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Abstract Current toxicity protocols relate measures of

systemic exposure (i.e. AUC, Cmax) as obtained by non-

compartmental analysis to observed toxicity. A complicat-

ing factor in this practice is the potential bias in the esti-

mates defining safe drug exposure. Moreover, it prevents

the assessment of variability. The objective of the current

investigation was therefore (a) to demonstrate the feasibility

of applying nonlinear mixed effects modelling for the

evaluation of toxicokinetics and (b) to assess the bias and

accuracy in summary measures of systemic exposure for

each method. Here, simulation scenarios were evaluated,

which mimic toxicology protocols in rodents. To ensure

differences in pharmacokinetic properties are accounted

for, hypothetical drugs with varying disposition properties

were considered. Data analysis was performed using non-

compartmental methods and nonlinear mixed effects mod-

elling. Exposure levels were expressed as area under the

concentration versus time curve (AUC), peak concentra-

tions (Cmax) and time above a predefined threshold (TAT).

Results were then compared with the reference values to

assess the bias and precision of parameter estimates. Higher

accuracy and precision were observed for model-based

estimates (i.e. AUC, Cmax and TAT), irrespective of group

or treatment duration, as compared with non-compartmen-

tal analysis. Despite the focus of guidelines on establishing

safety thresholds for the evaluation of new molecules in

humans, current methods neglect uncertainty, lack of pre-

cision and bias in parameter estimates. The use of nonlinear

mixed effects modelling for the analysis of toxicokinetics

provides insight into variability and should be considered

for predicting safe exposure in humans.
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Abbreviations

AUC Area under the concentration versus time curve

Cmax Peak concentrations

ICH International conference on harmonisation of

technical requirements for registration of

pharmaceuticals for human use

PD Pharmacodynamics

PK Pharmacokinetics

TAT Time above a concentration threshold

Introduction

The purpose of toxicokinetic studies in the evaluation of

safety pharmacology and toxicity is the prediction of the

risk that exposure to a new chemical or biological entity

represents to humans [1, 2]. Understanding of the rela-

tionships between drug exposure, target engagement (i.e.,

activation or inhibition) and downstream biological effects

of a given physiological pathway can provide insight into

the mechanisms underlying both expected and ‘unexpect-

ed’ toxicity [3] (Fig. 1). In addition, the use of a
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mechanism-based approach has allowed better interpreta-

tion of time-dependencies in drug effect, which are often

observed following chronic exposure to a drug (e.g., de-

layed toxicity) [4, 5].

Despite the increased attention to the importance of

toxicokinetics in drug discovery and during the early stages

of clinical development, the extrapolation and prediction of

a safe exposure range in humans from preclinical ex-

periments continues to be one of the major challenges in

R&D (Fig. 2) [6]. Irrespective of the choice of ex-

perimental protocol, a common practice in toxicology re-

mains the assessment of empirical safety thresholds, in

particular the no observed adverse effect level (NOAEL),

which is a qualitative indicator of acceptable risk. Even

though support for the existence of thresholds has been

argued on biological grounds [7–9], the NOAEL has been

used to establish the safe exposure levels in humans. In

fact, this threshold represents a proxy for another threshold,

i.e., the underlying no adverse event level (NAEL).

The definition of the NOAEL varies from source to

source [6]. Its calculation involves the determination of the

lowest observed adverse effect level (LOAEL), which is

the lowest observed dose level for which AEs are recorded.

The NOAEL is the dose level below this. If no LOAEL is

found, then the NOAEL cannot be determined. Usually, in

the assessment of the LOAEL measures of systemic ex-

posure are derived, such as area under the concentration

versus time curve (AUC) and peak concentrations (Cmax),

which serve as basis for the maximum allowed exposure in

dose escalation studies in humans [10]. The aforemen-

tioned practices in safety and toxicity evaluation are driven

by regulatory guidance [11, 12]. The scope of these guid-

ances is to ensure that data on the systemic exposure

achieved in animals is assessed in conjunction with dose

level and its relationship to the time course of the toxicity

or adverse events (Fig. 2). Another important objective is

to establish the relevance of these findings for clinical

safety as well as to provide information aimed at the op-

timisation of subsequent non-clinical toxicology studies.

Whilst the scope and intent of such guidance are well

described since 1994, when it was introduced by the ICH,

there has been much less attention to requirements for the

analysis and interpretation of the data. In fact, precise de-

tails on the design of toxicokinetic studies or the statistical

methods for calculating or estimating the endpoints or

variables of interest, are not specified [13–15]. Instead, the

assessment of exposure often takes places in satellite

groups, which may not necessarily present the (same) ad-

verse events or toxicity observed in the main experimental

group. This is because of interferences associated with

blood sampling procedures, which may affect toxicological

findings. For this same reason, blood sampling for phar-

macokinetics is often sparse [16]. Such practice also di-

verges from efforts in models in environmental toxicology,

a field in which deterministic, physiologically-based

pharmacokinetic models have been used for a long time

[17, 18].

As a consequence, safety thresholds are primarily

derived from inferences about the putative pharmacoki-

netic profiles in the actual treatment group. Furthermore,

these thresholds rely on the accuracy of composite profiles

obtained from limited sampling in individual animals.

Composite profiles consist of pooled concentration data,

which is averaged per time point under the assumption that

inter-individual differences are simply residual variability,

rather than intrinsic differences in pharmacokinetic

Fig. 1 Diagram displaying the

contribution of toxicokinetics

and pharmacology for the

characterisation of target-related

adverse events and safety risk

assessment. The circle depicting

target efficacy highlights the

role of information regarding

the primary target engagement

for safety risk assessment. Data

on the target efficacy is usually

obtained during in vitro and

in vivo screening. The arrow

indicates that inferences can be

made about safety and risk

based on the evidence from drug

exposure and organ-specific

toxicity data. Reprinted with

permission from Horii 1998 [3]
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processes [19]. Pharmacokinetic parameters such as area-

under-concentration-time (AUC) and observed peak con-

centrations (Cmax) can then be either derived from the

composite profile or by averaging individual estimates

from serial profiles in satellite animals when frequent

sampling schemes are feasible. Given that the parameters

of interest are expressed as point estimates, within- and

between-subject variability as well as uncertainty in esti-

mation are not accounted for. In addition, pharmacokinetic

data generated from different experiments are not

evaluated in an integrated manner, whereby drug disposi-

tion (e.g., clearance) can be described mechanistically or at

least compartmentally in terms of both first and zero order

processes. This is further complicated by another major

limitation in the way exposure is described by naı̈ve

pooling approaches, i.e., the impossibility to accurately

derive parameters such as cumulative exposure, which may

be physiologically a more relevant parameter for late onset

or cumulative effects (e.g. lead toxicity, aminoglycosides)

[20, 21]. Time spent above a threshold concentration may

also bear greater physiological relevance for drugs which

cause disruption of homeostatic feedback mechanisms.

Such parameters cannot be described by empirical ap-

proaches due to limitations in sampling frequency.

By contrast, population pharmacokinetic-pharmacody-

namic methodologies have the potential to overcome most

of the aforementioned problems. Whilst the application of

modelling in the evaluation of efficacy is widespread and

well-established across different therapeutic areas [22–24],

current practices have undoubtedly hampered the devel-

opment of similar approaches for the evaluation of adverse

events, safety pharmacology and toxicity. It should be

noted that in addition to the integration of knowledge from

a biological and pharmacological perspective, population

models provide the basis for the characterisation of dif-

ferent sources of variability, allowing the identification of

between-subject and between-occasion variability in pa-

rameters [25]. These random effects do not only reflect the

evidence of statistical distributions. They can be used for

inference about the mechanisms underlying adverse events

and toxicity. In fact, recent advancements in environmental

toxicology have shown the advantages of PBPK/PD mod-

elling as a tool for quantifying target organ concentrations

and dynamic response to arsenic in preclinical species [26].

The aim of this investigation was therefore to assess the

relative performance of model-based approaches as com-

pared to empirical methods currently used to analyse

toxicokinetic data. We show that, modelling is an iterative

process which allows further insight into relevant biologi-

cal processes as well as into data gaps, providing the basis

for experimental protocol optimisation. We illustrate the

concepts by exploring a variety of scenarios in which

Fig. 2 General toxicity data

generated to support early

clinical trials is gathered in the

pre-IND/CTX stage. After IND/

CTX submission, the regulatory

agency will confirm whether

adequate evidence of safety has

been generated for human trials.

Parameters derived from

toxicokinetic data, such as the

NOAEL, play a key role in the

approval of protocols for first-

time-in human studies. IND/

CTX investigational new drug

application, NDA new drug

application, TK toxicokinetic

study. Reprinted with

permission from Horii 1998 [3]
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hypothetical drugs with different disposition properties are

evaluated.

Methods

Using historical reference data from a range of non-s-

teroidal anti-inflammatory compounds for which phar-

macokinetic parameter estimates were known in rodents,

a model-based approach was used to simulate the out-

comes of a 3-month study protocol, in which toxicoki-

netic data for three hypothetical drugs were evaluated.

The selection of non-steroidal anti-inflammatory com-

pounds as paradigm for this analysis is due to the

mechanisms underlying both short and long term adverse

events as well as the evidence for a correlation between

drug levels and incidence of such events in humans. In

fact, a relationship has been identified between the degree

of inhibition of cyclooxygenase at the maximum plasma

concentration (Cmax) of individual non-steroidal anti-in-

flammatory drugs and relative risk (RR) of upper gas-

trointestinal bleeding/perforation [27].

Simulation of drug profiles using predefined

pharmacokinetic models

The impact of differences in drug disposition on bias and

precision of the typical measures of systemic exposure was

explored by including three different scenarios based on a

one-compartment pharmacokinetics with linear and non-

linear (Michaelis–Menten) elimination as well as a two-

compartment pharmacokinetics. Parameter values for each

scenario are shown in Table 1. In all simulation scenarios,

residual variability was set to 15 %. For the purposes of

this exercise, we have assumed that the models used as

reference show no misspecification. In addition, we have

considered the use of a homogeneous population of ro-

dents, avoiding the need to explore covariate relationships

in any of the models.

Experimental design

Experimental procedures were defined according to current

guidelines for the assessment of toxicity. A summary of the

sampling schemes and experimental conditions is shown in

Fig. 3 Overview of a simulated

dataset along with the predicted

pharmacokinetic profiles for

each of the experimental

scenarios, in which blood

samples are collected from 3

animals per sampling time

point. Dots represent simulated

concentrations at the pre-

defined sampling times, whereas

the solid black line depicts the

population predicted profile

after a dose of 30 mg/kg for

hypothetical drugs with

different pharmacokinetic

characteristics
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Table 2. The protocol design for each experiment with the

three hypothetical drugs was based on protocols typically

used for chronic toxicity evaluation. Four treatment groups

receiving oral daily doses of vehicle, 10, 30, and 100 mg/

kg/day were tested throughout this set of virtual ex-

periments. The same treatment groups were present in all

duration cohorts (1 week, 1 month or 3 months). Satellite

groups each were used to characterise the pharmacokinet-

ics under the dosing conditions in the animals used for the

assessment of toxicity. This procedure ensures the avail-

ability of more frequent blood samples for toxicokinetics,

while not influencing the assessment of the toxicity. Two

different sampling schedules were investigated, namely,

composite sampling and serial sampling. For the sake of

comparison, the same number of samples was collected in

both cases. For composite sampling, blood was collected

from three animals in the satellite group at predetermined

sampling time points, namely, 0.1, 0.4, 1, 1.5, 4, 8, 24 h

after drug administration on sampling days (see Table 2).

The allocation of animals to each sampling time point was

random within the constraint that all animals were sampled

an equal number of times. An overview of a simulated

dataset along with the predicted pharmacokinetic profiles

for each of the experimental scenarios is shown in Fig. 3.

Derivation of true exposure levels

Five different measures of exposure were derived from the

simulated concentration profiles obtained from the models

used for simulation. They included the 24-h area under the

concentration versus time curve (AUC), the maximum

concentration (Cmax), the time above a threshold drug con-

centration (TAT), the predicted 6-month cumulative AUC

and the predicted 6-month Cmax. These exposure measures

can be seen alongside the formula used for their calculation

in Table 3. The threshold for adverse events was assumed to

be 10 lg/ml. This arbitrary value was selected for illustra-

tive purposes only. The simulations (n = 200 replicates)

were performed assuming repeat dosing for up to 6 months

(3 months beyond the treatment duration presented the in-

vestigated studies) in order to evaluate the implications of

longer periods of drug exposure.

Calculation of measures of exposure by non-

compartmental analysis

Data from composite sampling across all satellite animals

were used to determine the overall drug exposure, which

consisted in averaging the simulated concentrations at each

sampling time point. A similar approach was used for serial

sampling, but in this case, drug exposure was calculated for

each individual animal and then averaged over the cohort.

In both cases, the arithmetic mean and geometric mean

were used as summary statistics. As non-compartmental

methods do not allow extrapolation beyond the actual ex-

perimental conditions, only three of the five measures of

exposure were derived, namely, the AUC, estimated using

Table 1 Pharmacokinetic models used to assess the impact of

varying disposition properties on the estimation of safety thresholds

Model A: One-compartment model (1 CMT)

Parameter Pop estimate BSV (%)

KA (h-1) 13.46 50

V (ml/kg) 49.4 16

CL (ml/h) 2.72 20

Model B: One compartment model with Michaelis–Menten

elimination (1 CMT ? MM). Parameter values were chosen to ensure

departure from dose proportionality at the highest dose

Parameter Pop estimate BSV (%)

Vmax (mg/h) 2.72 20

Km (mg/ml) 1 –

Ka (h-1) 13.46 50

V (ml/kg) 49.4 16

Model C: Two-compartment model (2 CMT). The values for the

absorption and elimination rate constants were selected in such a way

that slow accumulation of drug is observed at stead-state conditions

after daily dosing for approximately 2 weeks

Parameter Value Variability (%)

Ka (h-1) 0.55 50

V (ml/kg) 49.4 16

CL (ml/h) 2.72 20

K12 (h-1) 0.3 –

K21 (h-1) 0.05 32

Table 2 Experimental design

characteristics of treatment and

satellite groups in a general

toxicity study with serial and

composite pharmacokinetic

sampling

Duration Numbers of animals Sampling scheme

1 week Toxicity: 4 per dose group

Satellite: 3 per dose group

Toxicity: Composite 2 per animal

Satellite: Serial profiles from day 1 only

1 month Toxicity: 10 per dose group

Satellite: 3 per dose group

Toxicity: Composite 2 per animal

Satellite: Serial profiles from day 1 and 28

3 months Toxicity: 12 per dose group

Satellite: 3 per dose group

Toxicity: Composite: week 4, week 13

Satellite: Serial profiles from day 1, week 4, week 13
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the linear-logarithmic trapezoidal rule, the Cmax, and the

TAT.

Calculation of measures of exposure by nonlinear

mixed effects modelling

For each simulation replicate, drug concentration profiles

were fitted to pharmacokinetic models using the first-order

conditional estimation method with interaction (FOCEI), as

implemented in NONMEM. Model building steps were

limited to the same structural models used for the initial

simulations under the assumption that pharmacokinetic

properties of the drugs are known at the time toxicology

experiments are performed. Model convergence was de-

termined by successful minimisation and estimation of the

covariance step. Data below the lower quantification limit

(BQL) were omitted to mimic experimental conditions in

which imputation methods are not applied. Estimates for

all five measures of exposure were calculated by using

same procedures applied for the reference values obtained

during the initial simulation step (see Table 3).

Comparison

To ensure accurate estimates of bias and precision of the two

methodologies, the process of simulation and estimation of

exposure (using non-compartmental vs. nonlinear mixed ef-

fects)was repeated 200 times. Bias and precisionwere assessed

by the relative error, scaled relativemean error (SRME) and the

coefficient of variation (CV) respectively [28]:

SMRE ¼ 1

N

XN

i¼1

estimatedi � trueð Þ
true

� 100

CV ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

estimatedi � mean

mean

� �2

vuut � 100

All simulations and fitting procedures described above

were performed in NONMEM 7.1 [29]. Data manipulation

and statistical and graphical summaries were performed in

R 3.0.0 [30].

Results

The use of simulated data for the evaluation of hypothetical

scenarios provided clear insight of the impact of current

practices on the accuracy and precision of safety thresh-

olds, and in particular of the NOAEL. Irrespective of the

use of serial or sparse sampling schemes for the charac-

terisation of the concentration versus time profiles, model

convergence rates were usually high, with successful

completion of the covariance step. An overview of the

convergence rates is presented in Table 4.

To facilitate the comparison of the magnitude of bias

and precision, results from modelling are shown together

with the parameter values obtained from non-compart-

mental analysis where applicable. Due to the large number

of experimental conditions to be summarised, here we

present a brief description of the relative errors obtained in

the 3-month protocol, for AUC, Cmax and TAT. All other

experimental conditions, including an overview of the

scaled relative mean error (SRME) and the coefficient of

variation (CV) are presented in tabular format as supple-

mental material (Table S1).

In Fig. 4, the relative errors are presented for the esti-

mates for AUC, Cmax and TAT. The relative errors were

Table 3 Exposure measures derived from the simulated concentra-

tion vs. time profiles. The assessment of bias and precision in the

estimates of safety thresholds was based on these secondary

pharmacokinetic parameters, which are shown alongside the formula

used for their calculation. Individual predicted drug concentrations

are denoted by Cp(t)

Variable name Symbol Model based exposure calculation

24-h AUC AUC24
r
t

t�24

Cpdt

24-h Cmax Cmax24 max Cp sð Þ : t � 24\s\t
� �� �

24-h time above threshold drug concentration TAT
r
t

t�24

1Cp [ threshdt

Predicted 6-month cumulative AUC CAUC
r

6months

0

Cpdt

Predicted 6-month Cmax Cmax24 max Cp sð Þ : 0\s\6months
� �� �

Table 4 Rates of convergence and covariance (parameter precision)

estimation based on nonlinear mixed effects modelling. Simulated

drug concentrations collected at the predefined sampling times were

used as input for the pharmacokinetic analysis

Model Successful

convergence

Successful

covariance step

1 CMT 99.75 99.75

1 CMT ? MM 99.75 99.75

2 CMT 100 100
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clearly smaller when measures of exposure were derived

by modelling, as compared to the results obtained by non-

compartmental analysis. In fact, the accuracy and precision

of model-based estimates for all three measures of expo-

sure were similar across the different dosing groups and

treatment durations. Non-compartmental estimates of

exposure showed significantly higher bias and less preci-

sion in all scenarios. The performance for model-based

exposure estimates derived from the 3-month protocol is

summarised in Fig. 5.

Our results also reveal the impact of composite versus

serial sampling on bias and precision. For both model-

based and non-compartmental methods, the coefficient of

variation increased with composite designs (with 8 ani-

mals), as compared to serial sampling designs (with 3

animals). However, the increase in precision for non-

compartmental method was larger than for model-based

estimates. It should also be noted that Cmax was consis-

tently over-estimated by the non-compartmental method.

We also demonstrate that the use of arithmetic and

geometric means for NCA had minor impact in these

relatively small groups.

Lastly, it was found that that nonlinearity in pharma-

cokinetics also has an important effect on bias and preci-

sion when sparse samples and limited number of dose

levels are evaluated experimentally. Model-based estimates

in the 1 CMT ? MM scenario showed increased bias

compared to the 1 CMT and 2 CMT scenarios.

Discussion

In this investigation we have attempted to identify impor-

tant limitations in the use of non-compartmental methods

for the analysis of toxicokinetic data. Irrespective of the

limited number of scenarios, our findings illustrate the

feasibility of using hierarchical models for the evaluation

of toxicokinetic data using a well-established pa-

rameterisation for drug disposition processes. Furthermore,

given that model performance in the analysis of toxicoki-

netic data has been previously evaluated [31], we have

been able to focus on the performance of measures of ex-

posure that cannot be derived from empirical approaches,

i.e., non-compartmental methods [32].

It is important to highlight that the use of compartmental

models, instead of physiologically-based pharmacokinetic

models in this exercise was required to avoid issues such as

parameter identifiability [33], which would arise from the

bFig. 4 Relative errors of parameter estimates for AUC (upper panel),

Cmax (mid panel) and TAT (lower panel). Data refers only to the

3-month toxicology protocol design following administration of

30 mg/kg/day of three hypothetical drugs with different pharmacoki-

netic profiles. Similar results were found for other cohorts in which 10

and 100 mg/kg/day were evaluated. Dots represent the median, boxes

show the 25th and 75th percentiles, error bars denote the 5th and 95th

percentiles. The red line shows the reference level for relative error

equal to zero. Composite composite sampling, GEOMEAN geometric

mean, MEAN arithmetic mean, MODEL nonlinear mixed effects

modelling, NCA non-compartmental analysis and Serial serial

sampling (Color figure online)
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data generated in standard toxicology protocols. The

plasma pharmacokinetic profiles derived for the hypo-

thetical compounds were considered realistic enough to

reflect the time course of drug levels observed in many

toxicology studies. In fact, these profiles are greatly af-

fected by the standard sampling schemes in toxicology

experiments, which may not allow one to identify more

than one- and two-compartment models. Moreover, con-

sideration was given to the implications that high doses

may have on drug metabolism and elimination. A phar-

macokinetic model with Michaelis–Menten elimination

was also included to ensure accurate characterisation of

dose- and concentration-dependent pharmacokinetics,

which is likely to occur for many compounds at least in one

experimental dose level. Saturation of metabolism has

implications for the interpretation of safety thresholds,

especially if nonlinearity is not observed at pharmaco-

logically relevant levels. The results presented here should

therefore be indicative of the most common toxicokinetic

profiles. Given the evidence of the superiority of nonlinear

mixed effects modelling to describe sparse pharmacoki-

netic data [34–37], we anticipate the possibility to gener-

alise the lessons learned to a much wider range of drugs,

for which pharmacokinetic parameter values may differ

considerably from those presented here.

Parameter precision and bias

As shown in Table 4, the high convergence rates of models

and high success rate for the computation of the covariance

matrix for the scenarios tested here confirm the robustness

of results obtained using nonlinear mixed-effects mod-

elling. Despite variations in bias and precision, parameter

precision was consistently high. Whilst these results must

be interpreted under the assumption of minor or no model

misspecification, the use of modelling showed particularly

good performance (CV\ 10 % and SRME\ 10 % for

within study exposure predictions and SRME\ 15 % for

long term exposure predictions). Such high levels of pre-

cision may not be required for safe exposure evaluation

where between-subject variability in humans is expected to

be larger and comparatively large uncertainty factors are

routinely used. This suggests that a model-based approach

will enable considerable reductions in the numbers of

animals and/or samples to be used in experimental proto-

cols whilst providing acceptable parameter precision.

Moreover since optimal design methodologies for model-

based analysis are well established, further refinement of

the experimental protocol design is feasible if experimen-

talists and statisticians choose nonlinear mixed effects

modelling as the primary method of analysis.

On the other hand, the presence of bias in some of the

experimental conditions presented here has clear implica-

tions for the so-called safety margin and toxicological

cover to be used as proxy for risk during clinical devel-

opment, especially for Cmax, which is consistently over-

estimated. This is due to the definition of peak concentra-

tions in non-compartmental analysis where CM is neces-

sarily greater than or equal to Cp t ¼ Tmaxð Þ, where Tmax

represents the time point which maximises the true con-

centration–time profile. When the sampling scheme con-

tains other observations in the region of Tmax there is

potential for neighbouring sampling times to produce

higher than predicted concentrations due to natural vari-

ability. This is a fundamental limitation in the methodology

in that more samples around Tmax which intuitively should

increase confidence, actually leads to more bias. In other

words, with non-compartmental analysis precisely esti-

mating Tmax comes at the unavoidable cost of biased es-

timation of Cmax. Model-based analysis has an additional

advantage in this respect. Without model misspecification

issues, maximum likelihood estimates are (asymptotically)

unbiased and have the property that increased sampling

uniformly increases precision. The implications of model

specification issues are discussed further in the limitations

section. Given that the residual variability in the scenarios

Fig. 5 Overview of the relative errors of model-based estimators of

long-term exposure, i.e. predicted peak concentrations after 6 months

(6 mth Cmax) and cumulative area under the concentration vs. time

curve (6 mth cum. AUC). The analysis is based on the data from a

3-month toxicology protocol following administration of 30 mg/

kg/day of three hypothetical drugs with different pharmacokinetic

profiles. Similar results were found for other cohorts in which 10 and

100 mg/kg/day were evaluated. Dots represent the median, boxes

show the 25th and 75th percentiles, error bars denote 1.5 times the

interquartile range from the median. The red line shows the reference

level for relative error equal to zero (Color figure online)
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was not large (i.e., fixed at 15 %), the bias seen here may

increase with larger residual noise, which may occur in real

life. The issue of bias can be further mitigated by the ap-

propriate use of predictive checks. An example of the

procedures can be found in the supplemental material for

naproxen [38], where predictive checks including data

analysed by non-compartmental methods illustrate how to

assess bias in AUC and Cmax.

Data integration

In contrast to non-compartmental methods, our investiga-

tion was based on an integrated analysis of the data, i.e. by

combining the results from all experimental cohorts. This is

undoubtedly the primary driver of the increased accuracy

and precision in model-based estimates [38–40]. In fact, we

envisage further improvement by incorporating pharma-

cokinetic data from other experiments in the same species,

which are normally collected during the preclinical

evaluation of a molecule, as for instance during the char-

acterisation of drug metabolism. Such an increase in pre-

cision would represent further adherence to the reduction,

refinement and replacement principle (3 Rs) in ethical

animal studies [41, 42]. It should also be noted that the

possibility of data integration provides the basis for com-

bining safety pharmacology and adverse event data, en-

abling the development of toxicokinetic-toxicodynamic

models and consequently allowing for the evaluation of

exposure–response relationships in a continuous manner.

Such models would represent an advancement in toxicol-

ogy and risk management and mitigation, as they provide

the basis for mechanism-based inferences about unwanted

effects, irrespective of their incidence or occurrence in the

actual experimental protocol [4, 43].

It is important to realise that the typical point estimates

of parameters derived from empirical methods to describe

drug exposure give an undue measure of certainty, allow-

ing for the propagation of uncertainty from estimation to

uncertainty in safety thresholds, such as NOAEL. Whilst

there exist methods for estimating uncertainty in a com-

posite or destructive sampling approach [44–46], their

adoption in experimental research has not been widespread

due in part to the requirement of normality assumptions on

toxicokinetic parameters, and an acceptance in guidelines

towards possibly large amounts of imprecision [12].

As demonstrated here, model-based methods allow

simulations to be performed in conjunction with estimation

procedures, enabling the assessment of uncertainty asso-

ciated with a variety of causes such as uninformative study

design, large variability and/or unknown covariates. This

entails an increase in the quality of the decision-making

process and ultimately in the interpretation of the estimated

safety thresholds [47].

Given the success of modelling and simulation in drug

development [48–50], one should ask why the field of

toxicology has yet to embrace it. The scepticism regarding

the value of model-based approaches often arises from a

view that knowledge about the model is required in ad-

vance [51, 52]. This argumentation is however flawed.

Non-linear mixed effects modelling is specifically intended

to efficiently process sparse data. The performance of the

model-based exposure estimates in the composite designs

is illustrative of this. Moreover, the inference principles

used for hypothesis generation and characterisation of drug

disposition parameters relies on the use of statistical cri-

teria that are sophisticated enough to allow model identi-

fication and its suitability for subsequent parameter

estimation purposes. Moreover, it should be noted that non-

compartmental methods also make implicit assumptions

about the underlying concentration versus time profile. For

instance, with a linear-logarithmic analysis of AUC, first-

order elimination kinetics is assumed. The suitability of

measures of central tendency will also depend on the as-

sumed distribution characteristics and on residual vari-

ability. These assumptions are often implicit and their

validity regarding the dataset at hand cannot be checked

during the analysis. There are no strong statistical justifi-

cation to support the choice for non-compartmental meth-

ods, other than the lack of technical knowledge and

familiarity with hierarchical modelling by toxicologists in

industry and regulatory agencies. The persistence in the use

of non-compartmental methods bears an unnoticed cost,

i.e., the ethical cost of utilising more animals than what is

really necessary.

Potential limitations

In the present investigation, the impact of model mis-

specification in the analysis of general toxicity data was not

investigated. For exposure measures which have a corre-

sponding estimate based on non-compartmental methods

(e.g. AUC and Cmax), the impact is likely to be small as

long as the model fit to the data is good. This is because

these measures are highly dependent on the observations.

Therefore, accurate prediction of the observed profiles

during model evaluation is likely to result in accurate

prediction of these exposure variables. Model misspecifi-

cation however, may lead to significant bias when exposure

predictions are made outside the experimental context (i.e.

longer timescales or different dosing regimens) [53, 54].

This is a risk when the pharmacokinetics of the drug is

nonlinear or shows metabolic saturation. To mitigate such

effects we recommend that model selection criteria take

into account not only the ability to describe data, but also

the physiological relevance of model assumptions. When

model development ends in multiple competing models
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performing similarly with respect to statistical selection

criteria, clear reporting of such model uncertainty is nec-

essary. Model averaging should be discouraged when

predictions arising from different model differ significantly

[55]. Finally, parameter uncertainty should be incorporated

into the predictions of exposure to ensure accurate

evaluation of risk and potential therapeutic window of the

compound.

In summary, evaluation of safety is paramount for the

progression of new molecules into humans. Historically,

toxicology experiments have evolved based the assumption

that experimental findings suffice to demonstrate the ab-

sence or presence of risk. This assumption disregards

growing evidence of the advantages of data integration for

the characterisation of drug properties. Whilst the chal-

lenges R&D faces to translate toxicity findings from ani-

mals to humans may remain, the use of an integrated

approach to the analysis and interpretation of toxicokinetic

data represents further adherence to the 3Rs principle,

enabling significant reduction in number of animals re-

quired for the evaluation of toxicokinetics.
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