overall optimization scheme, it is expected

that at the encoder stage, the spatial characteristics of the

input image is precisely captured. Hence, if features are

extracted from various levels of the encoder, the extracted

features can precisely represent a particular class with a bet-

ter inter-class separation. In the proposed scheme, in order

to effectively use the extracted features from various levels

of autoencoder, an efficient merging scheme with unique

Merging-blocks (M-blocks) is also developed. Use of these

merged features in the classification network helps in

obtaining better training even with a small dataset of labeled

chest X-ray images.

The basic steps of this methodology are shown in Fig. 2.

Fig. 2 represents the major blocks used in the proposed

method where the first block corresponds to the proposed

unsupervised feature extraction stage. In this stage, an archi-

tecture with an EfficientNet-B4 model backbone is used to

design an encoder-decoder model that performs optimization

for each given input image and results in the decoded image.

In this process, the encoder extracts different kinds of infor-

mation from various perspectives which are then encoded

in the encoder. These different levels of encoder containing

different kinds of information are treated as useful features

to be used in the next stage. In Fig. 2, the next stage repre-

sents the feature merging block where features taken from

different levels of the encoder are efficiently merged by using

proposed merging blocks. As a result, features collected from

different levels of the encoder are merged in a single feature

vector which is then finally used in the classification layer

as shown in Fig. 2. These different stages of training are

described in the following sections.
age training: (1) training the autoencoder network using the

he encoder network (utilizing weights obtained in the first

ng network is passed to a classification network that makes
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2.1. Preprocessing

Prior to using the X-ray images in the deep neural models,

a two-stage pre-processing is performed on the images: resiz-

ing and normalizing. The input images are resized to 256x256

square images containing three channels. Then a min–max

normalization is applied on the resized input images. This

makes the training process faster and helps the model

converge more easily.

2.2. Proposed unsupervised feature learning architecture

The first phase of the system is an autoencoder that is trained

on the unlabeled chest X-ray images and it learns to recon-

struct the input images. Autoencoder algorithms are able to

use unsupervised learning method to automatically learn fea-

tures from unlabeled data [25] and they are specially useful in

the medical image analysis domain where there is a scarcity

of labeled data [11]. An autoencoder consists of two parts:

encoder and decoder. The encoder learns the representation

of a set of data to efficiently compress and encode it. And

the decoder part learns to take that encoded data and recon-

struct it as a representation that is as close to the original

input data as possible. While selecting a model for this, it is

important to note that at the first stage it will be used for

an encoder-decoder based feature extraction purpose, and

in the last stage, the same architecture will serve as a funda-

mental classification network. One of the goals is to select the

classification architecture in such a way so that two separate

architectures won’t be needed for these two different stages

which will unnecessarily increase the computational burden.

This is why in that case the target was to select one classifica-

tion network which could serve both purposes.

In deep convolutional autoencoders, the encoder part is

made by stacking convolution layers which are then followed

by pooling layers. As a result, the resolution of the input

image is gradually decreased and the channels are increased.

This property is similar to the conventional CNN architec-

tures used for classification tasks. Because of this similarity,

a conventional classification architecture can be used to

implement the encoder block. Among different types of deep

convolutional neural networks, the EfficientNet proposed in

[26], carefully balances network depth, width, and resolution

to obtain a better classification performance. In EfficientNet

architecture, a compound scaling scheme is proposed that

uniformly scales all dimensions of depth/width/resolution.

Such a compound scaling offers the advantage of focusing

on more relevant regions with greater object details and can

enhance the classification performance by a significant mar-

gin in comparison to that obtained by single dimension scal-

ing methods [26]. The compound scaling is defined as:

depth : d ¼ aU

width : w ¼ bU

resolution : r ¼ cU

s:t : a � b2 � c2 � 2

a P 1;b P 1; c P 1

ð1Þ

Here, u is a user-specified compound coefficient that con-

trols how many more resources are available for model scal-

ing and a, b, c are constants that can be determined by a
small grid search [26]. Depending on different scaling opera-

tions, there exist various versions of the EfficientNet model,

namely B0 to B7. In the proposed study, various EfficientNet

models are tested and finally the EfficientNet-B4 architecture

is chosen because of its consistently better performance con-

sidering the size of input image and the dataset.

For this purpose, different types of available deep convolu-

tional neural network architecture are tested and

EfficientNet-B4 [26] model proved to perform the best in terms

of accuracy. In the results and simulation section, this study on

how the performancewould have varied if another state of the

art architecture, such as- InceptionV3, Resnet50, VGG11, etc,

were used in the proposed scheme. At the first stage, the

EfficientNet- B4 model will be used as an encoder-decoder

block to get the optimumweights by utilizing different training

images. Once the weights of this encoder-decoder block are

optimized, these weights will be used as an initial weight at

the later stage where the classification task will be performed.

And the same encoder-decoder network will be trained at that

time in a supervised classification manner. For this reason,

using a higher performance accuracy model like the

EfficientNet-B4 model reduces computation complexity since

it’s used as both an encoder block and later as a classification

block. EfficientNet-B4 network balances between both these

tasks without compromising with performance accuracy. The

EfficientNet-B4 model was initialized using the pre-trained

weights of Imagenet [27] because the dataset used here is rela-

tively small to be used without Imagenet weights. The fully

connected layers at the bottom of the network were omitted

and outputwas taken from the last convolutional block so that

it can be used as the encoded data for the autoencoder. For an

input image size of (256, 256, 3) the encoder network produces

an encoded data of shape (8,8, 1792). The next part of the

autoencoder is the decoder. A decoder module was designed

to reconstruct the original input image of size (256, 256, 3) from

the encoded data of the shape of (8, 8, 1792). This is an opposite

operation of the encodermodel. A conventional CNN architec-

ture does not perform this kind of operation and as a result a

decoder is designed in the proposed scheme to reconstruct

the input image from the encoded data produced by the

EfficientNet-B4 encoder model. Further analytical details of

the decoder can be found in [28].The decoder model consisted

of 5 blockswhere each block startedwith a transpose convolu-

tional layer that upsampled the image by a factor of 2. Thiswas

followed by a convolutional layer that had the same number of

filters as the transposed convolutional layer. The detailed

architecture is presented in Fig. 3 and all the layers used in

the decoder model are presented in Table 1 with their corre-

sponding output shapes. At the end of the decoded model,

there is a convolutional layer with same number of channels

as the input image. This layer had a SELU activation function.

SELU is the scaled exponential linear unit activation function.

It is defined as:

x ¼ scale � x; whenx > 0

x ¼ scale � alpha � expðxð Þ � 1Þ; whenx < 0
ð2Þ

Here, scale and alpha are predefined constants with the

value: alpha = 1.67326324 and scale = 1.05070098 [29].

Even though the reconstructed X-ray image from this net-

work is not directly used, it is an important by-product of the



Fig. 3 – Model architecture of the proposed deep convolutional autoencoder.

Table 1 – The layers and their corresponding output shape for the proposed autoencoder model.

Encoder Feature Extraction Layers Decoder Layers

Layer (type) Output Shape Layer (type) Output Shape Layer (type) Output Shape

”Block2a expand activation” Layer (128,128,144) 1. Conv2D
Transpose Layer

(16,16,512) 8. Conv2D Layer (64,64,256)

”Block3a expand activation” Layer (64,64,192) 2. Conv2D Layer (16,16,512) 9. Conv2D Layer (64,64,256)
”Block4a expand activation” Layer (32,32,336) 3. Conv2D Layer (16,16,512) 10. Conv2D

Transpose Layer
(128,128,128)

”Block6a expand activation” Layer (16,16,960) 4. Conv2D
Transpose Layer

(32,32,256) 11. Conv2D Layer (128,128,128)

EfficientB4 Output Layer (8,8,1792) 5. Conv2D Layer (32,32,256) 12. Conv2D
Transpose Layer

(256,256,64)

6. Conv2D Layer (32,32,256) 13. Conv2D Layer (256,256,64)
7. Conv2D
Transpose Layer

(64,64,256) 14. Conv2D Layer (256,256,3)
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proposed architecture. It will not be possible to train the enco-

der network on a small dataset to learn relevant features

without this reconstructed X-ray image. Also, the quality of

the reconstructed X-ray indicates how well the autoencoder

network is converging. If the autoencoder network is trained

properly that will help the encoder to preserve detailed infor-

mation of the images in its different layers that can later be

used for the classification task.

As the autoencoder model learns to reconstruct the

input image, it does not require a label, and the entire pixel

space of the input image works as labels. So even with a

small amount of data and also with unlabeled data of other

chest X-ray images, this network can be trained and con-

verged. In the process of generating encoded data that is

useful for reconstruction, the encoder model manages to

perform information preservation from various perspectives

by learning unique features of the images in the dataset

and these features can then be used for the classification

purpose.
2.3. Proposed classification architecture

The next part of the study was to develop a convolutional

neural network architecture for the supervised learning

scheme of detecting COVID-19 patients from chest X-ray

images. At this stage, a classification network is required

where the problems to be dealt with are 2-class, 3-class, or

4-class. For this task as mentioned before outputs from the

different levels of the encoder part were extracted out from

our autoencoder with the weights which were learned in

the previous step. Then the features from this encoder net-

work were used and passed through the classification net-

work. The different parts of the classification network are

specified below.

2.4. Feature extraction stage

The encoder was the EfficientNet-B4 model that had been

trained in the previous step. Since this model had learned



Fig. 4 – Structure of the M-blocks.
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to reconstruct chest X-ray images there were valuable fea-

tures in the intermediate layers of this model that could be

used for the purpose of the classification task. In general,

CNN models use pooling methods to decrease the input

image size which is followed by convolutional operations.

This is why outputs of the intermediate layers of each block

were extracted after the pooling operation from the encoder

model. One may extract features from different number of

layers of the encoder model. However, if too many layers

are chosen to converge or reduce the information obtained

from different layers to a single channel, it may require more

stages and if too small number of layers were taken, it may

not be capable of preserving information. Hence five (5) num-
Fig. 5 – Tree Structured Fea
ber of layers are chosen in this work considering that to be the

most suitable number.

2.5. Merging blocks (M-blocks)

For our classification network, information from different lay-

ers of the encoder is taken and reduced to a single channel so

that the classification task can be performed. In that case, one

major task is to reduce these five layers of information to one

layer and to serve this purpose, a unique block called M-

blocks is developed that merges features from two layers of

the encoder in an intelligent way and later merges features

from other M-blocks as well. The block takes two inputs of

a 3D tensor with the first one having double the height and

width of the second input. The first input is then passed

through a pooling layer that uses filter size of (2,2) and aver-

ages the value for each window. The output tensor from this

step has the same height and width as the second input and

these two tensors are then concatenated in the channels axis.

Then a convolutional operation is preformed on this concate-

nated tensor with a window size of (1,1) and with the number

of filters equal to the second inputs channel number. As a

result, the output shape of each M-block is the same as the

shape of the second input but it contains features from both

the inputs. The structure of this block is presented in detail in

Fig. 4. So this block merges features from two other layers and

then learns new features on top of them with the convolu-

tional layers.Fig. 5.

2.6. Tree structured feature merging network

The classification network is made with the combination of

the encoder model and the M-blocks. The M-blocks in the

classification network is connected in a tree network-style

architecture as presented in Figure 5. For n number of feature

extraction layers the network will have (n-1) stages with each

stage having one less M-block than the previous stage. The

last stage of this network will have a single M-block. In this

study, five feature extraction layers were used and this net-

work has four stages of M-blocks with the first stage taking

inputs from the intermediate layers of the encoder and it

has five blocks. The second stage of M-blocks takes input fea-

tures from the first stage and it has four blocks. It continues in

this fashion with the last stage having a single M-block with
ture Merging Network.
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output shape of (8, 8, 1792). Then a global average pooling is

performed on this tensor and it outputs a feature vector of

size 1792.

These features are then passed through two fully con-

nected dense neural networks with the first one having 1024

neurons and the second one has 512 neurons. After this, soft-

max activation is performed and classification is completed

using that prediction.

3. Result and discussion

In this section, the performance of the proposed method is

demonstrated considering different classification cases and

various performance measure criteria. Results found by the

proposed method are compared with that obtained by some

state-of-the-art methods. In what follows, first the dataset

and then the results with detailed analysis and comments

and presented.

3.1. Dataset

Due to its very recent spread, there is a huge scarcity of pub-

licly available chest X-ray images corresponding to COVID-19

patients. However, datasets for various other types of pneu-

monia and normal cases are available. Hence, in this

research, a combination of two publicly available datasets is

used to analyze the performance of the proposed method.

Pneumonia (both viral and bacterial) and normal chest X-

ray images were collected from [30], an open- sourced dataset

released on the Kaggle platform. The dataset contains 5,863

chest X-ray images with 4273 pneumonia images and 1590

normal images. Out of the 4273 pneumonia class images,

there were 2530 images of bacterial pneumonia and 1345

images of viral pneumonia.

For COVID-19 chest X-ray images, the dataset was col-

lected from Dr. Cohen’s [31] open-source Github repository.

The repository contains an open database of Covid-19 cases

with chest X-ray or CT images and is being updated regularly.

Chest X-ray images are largely compiled from websites such

as Radiopaedia.org, the Italian Society of Medical and Inter-

ventional Radiology, and Fig. 1.com [31]. During the time this

research was conducted, the repository contained 408 COVID-

19 chest X-ray images.

As the dataset was unbalanced, the classes containing a

higher number of images were downsampled to make the

dataset balanced. Thus, the final dataset consists of 408 bac-

terial pneumonia, 408 viral pneumonia, 408 normal, and 408

COVID-19 chest X-ray images. After that, these images were

randomly distributed into the train and test sub-folders, and

five different folds of the dataset were generated for cross-

validation. The training set consists of 1306 images of four

different classes and the test set contains 326 images, also

classified into four different classes. The train and test set

images were completely independent. Also, all the images

were resized to 256 � 256 pixels with a resolution of 96 dpi.

In this study two different views of chest X-ray images of

this repository are considered in this study: (1) standard fron-

tal PA (Posteroanterior) views and (2) standard AP (Anteropos-

terior) views. and AP Supine (Anteroposterior laying down)
views (the AP Supine view is avoided due to its confounding

image artifacts). The X-ray images of a patient acquired from

different views are found to be significantly different. The

information that was available in the repository was the total

number of people from whom the X-ray images were col-

lected. At the time we conducted the research, X-ray images

originate from 408 people of various hospitals across 26 differ-

ent countries. Unfortunately the person’s label was not avail-

able and thus we could not split the images on patient-level.

It is to be noted that while some X-rays of different views

might originate from a single patient, the number is not that

significant to impose a heavy data leakage and cause an over-

fitting problem. In order to ensure minimum data leakage and

address the over-fitting problem created by the dataset, in

each block of the merging network, a Batch Normalization

layer that has a regularization effect is used, and even in

the feature extractor, there is a batch normalization layer in

each block. Hence, in this study, the problem of over-fitting

is addressed with the unique learning method proposed in

the architecture and the use of the regularization layers.

It is expected that the proposed method can be found suit-

able for larger datasets as well where splitting the image on

patient-level can be addressed. This is left as a future work

depending on the availability of required larger datasets.

In Fig. 6 some samples of chest X-ray images from the pre-

pared dataset are shown.
4. Experimental setup

In the first phase of training using the autoencoders, the

encoder part was initialized with weights trained on the Ima-

genet dataset and the decoder part was randomly initialized.

This network was optimized on the mean square error loss

function with the Adam optimization algorithm. It converged

with 50 epochs of training with a batch size of 32. In the sec-

ond phase the encoder was initialized with the weights

learned from the first phase and the M-blocks were randomly

initialized. The hyperparameter values used while training

the classification model were: learning rate = 0.0001, epoch

= 40, batch size = 32. To avoid getting stuck on saddle points

in the loss plane learning rate reduction technique is used

in both the training phases. The proposedmodelswere imple-

mented with the Keras library using TensorFlow 2.0 backend.

The entire training and testing process was performed on

Google Colaboratory Server.
5. Performance evaluation

The proposed model is trained and tested on 5 fold cross-

validation data containing 3 class. For each of the test set Pre-

cision, Sensitivity, F1-score and Accuracy is calculated as the

performance metric and it can be seen in the Table 2.

From Table 2 it can be seen that the model got the highest

accuracy of 97.97% from fold 1 and the average accuracy for

all the 5 folds is 96.41%. The model had accuracy in the range

of 95.47% to 97.97% for all of the folds of data. Even the lowest

accuracy of 95.47% is still quite high. The same performance

metrics are also generated in a class-wise basis for all of the



Fig. 6 – Samples of chest X-ray images from prepared dataset.

Table 2 – Precision, Recall, F1-score and Accuracy across all 3 classes for the 5 folds of data.

Folds Precision (%) Recall (%) F1-score (%) Accuracy (%)

Fold 1 98.05 97.97 97.96 97.97
Fold 2 95.93 95.93 95.93 95.93
Fold 3 95.57 95.53 95.52 95.53
Fold 4 97.13 97.12 97.11 97.12
Fold 5 95.58 95.47 95.47 95.47
Average 96.45 96.41 96.39 96.41

Table 3 – Precision, Sensitivity, F1-score and Accuracy of the 3 classes for Fold 1.

Class Precision (%) Sensitivity (%) F1-score (%) Accuracy (%)

COVID19 98.79 100 99.39 100
Normal 100 93.90 96.86 93.90
Pneumonia 95.35 100 97.62 100
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folds. The class-wise result for fold-1 can be seen in the

Table 3.

As evident from Table 3, the model performed exception-

ally well in the COVID19 and Pneumonia class getting an

accuracy of 100% for both of these classes. While for the Nor-
mal class it gets an accuracy of 93.90%. These claims are fur-

ther supported by the confusion matrix generated for each of

the folds. The confusion matrix for fold-1 and fold-2 are pre-

sented in Fig. 7. From Fig. 7 it can be observed that the model

accurately predicted all the COVID-19 class images. But some



Fig. 7 – Confusion Matrix of the Test Set for 3-class Dataset.

Table 4 – Precision, Recall, F1-score and Accuracy across all 4 classes for the 5 folds of data.

Folds Precision (%) Recall (%) F1-score (%) Accuracy (%)

Fold 1 91.46 91.46 91.46 91.46
Fold 2 92.07 92.07 92.07 92.07
Fold 3 89.33 89.33 89.33 89.33
Fold 4 90.12 90.12 90.12 90.12
Fold 5 87.65 87.65 87.65 87.65
Average 90.13 90.13 90.13 90.13

Table 5 – Classwise result for 4-class dataset of the best performing Fold.

Class Precision (%) Sensitivity (%) F1-Score (%) Accuracy (%)

Bacterial Pneumonia 89.74 85.37 87.5 87.5
COVID19 100 100 100 100
Normal 96.25 93.9 95.06 95.06
Viral Pneumonia 84.09 90.24 87.06 87.06
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of the Normal class images were classified as the Pneumonia

class. While for fold-2, some of the Pneumonia class images

were classified as the Normal class.

The model is also trained on a 4 class dataset to separately

classify bacterial pneumonia and viral pneu- monia. The

same performance metrics from the 3-class setup is used in

this case as well. The result for cross validation testing is pre-

sented in Table 4 and the class-wise result is presented in

Table 5.

From these tables, it can be seen that the model gave con-

sistent performance in all of the folds and from the class-wise

results it can be seen that themodel exceptionally well for the

COVID-19 class and reasonably well for the Normal class. The

performance dropped a bit when differentiating between bac-

terial pneumonia and viral pneumonia class. On average, for

this 4 class dataset, the model achieved a classification accu-

racy of 90.13% for the five fold cross validated data. This

experimentation was done to see if the model can generalize
for all kinds of low data irrespective of the data source and

even if the data are very similar.

Even under these conditions, the model acquired an aver-

age accuracy of 90.13% which is a relatively good

performance.

The model is trained on a 2-class dataset as well. This

dataset was derived from the 3-class dataset where the Nor-

mal and Pneumonia classes were labeled as Non-Covid19.

The evaluation metric is the same for this task as well. This

detailed result is presented in Table 6.

From Table 6 it can be seen that the proposed method per-

formed well on both the classes with an average accuracy of

99.39%. These performances on both the 4 class and 2 class

dataset can be further inspected with the confusion matrices

presented in Fig. 8. As can be observed from the confusion

matrix of Fig. 8, that in the case of the two-class dataset al-

most all the test images were classified correctly except for

two Non-COVID images.



Table 6 – Precision, Sensitivity, F1-score and Accuracy of the 2 classes for Fold 1.

Class Precision (%) Sensitivity (%) F1-score (%) Accuracy (%)

COVID19 97.62 100 98.8 100
Non-Covid19 100 98.78 99.39 98.78
Average 99.19 99.39 99.19 99.39
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As mentioned in the methodology section, the

EfficientNet-B4 model was used as the encoder network in

this study. But other classification networks, such as Resnet-

50, InceptionV3, and the other variants of EfficientNet were

also tried as the encoder network and their results on the 4

class and 3 class datasets are compared in Table 7.

From Table 7 it can be observed that even though

EfficientNet-B4 performed the best, the other models also

provide similar performance which is further proof to the

credibility and robustness of the proposed scheme. However,

in the results section, in order to report the results in all

tables, EfficientNet-B4 is used in the proposed method as

the encoder network. To further justify the use of

EfficinetNet-B4 model as the feature extractor, the Cohen’s

Kappa score and the Mattheus Correlation Coefficient for

the models were evaluated in the 4-class classification

scheme using the proposed method. The detailed result of

this analysis is presented in Table 8.

To evaluate the effectiveness of the proposed method its

results were compared with a simple EfficientNet- B4 classifi-

cation network pretrained on Imagenet weights. This com-
Fig. 8 – Confusion Matrices of the Test

Table 7 – Comparisons of different models for 3-class and 4-cla

Classification Type Model Accuracy(%)

Efficient Net B1 Efficient Net B2 Efficient

3-class 96.75 97.56 97.56
4-class 90.85 91.31 92.07
parison is presented in Table 9. From the results it can be

observed that the use of the autoencoder network coupled

with the merging block resulted in a performance improve-

ment and this improvement can be specially seen in case of

the four class dataset where the classification task becomes

much more difficult. To further evaluate the performance of

the proposed methodology statistical significance test was

performed on the two methods mentioned in Table 9. McNe-

mar’s test [32] and Wilcoxon signed ranked test [33] are the

two statistical tests that were performed for this purpose.

The statistical significance tests are performed on the predic-

tion of the two methods mentioned in Table 9. The prediction

of each model on the 326 test set images are compared to the

ground label of each of these images and a binary label with

correct/incorrect decision is generated based on this compar-

ison. There are two distributions of this binary variable for the

two models and the disagreement between the two methods

is used as the variable for these statistical significance tests.

The test tries to see if it is possible to reject the null hypoth-

esis which states that there is no difference in the disagree-

ment between the two methods. The results of these tests
Set for 4-class and 2-class Dataset.

ss classification using our scheme.

Net B3 Efficient Net B4 Inception V3 Resnet 50 Vgg-11

97.97 97.15 96.75 95.53
92.38 88.11 89.33 86.89



Table 8 – Cohen’s Kappa score and Mattheus Correlation Coefficient of different models for the 4-class classification using the
proposed method.

Model Cohen’s Kappa Score Mattheus Correlation Coefficient

EfficientNet-B4 0.8861 0.8867
ResNet-50 0.7723 0.7727
InceptionNet-V3 0.8292 0.8321
Vgg-11 0.8252 0.8253
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are presented in Table 10. It can be observed from the results

that the P-value of McNemar’s test for the 4 class classifica-

tion scheme was 0.83825 and for the 3 class classification

scheme it was 0.68309. The P-value for the Wilcoxon signed

ranked test for the 4 class classification scheme was 0.638

and for the 3 class classification scheme, it was 0.084. As for

both the test in both classification schemes the P-value was

very close to 0.5 it can be inferred that the proposed method-

ology produced some degree of statistically significant results.

As previously mentioned in section 1, a lot of research

work is currently being done on classifying COVID-19 patients

from chest X-ray images. These studies are being conducted

on both 3-class and 2-class datasets with variation in the

number of images in the dataset and the model architecture.

A comparison of the proposed system with the existing liter-

ature is presented in Table 11. It is to be noted here that in

these different methods reported, the number of COVID-19

dataset X-ray images are different in each case.

In order to further prove the superiority of the proposed

method, a comprehensive comparative analysis has been per-

formed with the existing literatures that have publicly avail-

able implementation of their systems, on the common

evaluation protocol of: 408 Covid-19 + 408 Normal + 408 Viral

Pneumonia + 408 Bacterial

Pneumonia, 408 Covid-19 + 408 Normal + 408 Pneumonia,

408 Covid-19 + 816 Non-Covid. The results of this analysis

are presented in Table 12. From the analysis it can be

observed that the proposed method outperforms the other

methods in all three classification scheme.
Table 9 – Comparison between the Proposed scheme and the tr

Classification Scheme

Traditional Transfer Learning with pre-trained imagenet weight
Our proposed scheme with autoencoder + M-block

Table 10 – Statistical test results between the Proposed scheme

Classification Scheme McNemar’s test

P-Value Chi-square

4-class Dataset 0.83825 0.04166
3-class Dataset 0.68309 0.16666
6. Discussion

From the results presented in the previous section on differ-

ent classification tasks and various performance metrics,

the noteworthy observations are presented below.

� In 2-class, 3-class, and as well as in the 4-class setup, the

model can always detect COVID-19 classes with very high

accuracy.

� The model performance is relatively poor when differenti-

ating between the two classes of bacterial and viral pneu-

monia, as they look almost identical even to the human

eye.

Table 11 compares our proposed method with the existing

literature. It can be seen here that the model manages to per-

form better than the other methods presented in this table.

An average accuracy of 96.45% for the 3-class setup and

90.13% for the 4-class setup is found. While for the 2-class

setup it is 99.39%. It can be observed that most of the other

studies evaluated their system on 3-class and 2-class datasets

only. Another point to note here is that more COVID19 class

data is used in this study compared to the other studies men-

tioned. Using a VGG-19 basedmodel [34] acquired an accuracy

of 93.48% for the 3-class setup but used 224 COVID, 700 Pneu-

monia, and 504 normal class images. DarkCovidNet [19] used
aditional transfer learning method.

F1-Score(%)

3-class 4-class

s 96.32 88.09
96.45 90.13

and the traditional transfer learning method.

Wilcoxon signed ranked test

d Value P-Value Statistics

0.638 157.5
0.084 2.500



Table 11 – Comparison of our proposed method with the existing literature.

Work Amount of chest X-rays Architecture Accuracy (%) Sensitivity (%) Specificity (%)

Ozturk et al [19] 125 Covid-19 + 500 Normal DarkCovidNet 98.08 95.13 95.3
125 Covid-19 + 500 Normal + 500 Pneumonia 87.02 85.35 92.18

Wang and Wong [18] 53 Covid-19 + 5526 Non-Covid COVID-Net 92.4 93.33 –
Ioannis et al. [34] 224 Covid-19 + 700 Pneumonia + 504 Normal VGG-19 93.48 92.85 98.75
Sethy and Behra [35] 25 COVID-19 + 25 Non-Covid ReNet-50/SVM 95.38 95.33 –
Hemdan et al [36] 50 Covid-19 + 50 Non-Covid VGG-19 90 – –
Narin et al [24] 50 Covid-19 + 50 Non-Covid ResNet-50 96.1 91.8 96.6

305 Covid-19 + 305 Normal 97.4 94.7
305 Covid-19 + 305 Viral Pneumonia 87.3 85.5

Tanvir et al [37] 304 Covid-19 + 305 Bacterial Pneumonia CovXNet 94.7 – 93.3
305 Covid-19 + 305 Viral Pneumonia + 305 Bacterial Pneumonia 89.6 87.6
305 Covid-19 + 305 Normal + 305 Viral Pneumonia + 305 Bacterial Pneumonia 90.3 89.1

Khan et al [21] 284 Covid-19 + 310 Normal + 330 Bacerial Pneumonia + 327 Viral Pneumonia CoroNet 89.6 – 96.4
Abbas et al [38] 105 COVID-19 + 11 SARS + 80 Normal DeTraC 97.35% 98.23% 96.34%

500COVID-19 + 800 Normal + 400 Pneumonia-Viral + 400 Pneumonia-bacteria 91.2 91.76 93.48
Emtiaz et al [39] 500COVID-19 + 800 Normal + 800 Pneumonia-bacteria CoroDet 94.2 92.76 94.56

500COVID-19 + 800 Normal 99.12 95.36 97.36
371 COVID-19 + 1076 Normal 99.16 97.44 100

Ibrahim et al [40] 371 COVID-19 + 1076 Normal + 4078 Pneumonia-bacteria AlexNet 97.40 91.30 84.78
371 COVID-19 + 1076 Normal + 4078 Pneumonia-bacteria + 4237 Pneumonia-Viral 93.42 89.18 98.92
408 Covid-19 + 408 Normal + 408 Viral Pneumonia + 408 Bacterial Pneumonia 90.13 91.46 97.15

Proposed Method 408 Covid-19 + 408 Normal + 408 Pneumonia AutoCovNet 96.45 95.94 97.96
408 Covid-19 + 816 Non-Covid 99.39 99.39 100
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Table 12 – Comparison of the proposed method with the existing literature on common evaluation protocol.

System Architecture Accuracy on the Common Evaluation Protocols

408 Covid-19 + 408
Normal + 408 Viral Pneumonia + 408
Bacterial Pneumonia

408 Covid-19 + 408
Normal + 408 Pneumonia

408 Covid-19 + 816
Non-Covid

CoroNet[21] 82.93 95.12 98.37
DarkCovidNet[19] 89.33 95.93 98.78
Proposed Method 90.13 96.45 99.39
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224 COVID, 500 Pneumonia and 500 normal class images and

performed five fold cross validation that resulted in an accu-

racy of 87.02% in the 3-class setup. CoroNet [21] used 310 nor-

mal, 330 pneumonia-bacterial and 327 Pneumonia-viral X-ray

images with four fold cross validation for their 3-class setup

and got an accuracy of 89.6%. While CovxNet [37] used a bal-

anced dataset of 305 images for each of the class. This is why

it can be said that using more COVID19 data and improving

the performance makes this proposed system a lot more reli-

able. The studies of [34,35,36,24,40] are based on popular con-

volutional neural network architectures like VGG-19, ResNet-

50 and AlexNet. While [19] used a modified version of the Dar-

kNet architecture and the studies of [37,21,38] have designed

convolutional neural networks for this task. None of the liter-

ature mentioned here have used two stage training scheme or

the use of autoencoder network.
Fig. 9 – Regions of interest in each class of the data
In this study only four classes were considered but if more

respiratory diseases are included in the dataset, in fact it will

increase the number of classes to be handled by the deep

learning network. In that case, the overall accuracy may

depend on some well-known factors, such as the intra-class

and inter-class feature characteristics of the members belong

to the new class, and availability of the training data of the

new class. In case of the proposed scheme, it is observed that

even when more classes are added to the dataset, the accu-

racy for the COVID-19 class does not drop significantly. It

achieves good generalization and offers very satisfactory

COVID-19 detection performance in comparison to some

existing methods even when there is more classes included

in the dataset.

The proposed classification model is developed with the

aim of being used in clinical conditions for detecting
set that is being used in the classification task.



Fig. 10 – Gradient-based activation map for the misclassified instances of the test set.
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COVID-19 patients from their chest X-ray images. In such a

case only patients showing the known symptoms will

undergo this process to verify if they have COVID-19 infection

or not. As a result, the purpose of this model is to classify the

COVID-19 cases from the other classes with high accuracy.

Since pneumonia patients are known to show similar symp-

toms to that of COVID-19 patients and their chest X-ray

images look very similar, the proposed system was trained

to differentiate between these two classes and also recognize

normal conditioned chest X-ray images similar to the state of

the art literature [21,19]. However the proposed system has

the potential to be used for detecting multiple respiratory dis-

eases from chest X-ray images similar to this research [41]

and this can be further explored in the future research.

It is to be noted that in recent times, several researchers

have tested their methods on this dataset as it is publicly

available. Apart from the competitive classification perfor-

mance of the proposed method, it is expected that the users

would find the intelligent methodology of this study useful

in real-life applications.

7. Gradient based localization

To further inspect the results from our system, the Gradient-

weighted Class Activation Mapping (Grad- CAM) [42] algo-

rithm was integrated with our system, and the regions of

interest in our X-ray images were identified that are being

used for the classification purpose. The result of this integra-

tion in our test dataset is presented in Fig. 9.

It can be observed from the heatmap examples of each

class that the classification model mostly looked at the
regions of lungs in the chest X-ray images. In parts of the

lungs with cloudy regions indicate ground-glass opacity

(GGO) and consolidation. For the bacterial and viral

pneumonia and as well as the COVID-19 cases the model

concentrated on the opacities present in those images with

the red and yellow patches indicating the severity of

abnormalities present in those regions. While for the normal

class images, the heatmaps did not have any red patches in

the lungs indicating they did not contain any opacities or

abnormalities and as such, they were classified as normal

lungs. As mentioned in [3] that, the presence of GGOs in

those regions is an indication of there being pneumonia

and COVID-19. In [43,44], expert radiologists found GGOs to

be the predominant feature in chest X-rays of COVID-19

patients and the regions of abnormality were mostly the

lower lobe and bilateral regions. Similar findings, as

described above, are obtained in most of the Grad-Cam

representations for pneumonia, COVID-19 and normal cases

handled by the proposed method.

The misclassified instances of the test set and their corre-

sponding Grad-Cam representations are shown in Fig. 10. It

can be observed from the Grad-Cam images that the proposed

model makes a wrong classification mostly when the test

image of a particular class exhibits close resemblance with

the images of another class.

It is to be noted that in many cases, the weights shown in

the Grad-cam images cannot be well justified according to the

relevant class of the sample image. There was no feedback

from the Grad-Cam images that we incorporated in the pro-

posed methodology to improve the classification perfor-

mance, which could be a potential future work.
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8. Conclusion

It has been more than 6 months since the advent of the

Covid-19 pandemic, and an automatic detection system of

COVID-19 from chest X-ray images is a necessity now. This

research was conducted with the aim of developing a deep

learning-based system that can generalize even on a small

dataset. It is shown that the proposed training scheme uti-

lizing an unsupervised image reconstruction stage for

weight initialization of the encoder model and the proposed

encoder-merging network that extracts features from differ-

ent layers of the encoder network and learns to effectively

merge them in a supervised training method has the capa-

bility to give some very satisfactory consistent results even

with a very small dataset. It can handle both binary and

multi-class problems in an efficient way. For this reason,

it is expected that when a large dataset on this task

becomes publicly available, this model will be able to gener-

alize even better. Moreover, the network was designed in

such a way that both feature extraction and the classifica-

tion stage used the same backbone network of

EfficientNet-B4. This resulted in more efficient computation

and faster convergence.
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