
Perspective on
Micro-Supercapacitors
Xiangfei Sun1, Kunfeng Chen1*, Feng Liang2*, Chunyi Zhi3 and Dongfeng Xue4*

1Institute of Novel Semiconductors, State Key laboratory of Crystal Material, Jinan, China, 2State Key Laboratory of Complex Non-
ferrous Metal Resources Clean Application, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and
Technology, Kunming, China, 3Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, China,
4Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,
Shenzhen, China

The rapid development of portable, wearable, and implantable electronic devices greatly
stimulated the urgent demand for modern society for multifunctional and miniaturized
electrochemical energy storage devices and their integrated microsystems. This article
reviews material design and manufacturing technology in different micro-supercapacitors
(MSCs) along with devices integrate to achieve the targets of their various applications in
recent years. Finally, We also critically prospect the future development directions and
challenges of MSCs.
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INTRODUCTION

The ongoing development of small electronic devices for telecommunication, microelectromechanical
systems, and biomedical/environmental applications is creating a great demand for energy-
autonomous systems (Shen et al., 2013; Li et al., 2016; Zhang et al., 2017a; Soam et al., 2017).
Among many electrochemical energy accumulators such as lithium-ion batteries, fuel cells and
supercapacitors (SCs), SCs have been widely studied by researchers due to their advantages such
as fast charging and discharging speed, long cycle life and high power density (Wang et al., 2020a; Chen
et al., 2020; Kumar et al., 2021; Wang et al., 2021). SCs, including electrochemical double-layer
capacitors (EDLCs) and pseudocapacitors, show lower energy storage capability (ES ≤ 10W h kg−1)
compared to batteries (ES ∼ 180W h kg−1). While SCs can be achieved a higher-power density (10 kW
kg−1) (Guo et al., 2017; Chatterjee and Nandi, 2021). However, the shape of the device is greatly limited
due to the unbending of the electrodes of traditional SCs. Moreover, the preparation of the electrodes
involves metal collectors and binders, which also reduces the electrochemical performance of the SCs.
Therefore, the development of a flexible and small supercapacitor matching with portable electronic
products has become the development direction of the next generation of energy storage devices.

Micro-supercapacitors (MSCs) are the primary choice for advanced miniaturized energy storage
devices due to their adequate power density and maintain a fast frequency response. In general, MSCs
are sandwiched structures with sizes ranging from a fewmicrons to centimetres. Thus, electrochemical
properties available MSCs largely depend on the loading capacity and dispersion state of the active
nano or micron particles. Compared with traditional rigid and bulky structures, their one-dimensional
structures have various advantages (Zhai et al., 2020a):1) they have highermechanical flexibility (which
helps to withstand long-term and repetitive deformation); 2) Allow easy self-integration extension
(which achieves the targets of their various applications); 3) Easy to fit into small spaces of different
shapes (this brings versatility of the design); 4) It has the shape advantage of integrating with other
one-dimensional devices (preferably for manufacturing multi-functional wearable systems).
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In the past few decades, the research onMSCs has developed
rapidly and made great progress. Although some special
aspects of MSCs can be found in the literature (as shown in

Figure 1), there is still a great need for comprehensive reviews
in time to introduce the latest developments in this exciting
field. This article gives a comprehensive overview of the
research progress of miniature SCs in the past severe years.
First, the classification of SCs is briefly discussed. Next, the
material design and manufacturing technology of MSCs in
recent years are introduced. After these parts, it focuses on the
latest progress in medical diagnosis with MSC. Finally, it
summarizes the future development and existing problems
of MSCs.

CLASSIFICATION OF SUPERCAPACITORS

SCs are defined as an electrochemical capacitor device have
received greatest attention nowadays. According to previous
literatures, the SCs have important features such as long life
span (>105 cycles) (Lu et al., 2017; Kumar et al., 2019; Zhai et al.,
2020b) and higher energy density than electrochemical
energy storage devices, and higher power density (5–15 kW

kg−1) (Guo et al., 2017) as compared to battery and fuel cell.
On the basis of charge storage mechanism, the SCs are be
divided into two types including the pseudocapacitors

FIGURE 1 | The number of article publication in the literature over the last
decade. The values were obtained from a literature search using “micro-
supercapacitors” (data source: web of science).

FIGURE 2 | Schematic diagram (A) (Chen et al., 2017), material classification (B), CV (C) and GCD (D) characteristic curves of EDLC (Jiang and Liu, 2019).
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and electric double layer capacitors (EDLCs) (Arbizzani et al.,
1996; Hwang and Hyun, 2007; Miller et al., 2018; Seol et al.,
2020).

The EDLC uses the electric double layer interface formed
between the electrode and the electrolyte to store charge
(Morimoto et al., 1996; Zhang et al., 2009; Shao et al., 2020),
and its structure is shown in Figure 2A. The separator separates
the two electrodes. During charging, positive and negative
charges accumulate on the surface of the two electrodes to
form a capacitance. The accumulated charge during discharge
returns to the electrolyte and generates a discharge current in the
external circuit. At present, the electrode materials of a mainly
include activated carbon (Wei et al., 2012; Wei and Yushin, 2012;
Lei et al., 2013; Mori et al., 2019), carbon nanotubes (Zhou et al.,
2014; Wang et al., 2016; Chang et al., 2018; Kshetri et al., 2018),
carbon nanofiber (Liao et al., 2020), graphene (Kim et al., 2020;
Wong et al., 2020), carbon materials (Xing et al., 2015; Xing et al.,
2018) and aerogel (Fang and Binder, 2006; Zhang et al., 2006; Liu
et al., 2018a), which have the characteristics of high conductivity,
high strength, corrosion resistance, and high temperature
resistance Figure 2B. The cyclic voltammogram (CV) curve

(Figure 2C) and the galvanostatic charge/discharge (GCD)
curve (Figure 2D) of the response of the EDLC exhibit
rectangular and triangular shapes, respectively.

The capacitance of a pseudocapacitor comes from the
oxidation-reduction reaction between the electrode material
and the electrolyte. The electrode material is mainly metal
oxide, metal-doped carbon and conductive polymer. Its
structure is shown in Figure 3A (Chen et al., 2017). Electron
transfer occurs during the capacitance generation process of
pseudocapacitors. Although the electrochemical behavior is
different from pure EDLCs, it is also different from batteries.
Generally, redox polymer (Zhang et al., 2017b; Boota and
Gogotsi, 2019; Witomska et al., 2019; Choudhary et al., 2021),
redox metal oxide (Jiang et al., 2012; Chen et al., 2014a; Lee et al.,
2016; Salunkhe et al., 2017; Wang et al., 2019) and soluble redox
show pseudocapacitance (Figure 3B). The capacitance of a
pseudocapacitor has a high degree of dynamic reversibility,
and its CV curve (Figure 3C) presents a rectangular shape
with redox peaks, which is a typical capacitive characteristic.
The GCD curve (Figure 3D) has a charging and discharging
platform.

FIGURE 3 | Schematic diagram (A) (Chen et al., 2017), material classification (B), CV (C) and GCD (D) characteristic curves of pseudocapacitor (Jiang and Liu,
2019).
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Novel electrochemical energy storage technologies with
enhanced energy capacity, and power capability are urgently
needed. Supercapatteries can combine the merits of
rechargeable batteries and SCs into one device (Archana
et al., 2020; Yu and Chen, 2020). Recently, Xue et al. have
developed colloidal supercapattery, which include colloidal
electrode that can perform multiple-electron redox reactions
and fast ion diffusion leaded to ultrahigh specific capacitance
and fast charge rate (Chen et al., 2014b; Chen et al., 2015a; Chen
et al., 2015b; Chen and Xue, 2017; Chen and Xue, 2018).
Colloidal electrode materials include multiple varying ion
forms, multi-interaction and abundant redox active sites.
Colloidal electrode can skip over the material synthesis

process to construct high-performance supercapattery. By
only designing redox ions, the electrochemical performance
of colloidal electrode is corresponding programmed. various
redox cations with different oxidation states have shown
promising application in colloidal supercapatteries, i. e. V3+,
Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Sn4+, Ce3+, Yb3+ and Er3+ ions
(Chen et al., 2013; Chen et al., 2014c; Chen et al., 2014d; Chen
et al., 2015c; Liang et al., 2018).

Due to its ultrahigh power density (>10 mW cm−2), long
lifespan (≥100 000 cycles), and remarkable mechanical
flexibility, MSCs are recognized as the preferred
miniaturized energy technology for a variety of autonomous
electronic components (Zhao et al., 2017; Liu et al., 2019a; Bi

FIGURE 4 | Schematic of 3D MSCs (A) (Liu et al., 2019a), Brief development featuring representative 3D architecture electrodes for MSCs (B) (Lei et al., 2020),
Fabrication and structure of HAN (C) (Sha et al., 2021).
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et al., 2019). Figure 4A presents the 3D MSCs electrodes with
sandwich and interdigital structure, respectively. Owing to the
unique three-dimensional architectures (3D), 3D materials
typically have a large specific surface area (>1,000 m2 g−1),
which favors the accessibility of ion-active sites as well as
improved ion and electron transport, hence facilitating reaction
kinetics (Zhao et al., 2018a; Liu et al., 2019b; Lochmann et al.,
2018). 3D MSCs have received a lot of attention in the last decade
because of the obvious improved electrochemical performance
of conventional SCs using 3D architecture electrodes, with the
goal of developing micropower sources that meet both the
dimensional and energetic requirements for on-chip
integration (Figure 4C) (Sha et al., 2021). Particularly,
significant progress has been made in the design and
manufacturing of 3D architectural electrodes for the
development of 3D MSCs (Liu et al., 2018b; Zhao et al.,
2018b; Zhao and Lei, 2020). Lei et al. (Figure 4B) have designed
the cell size of honeycomb monoliths (HMs) to the nanoscale,
allowing for greater freedom in nanostructure design beyond
their capacity for broad applications in many sectors (Lei et al.,
2020). To avoid the formation of dense clusters of nanowires and
nanotubes with high aspect ratios while meeting the criteria of high
specific surface area and rapid ion transport dynamics, the cell size of
conventional honeycomb monoliths should be decreased to the
nanoscale level. Therefore, fabrication of microminiaturized
cellular monomers-honeycomb alumina nanoscaffold (HAN) thus
acting as a robust nanostructural platform for assembling the active
material for MSCs.

MATERIALS FOR
MICRO-SUPERCAPACITORS

Materials for MSCs includes oxide, MXene, graphene, etc.
Recently, novel materials are transition metal silicide, boron
carbide (B4C), and black phosphorus (BP), Figure 5 shows the
development timeline of micro-supercapacitor within 3 years.

Transition Metal Silicide
Transition metal silicide is a type of intermetallic compound
formed by non-metallic silicon atoms entering the crystal lattice
of the transition metal. When Si atoms are inserted into the lattice
of the transition metal, the d-electron bonding strength of the
atoms becomes weaker, and the coupling between the energy state
of Si and the metal orbital makes the electronic structure and
geometric structure of the metal silicide diversified, thus having
different due to the special physical and chemical properties of
metals, such as high melting point, low resistivity, good heat
transfer and excellent high temperature resistance, oxidation
resistance, and corrosion resistance, it has been widely used in
electric heating elements, integrated circuits and high
temperature anti-oxidation coating and other fields. In
addition, the transition metal silicides possess excellent
interface properties with silicon and obtain low internal
resistance because they are binder-free electrode materials
(Ramly et al., 2018). It is worth noting that in addition to the
above advantages, transition metal silicides also show intentional
electrochemical properties, such as high theoretical energy

FIGURE 5 | A brief timeline of the developments of promising of MSCs (In et al., 2008; Balcı et al., 2021; Yang et al., 2021a).
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capacity and low discharge potential. Up to now, Transitionmetal
silicides are prepared by various methods such as arc melting,
self-propagating high temperature synthesis, mechanical alloying
(MA) (Okadome et al., 1995; Al-Joubori and Suryanarayana,
2016; Shin et al., 2017), Solid-state metathesis (Jacubinas and
Kaner, 1993; Nartowski and Parkin, 2002), Molten salt reaction
technology (Ma et al., 2004; Yang et al., 2004; Liu et al., 2013;
Estruga et al., 2014), Microwave assisted synthesis
(Vaidhyanathan and Rao, 1997; Zhang et al., 2014; Zhang
et al., 2018), Chemical vapour deposition (CVD) (Seo et al.,
2007; In et al., 2008; Higgins et al., 2010; Liu et al., 2012) and
Solution synthesis route (Baudouin et al., 2012; Geaney et al.,
2012; Galeandro-Diamant et al., 2019) (Figure 6). Each method
described above has its own advantages and disadvantages. With
the development of nanotechnology, methods such as CVD,
solution synthesis routes, and polymer-derived pyrolysis have
replaced traditional high-temperature methods. These methods
can be used to produce high surface area materials. And control
the size of the metal silicide particles to ensure the low cost,
repeatability, high yield and scalability of the production
technology.

Boron Carbide (B4C)
Boron carbide (B4C), also known as black diamond, is the third
hardest material known in nature with a hardness ranking only
second to diamond and cubic boron nitride. Compared with
other materials, B4C has very remarkable physical and chemical
properties, such as extremely high hardness (27.4–37.7 GPa),
lightweight (low density 2.5 g cm−3), high melting point (over
2,400°C), excellent corrosion resistance, high thermal stability,
high elastic mode (460 GPa) and high neutron absorption cross
section (Song et al., 2019). Recently, B4C nanowires, one kind of
P-type semiconductor with a good ductility (No cracking within
70° bending angle) have become as one of the most promising
candidates for electrode material. Compared with other 2D
materials, few-layer BP always has a direct band gap, which
can be adjusted between 0.30 and 2.2 eV by controlling the
number of layers (Hao et al., 2016). B4C has been prepared by
various methods, such as vacuum heating synthesis strategy
(Chang et al., 2020), spark plasma sintering (SPS) (Xu et al.,
2012; Moshtaghioun et al., 2013; Sahani et al., 2016). The two
preparation processes are simple, short cycle, good repeatability,
low cost, and conducive to large-scale production.

FIGURE 6 | Schematic of the fabrication MSCs via different methods, (A) screen printing (Liang et al., 2020), (B) electrodeposition (Li et al., 2017a), (C) laser
processing (Wang et al., 2020b), (D) ink printing (Zhang et al., 2019) (E) 3D printing (Li et al., 2020)and (F) spray-masking (Zhao et al., 2019).
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Black Phosphorus (BP)
As an emerging two-dimensional material, black phosphorus
(BP) have been proven to be an excellent electrode material
for supercapacitor due to large spacing (5.3 Å) and weak van
der Waals interactions between adjacent puckered layers (Dong
et al., 2016), adjustable band structure (Zhu et al., 2020a) and high
electrical conductivity (300 S m−1) (Yang et al., 2021a), good
mechanical properties (166 GPa) (Jiang and Park, 2014). These
characteristics enable BP to obtain ideal electrochemical
performance. Compared with other two-dimensional materials,
BP has adjustable band gap, high carrier mobility and optical and
electronic anisotropy, which is widely used in transistors,
photoelectronics and electrochemical energy storage devices
(Kou et al., 2015; Ling et al., 2015; Liu et al., 2015).
Atomically thick BP layers can be prepared via mechanical
exfoliation (Chen et al., 2015d; Zhang et al., 2015), plasma
etching (Jia et al., 2015), liquid-phase exfoliation (Yasaei et al.,
2015; Bat-Erdene et al., 2017), electrochemical exfoliation
(Erande et al., 2016), microwave-assisted, sheer exfoliation,
CVD (Smith et al., 2016), mineralizer-assisted gas-phase
transformation method (Xu et al., 2016) and wet chemistry
method (Son et al., 2011; Du et al., 2012; Yoo et al., 2014).
Mechanical exfoliation and plasma etching methods has many
disadvantages, including poor repeatability, and low production
yield. The electrochemical exfoliation method can only be carried
out through experiments, and it has not been practically applied.
Liquid-phase exfoliation, microwave-assisted, sheer exfoliation,
CVD, mineralizer-assisted gas-phase transformation method and
wet chemistry method can produce 2D nanomaterials with high
efficiency, low cost, high yield, simple and large-scale production
(Qiu et al., 2017).

The conventional MSCs are elongated stage adopted
sandwich configuration structures with dimensions typically
ranging from twenty to thirty of micrometers in thickness,
and a length of several millimeters to meters. the stacked
structure is prone to short-circuit phenomenon. The two
electrodes must be kept at a proper distance to avoid short-
circuiting of the device. At the same time, the electrode must
load as much active material as possible to improve the energy
storage capacity of the devices. At the same time, the electrode
should be loaded with as many active materials as possible to
improve the energy storage capacity of the device, both of which
will increase the ion transport impedance and lead to a low
power density; on the other hand, the sandwich laminated
structure is too large to be integrated on microelectronic
devices. Compared with the traditional sandwich structure
supercapacitor, the planar micro supercapacitor is composed
of cross-finger electrode. The gap between the two narrow forks
is filled with electrolyte, which is conducive to the rapid
transmission of electrolyte ions, thus achieving ultra-high
power density. Thanks to the structure of the planar cross
finger, the micro ultracapacitors not only maintain the ultra-
long cycle stability, but also show better performance than the
traditional sandwich ultracapacitors. Up to now, in-plane
interdigital MSCs with excellent electrochemical performance
are prepared by various methods such as photolithography
(Kim et al., 2013; Wu et al., 2014; Diao et al., 2020), ink

printing (Li et al., 2017b; Zhang et al., 2019), screen-pritting
(Li et al., 2019a; Abdolhosseinzadeh et al., 2020; Liang et al.,
2020), laser processing (Xie et al., 2016; Tao et al., 2019; Wang
et al., 2020b), spray-masking (Wang et al., 2017; Xiong et al.,
2019; Zhao et al., 2019), electrodeposition (Makino et al., 2013;
Li et al., 2017a; Asbani et al., 2021) and 3D printing (Yu et al.,
2017; Yu et al., 2018; Wang et al., 2020c). Each method of MSCs
preparation has its own advantages and disadvantages, and most
of the methods are difficult to satisfy the preparation of multiple
MSCs simultaneously. Therefore, the selection of preparation
method needs to consider many factors such as the type of
electrode material. Finally, the thickness of the electrode
materials prepared by these preparation methods is
summarized in Table 1. It is satisfactory that the thickness of
the materials prepared by all the preparation methods has
reached the nanometer level.

APPLICATION OF
MICRO-SUPERCAPACITORS

MSCs have the potential of world market compared to other
energy storage devices in various applications due to their
superior performance with higher power density, fast rates of
charge and discharge, and longer operating lifetime. MSCs are
commonly applied in aerospace and automotive application,
portable electronic devices, rollable displays, miniature
biomedical equipment and other systems. We mainly
introduce the application in medical diagnosis and industrial
in recent years.

Implanted Parts in the Body in Health
Monitoring
In order to realize real-time health monitoring and accurate
diagnosis and treatment, implantable medical electronic
devices such as Pacemaker and Neurostimulator and other
sensor systems have made rapid progress. In terms of the
powering capability, implantable MSCs are generally in pursuit
of high energy/power density, a fast charge–discharge rate and
large mechanically deformable, thus biocompatible material
design is a key component. Recently, Kim and co-workers
(Sim et al., 2018) reported a promising electrode material with
a high flexibility and excellent electrochemical behavior. By
trapping poly (3,4-ethylenedioxythiophene): poly
(styrenesulfonate) and ferritin on multiwalled carbon
nanotube, the fiber electrodes exhibited electrochemical
stability and the electrical conductivity. Based on this, the
capacitance loss of 16% in the mouse after 8 days, and fiber
electrodes achieved excellent performance for validated
biocompatibility for In vivo phenomena and cell response
tests. In contrast to conventional battery/capacitor couple, a
single material with the mixed electrochemical behavior for
one device is of great improvement for the powering function
within limited space.

Power biodegradable and implantable MSCs have attracted
numerous investigations due to the needs for smart implantable
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medical electronics. Very recently, Sheng’s group (Sheng et al.,
2021) reported on the fabrication of MoOx flake on water-soluble
Mo foil by an electrochemical oxidation approach. The as-
prepared MoOx-based supercapacitor delivers a high specific
capacitance of 112.5 mF cm−2 at 1 mA cm−2 and a recoverable

energy density of 15.64Wh cm−2. The packaged device can work
effectively for up to 1 month in a simulated body fluid
environment (37°C, 0.1 mM PBS solution, pH � 7.4), and the
length of the working life is controllable, which is comparable to
the other reported materials and suggests that it is indeed a

TABLE 1 | Thickness of electrode materials via different preparation methods.

Method Materials Min thickness References

Photolithography MXene 300 nm Couly et al. (2018)
— MXene/CNT 30 nm Kim et al. (2021)
— OAm@Ti3C2Tx 600 nm Song et al. (2020)
Ink printing Porous graphene microspheres 30 μm Chang et al. (2021)
— Graphene 30 nm Sollami Delekta et al. (2019)
3D Printing MXene 1.5 μm Orangi et al. (2020)
— MXene-AgNW-MnONW-C60 500 μm Li et al. (2020)
— Graphene−carbon black 35 μm Zhang et al. (2021)
Spray-masking MXene 20 nm Li et al. (2019b)
Electrochemical deposition Polyethylenedioxythiophene 600 nm Kurra et al. (2015)
Laser processing Carbon nanotubes (CNTs)@polypyrrole (PPy) 24.64 nm Li et al. (2021)

FIGURE 7 | (A) Schematic representations of the synthesis procedure and applications of the biodegradable MSCs. (B) SEM image and crystal structure of MoOx
electrode. (C) CV and GCD curves of MoOx electrode. (D) Digital pictures of the time-sequential dissolution of a single MoOx electrode (1 cm × 1 cm) immersed in PBS
(pH 7.4) at 37°C. (E) In vivo degradation evaluation of the supercapacitor implant in the subcutaneous area of SD rats (Sheng et al., 2021).
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promising energy storage device in terms of energy storage
properties. In addition to electrochemical performance, MoOx
flake have shown the biodegradation behaviors and
biocompatibility. As shown in Figure 7D, Sheng’s group
further systematically studied its biodegradability by placing
the MoOx electrode material in a neutral phosphate buffer
filling solution. The study found that as time progressed, the
MoOx flakes were first completely dissolved, and then the
exposed Mo foil appeared to be cracked and corroded and
decomposed into black powder. The above test is only a
verification process, and the live implantation needs to be
further proved its effectiveness. As shown in Figure 7E,
6 months after implanting the encapsulated biodegradable
supercapacitor into a living mouse, the entire MSC device was
completely dissolved, and the mouse did not show any
inflammatory response. As we all know, molybdenum is an
indispensable trace element to maintain the normal life
activities of the human body, so the dissolution of electrode
materials can also further provide the human body’s daily
demand for Mo element.

Apart from that, practical applications in the human body is
also important for the practical MSC. Gao and co-workers
developed biocompatible and edible MSC using a laser
scribing strategy, which has a highly flexible and excellent
electrochemical performance in bioenvironment. (Gao et al.,
2020) Composed of gelatin, edible gold, active carbon (AC)
and agar aqueous electrolyte, the flexible edible MSC could be
charged to 2 V even after soaking in simulated gastric juice for
28 min and degrade completely in a simulated gastric fluid for
40 min. Such flexible edible MSCs in a capsule was swallowed by
testers, and the tester had no adverse reactions, which further
proves the high safety of MSCs.

External Fixation Components in Health
Monitoring
Yun and co-workers reported an integrated energy device for
both generate photoelectric conversion, energy storage and
sensing by fabricating MSC, strain sensor (SS) and commercial
silicon-based solar cell (SC) on a single stretchable substrate. The
MSC was obtained via photolithography and the e-beam
evaporation. The integrated system would be charged when
the MSC and SC were connected. The negative and positive
charges generated from the DSSC part were transported toward
the Ti wire and stored in the SC part shows the charging and
discharging curves of the integrated optical charging system it
was exposed to the light of the solar simulator. After being
exposed to light, the voltage rapidly increased to 0.8 V within
2 s. During the discharge process, it reached the open circuit
voltage (Voc) of the MSC after about 1.2 h. At the same time, in
the mechanical stability test of the integrated system, after
1,000 cycles of repeated stretching (30% biaxial stretching), the
initial capacitance only dropped by 2%, showing
excellent electrochemical performance (Yun et al., 2018). Gong
and co-workers used solution treatment series solar cells
combining perovskite solar cells (PSCs) and ternar organic
solar cells (OSCs), and then integrate PSCs—OSCs series solar

cells with solid-state asymmetric ultracapactors through solution
treatment conducting polymer film to build a wireless portable
solution treatment self-charging power pack. Upon exposed to
light, the power conversion efficiency and energy storage
efficiency were calculated to be 17.16 and 72.4%, respectively
(Zhu et al., 2020b).

These integrated devices can efficiently collect solar energy.
However, the solar energy has the disadvantages of random,
intermittent and dispersive, and the use of solar energy is largely
affected by the weather, working conditions, etc. As a result, cong
(Cong et al., 2020) and co-workers recently developed a retractable
coplanar self-charging system by integrating MSC prepared by
chemical deposition and triboelectric nanogenerators into a
common fabric, which can collect mechanical energy generated
by humanmovement and converts it into electrical energy, resulting
in a coplanar self-charging power textile (SCPT) as shown in
Figure 8A. In this circuit, a bridge rectifier was used to charge
the MSC with the current generated by the linear motor through
beating of different frequencies. After 34 min of charging it to 2.0 V
with a linear motor through a 4 Hz tapping, the self-chargeable
power supply fabric can be used to power the electronic watch for
3 min. Liu and co-workers (Liu et al., 2019c) recently developed a
yarn-based electronic system for efficient energy harvesting,
conversion and storage (Figure 8B). To obtain the integrated
energy textile, the negative electrode was first prepared by coating
Cu-coated polyester yarn with rGO/CNT, and the positive electrode
was prepared by growing Ni-Co bimetallic oxyhydroxide on the
polyester yarn. Both the energy harvesting part and the storage part
exhibited good performances, as confirmed from the experimental
results. The triboelectric nanogenerators part exhibited a peak areal
power density of 127 mW m−2. The MSCs adopted “sandwich”
configuration and exhibited an areal energy density of 78.1 µWh
cm−2. As a result, more complicated integrated system on an
electronic textile is promising. Li and co-workers (Gao et al.,
2021a) developed a Ti3C2Tx-derived iontronic pressure sensor
(TIPS). The sensor consists of a floating electrode on the top and
a microstructure PVA-KOH dielectric film. Ti3C2Tx has excellent
electronic conductivity (∼10,000 S cm−1), electrochemical, optical
and mechanical properties, and has better pseudocapacitance
characteristics based on ion intercalation than traditional electric
double layer electrode materials. Selected as the electrode of flexible
PPS. The floating electrode design and themicrostructured dielectric
film further enhance the sensitivity. Benefiting from the synergistic
effect between the electrode material and the device configuration,
TIPS exhibits unprecedented ultra-high sensitivity (Smin>
200 kPa−1, Smax> 45,000 kPa−1), wide sensing range
(20 Pa–1.4MPa), and low the detection limit (LOD) is 20 Pa and
has a stable long-termwork durability of 10,000 cycles. These sensors
can monitor physical activity and flexible robot tactile perception.

It is well known that body fluid is rich in chemicals such as
different kinds of ions (Na, K, Zn, Fe), glucose and lactate. As
non-invasive human body fluid monitoring provides health
indicator information for human body, widespread research
interest has been aroused by the related testing equipment. As
far as sweat monitoring system is concerned, MCS for real-time
health monitoring is generally in pursuit of high capacitance,
biocompatible, flexible and long-term stability thus material design
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with highly compacted smarting sensing systembeing the key part (Li
et al., 2019c; Lu et al., 2019). Recently, Lu and co-workers (Lu et al.,
2019) developed a promising self-powered enzyme-free sensor arrays
system with integrated flexible MSCs array. By coating the
homogeneous mixed solution containing urchin-like NiCo2O4 and
poly vinylidene fluoride on the lithographic PET, the symmetric
MSCs exhibited a high capacitance of 0.067 F cm−2 at 1.2 mA cm−2

and a high energy density of 0.64 μWh cm−3 at 0.09mWcm−3. Based

on this, an excellent capacity retention of 96.6% was achieved for the
MSCs after 20000 cycles. As-fabricated glucose sensor showed
excellent response to glucose with concentrations ranging from 10
to 200 μM, and the detection limit of 10 μM was estimated. For the
sweat sensors, the response concentration ranges of (Na) and (K)
were 10–80mM and 1–16mM, respectively, indicating a high
sensitivity to target solutions. As both the MSCs and the as-
fabricated sensor showed good performances, a self-powered

FIGURE 8 | (A) Schematic illustration of the coplanar self-charging power textile (Cong et al., 2020). (B) Schematic illustration, photograph and Equivalent circuit of
the self-charging power textile (Liu et al., 2019c).

FIGURE 9 | (A) Schematic illustration of operation of pure electric bus by the wireless charging energy storage microdevices (Gao et al., 2021b). (B) Schematic
illustration and photograph of the flexible high voltage MSCs (Bai et al., 2020).
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wearable monitoring system was designed to achieve sensitive and
convenient body fluid monitoring, as exhibited in Figure 10B.

Industrial Applications of
Micro-Supercapacitors
Various applications forMSCs have been reported in the previous
literature and are brief reviewed in this here, including electric
vehicle, micro-drones, micro-robots, railways and high-voltage
power devices. Zhang et al. used the same material (graphite
paper) to prepare the high-consistent material system with
wireless coils and electrodes by laser etching approach. Due to
the complete and unique circuit structure, the wireless charging
system will operate at a high transferring power efficiency
(52.8%), which affects the efficiency of the wireless charging
energy storage microdevices. The electrochemical
performances of a single MSC obtained the excellent
capacitance of 454.1 mF cm−2, higher than that of commercial
Li-ion thin film batteries state-of-the-art conventional planar
MSCs, superior than that of commercial thin film battery. And
further when carefully integrated with the integrated wireless
charging devices and MSCs, a microdevice integrating energy
storage could drive the normal operation of pure electric bus, as
demonstrated in Figure 9A (Gao et al., 2021b). Bai et al. (Bai
et al., 2020) used laser radiation method to fabricate the flexible
high voltage MSC (HVMSC) with series structure. As shown in
Figure 9B, the device consists of the polyimide (PI) films, KOH
electrolyte solution and graphene. Interestingly, the electrolyte
layer on the surface of the laser-induced graphene is divided into
several independent areas by the engraving line. In this process,
conductive carbon black is formed, and the voltage of the MSCs is
significantly increased through the alternate connection of
electron and ion channels. Pang and co-workers (Pang et al.,
2020)reported the application of MSCs for the forest fire
monitoring and detection system as a power supply device.

The author adopted a sliding friction electrification model,
which consists of two elastically connected fixed and sliding
sleeve layers. The breeze swayed the branches, and the tiny
shaking caused by the branches can be effectively collected
and converted into electrical energy by triboelectric
nanogenerator, and stored in the integrated micro super
capacitor to power the fire sensor. The relevant information
and performance of MSCs produced in recent years are
summarized in Table 2 for comparison.

CONCLUSION AND PROSPECTS

The research and preparation of MSCs are originated from the
demand for miniaturized and integrated micro-energy storage
system and evolve into multiple forms of applications. This
review gives a comprehensive overview of the recent developments
from electrode materials to application orientations. Integrated
miniature SCs have made huge research progress in terms of size,
flexibility, biocompatibility and degradability. Even though the
application of integrated flexible MSCs in health monitoring and
industrial applications has been successfully demonstrated, several
challenges and problems have not been overcome.

1) The interference of monitoring environmental factors such as
temperature, moderate and pH conditions on the health
monitoring system needs to be resolved.

2) As an energy storage device, MSCs play an important role in
ensuring the continuity and stability of work in the entire
monitoring system. When designing devices, consider the use of
miniature, flexible energy storage devices with larger capacitance,
higher energy, wider working range, and longer service life.

3) The biocompatibility and degradability of implantableMSCs have
been verified in small animal models, and the real human clinical
trials are still generally verified.

TABLE 2 | The relevant information and the performance metrics of the produced MSCs.

Active materials Operating
voltage

Specific capacitance
(F g−1)

Energy density Power density Capacitance
retention

References

MXene-AgNW-
MnONW-C60

0–0.8 V 216.2 mF cm−2

(10 mV s−1)
19.2 μWh cm−2 58.3 mW cm−2 85% (10000 cycles) Li et al. (2020)

GP-AC 0–3 V 63 mF cm−2

(0.5 mA cm−2)
58.4 μWh cm−2 0.57 mW cm−2 85% (10000 cycles) Gao et al. (2021b)

Ni NPs 0–3 V 20.4 mF cm−2

(0.1 mA cm−2)
25.4 μWh cm−2 150 μW cm−2 89% (7,000 cycles) Chae et al. (2021)

Laser irradiated
graphene

0–1.2 V 2.32 mF cm−2

(10 μA cm−2)
0.46 mWh cm−2 0.57 W cm−2 ∼100% (100000

cycles)
Kamboj et al.
(2019)

Boron carbon Nitride 0–1 V 72 mF cm−2

(0.15 mA cm−2)
10 mW h cm−2

(0.15 mA cm−2)
487 mW cm−2

(1 mA cm−2)
∼100% (800000

cycles)
Karbhal et al.
(2021)

MXene/SiC 0–1.6 V 97.8 mF cm−2

(1 mA cm−2)
8.69 μWh cm−2 0.8 mW cm−2 90% (10000 cycles) Xia et al. (2022)

Ox-SWCNT/PVA/
H3PO4

0–0.8 V 5–30 mF cm−2

(0.1 mA cm−2)
0.41 μWh cm −2 0.37 mW cm−2 Yang et al. (2021b)

Mn/V oxide @MWCNT 0–2 V 11.8 mF cm−2

(0.2 mA cm−2)
6.58 μWh cm−2 200 μW cm−2 78% (5,000 cycles) Park et al. (2021)

MXene/BC@PPy 0–1.9 V 388 mF cm−2

(1 mA cm−2)
145.4 μWh cm−2 0.36 mW cm−2 95.8% (25000

cycles)
Cheng et al. (2021)

Pristine graphene 0–1 V 1.57 F cm−2 (2 mA cm−2) 51.2 μWh cm−2 0.968 mW cm−2 87.6% (4,500 cycles) Tagliaferri et al.
(2021)
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4) There are differences in the performance of the MSCs, and
the inconsistency of the voltages at the SCs will occur during
the series use. If the MSCs is overvoltage or overcharged, its
service life will be greatly reduced, and it will even cause
permanent damage to the MSCs and greater voltage
deviation.
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