
Computational and Structural Biotechnology Journal 18 (2020) 1754–1760
journal homepage: www.elsevier .com/locate /csbj
Review
Statistical methods for the estimation of contagion effects in human
disease and health networks
https://doi.org/10.1016/j.csbj.2020.06.027
2001-0370/� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Ran Xu
Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
a r t i c l e i n f o a b s t r a c t
Article history:
Received 24 February 2020
Received in revised form 17 June 2020
Accepted 19 June 2020
Available online 25 June 2020

Keywords:
Contagion effects
Networks
Omitted variable bias
Stochastic actor-oriented models
Instrumental variables
Latent-space models
Contagion effects, sometimes referred to as spillover or influence effects, have long been central to the
study of human disease and health networks. Accurate estimation and identification of contagion effects
are important in terms of understanding the spread of human disease and health behavior, and they also
have various implications for designing effective public health interventions. However, many challenges
remain in estimating contagion effects and it is often unclear when it is difficult to correctly estimate con-
tagion effects, or why a particular method would need to be applied. In this review I explain the chal-
lenges in estimating contagion effects, and how they can be framed as an omitted variable bias
problem. I then discuss how such challenges have been addressed in randomized experiments and tradi-
tional statistical analyses, as well as several state-of-the-art statistical methods. Finally, I conclude by
summarizing recent advancements and noting remaining challenges, as well as appropriate next steps.
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1. Introduction

Contagion effects, sometimes referred to as spillover or influ-
ence effects, have long been central to the study of human disease
and health networks. Such effects are defined as the propensity for
an individual’s behavior (or disease state) to vary along with the
prevalence of that behavior in a reference group [1] such as one’s
social contacts. Contagion effects have received much attention
and have been widely studied in various phenomena such as the
spread of health knowledge and behavior (e.g. smoking and
registering in health forums) [2,3], health status and disease (e.g.
obesity and acquired immunodeficiency syndrome (AIDS)) [4,5],
and psychological states (e.g. depression) [6,7]. Accurate estima-
tion and identification of contagion effects are important in terms
of understanding the spread of human disease and health behavior,
and they also have various implications for designing effective
public health interventions.

However, many challenges remain in estimating contagion
effects, especially from observational network data, because it is
difficult to separate the effect of contagion or influences from other
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processes that operate simultaneously.1 That is, when we observe
that people in close relationships or interactions tend to be similar
in health behavior or a disease state, it is difficult to identify the
underlying mechanisms that generate these patterns. One mecha-
nism could be influence and contagion [8–10] whereby individuals
assimilate the behavior of their network partners. Another mecha-
nism could be selection — in particular, homophily [11,12], in which
individuals seek to interact with similar others. Furthermore, there
could be some common social-environmental factors -- individuals
with previous similarities select themselves into the same social set-
tings (e.g. hospital or alcoholics anonymous (AA) support group), and
actual network formation just reflects the opportunities of meeting
in this social setting [13–15].2

Entanglement among these different mechanisms unavoidably
induces bias when we estimate contagion effects [16]. Various sta-
tistical methods and recent advancements in the field of social net-
work analysis have attempted to reduce the bias in estimating
contagion effects, such as instrumental variable (IV) methods
[17], propensity score methods [18], stochastic actor-oriented
models (SAOMs) [19], and the latent space-adjusted approach
[20]. Although each method potentially leverages extra informa-
tion in the data to reduce bias, they all have individual strengths
and weaknesses, and none can claim to eliminate all sources of
bias. Furthermore, considerable misconception remains regarding
when it is difficult to correctly estimate contagion effects, or why
a particular method would need to be applied.

In the following sections, I first explain the challenges in esti-
mating contagion effects and how they can be framed as an omit-
ted variable bias problem. I then discuss how such challenges have
been addressed in randomized experiments and traditional statis-
tical analyses. Several state-of-the-art statistical methods for esti-
mating contagion effects follow, including instrumental variable
methods and stochastic actor-oriented models and methods that
create proxies for the omitted variables. Finally, we close by sum-
marizing recent advancements and noting remaining challenges, as
well as appropriate next steps.
2. Challenges in estimating contagion Effects: An omitted
variable bias problem

Similarities of health behavior, disease state, and characteristics
of two individuals in a network relationship can be caused by three
primary mechanisms—contagion/influence, homophilous selec-
tion, or common social or environmental factors [21]. While it is
possible to rule out some mechanisms through random treatment
assignment or networks in experiments, entanglement among
these different mechanisms makes it difficult to correctly estimate
the contagion effect from observational data. The challenges in
estimation caused by entanglement among contagion effects and
common social-environmental factors can be easily framed as an
omitted variable bias problem (e.g., ignoring the group or environ-
ment individuals belong to when estimating the contagion/influ-
ence model). What is less obvious is that entanglement between
1 Assuming contagion is simultaneous rather than lagged poses additiona
challenges. Manski concluded that identification is difficult if not impossible when
simultaneous influence exists, requiring strong assumptions to make statistical and
causal inferences. This is not the focus of this paper, and we assume there are some
lags in transmission of contagion effects.

2 There are also structural constraints such as transitivity and preferentia
attachment that could cause people to become friends. However, these mechanisms
alone do not entangle influence (e.g., one befriends another due to high popularity bu
they have different behaviors). In these cases, another mechanism must be present to
induce similarity between these friends (e.g., selection of common friends based on
similarity in attributes), and thus the entanglement goes back to the original three
mechanisms: influence, selection based on homophily, and social-environmenta
factors.
l

l

t

l

the contagion/influence and the homophilous selection can also
essentially be framed as an omitted variable bias problem [20].
Shalizi and Thomas have shown that when there is an unobserved
trait that co-determines both behavior and network choice, conta-
gion effects are generally unidentifiable mainly because contagion/
influence and homophily (selection) are generically confounded
through this unobserved trait [16].

For example, assuming that the frequency of individual i’s (ego)
drug use at time t, drug_useit, is the outcome of interest. It is a func-
tion of his/her previous drug use, drug_useit-1, his/her friend j’s (al-
ter) previous drug use, drug_usejt-1 (ego’s network exposure, i.e.
contagion/influence), and an unobserved tendency for substance
abuse (arrow D in Fig. 1). At the same time, there is a homophilous
selection based on this unobserved substance-abuse tendency in
the network -- individuals with similar levels of substance-abuse
tendency are more likely to be friends (arrow A in Fig. 1). As a
result, person j’s drug use, which is a function of person j’s
substance-abuse tendency (arrow Bj), will be correlated with per-
son i’s substance-abuse tendency through homophilous selection
(arrow C in Fig. 1). However, as the substance-abuse tendency is
unobserved, it violates the key assumption of most estimation
methods (i.e., the omitted variable should not correlate with the
independent variables) such that the estimates of the contagion
effects will be biased and inconsistent. Simulation evidence from
Xu showed a substantial upward bias in the estimates of contagion
effects when an omitted variable is present in both the behavioral
and network selection model and a downward bias in the esti-
mates of contagion effects when the omitted variable only presents
in the behavioral model while the network is static [20].
3. Randomized network experiments

As other scientific fields, one of the cornerstone approaches to
minimizing bias in the estimation of the contagion effect is the
use of randomized experiments. There are primarily two types of
randomized experiments designed to estimate contagion effects.
The first type randomly assigns individuals’ networks. In this type
of experiment, as one’s network partner is randomized, there are
no unobserved factors that drive network selection, and behavior
and selection are no longer entangled. For example, Centola ran-
domly assigned participants to specific network structures and
found that individuals are muchmore likely to adopt health behav-
iors when social reinforcements exist in the networks [3]. Sacer-
dote randomly assigned roommates to students and found that
roommates socially influenced subjects’ grade point averages as
well as decisions to join social groups such as fraternities [22]. Sim-
ilarly, Kremer and Levy found that males randomly assigned to
roommates that drank alcohol prior to college had a lower grade
point average (GPA) than those assigned to nondrinking room-
mates [23].

The second type of randomization preserves subjects’ pre-
existing social contacts but randomly assigns subjects to treatment
(intervention) conditions. By randomizing alters’ (those who have
network connections with the ego/focal user) behavior, the ego’s
network exposure is no longer correlated with the omitted variable
that affects the ego’s behavior or network, and contagion effects
can thus be identified. For example Aral and Walker randomly
manipulated whether Facebook users received notifications that
their friends had adopted a particular product to study peers’ influ-
ence on product adoption and found that younger and married
individuals were less susceptible to influence [24]. In another
example, Kramer et al. randomly assigned positive and negative
expressions that Facebook users received from their friends and
found that emotions are contagious via social networks [25]. For
a more thorough review, see [21].



Fig. 1. Contagion effects are unidentifiable due to the omitted variable bias.
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While randomized experiments have provided a sound basis for
inference, there are several limitations to conducting randomized
experiments to study network processes [26]. First, it is often chal-
lenging to conduct randomized experiments due to ethical con-
cerns or logistical constraints [27–29]. Second, concerns have
often been raised about violating the stable treatment unit value
assumption (SUTVA) or the no-spillover effect in network studies,
which presumably focus on behavior or disease states transferred
from one person to another (e.g., [30]). A third concern is that
while most experiments assume that network relations are static,
most network relations are actually continuously dynamic in real
world settings and people constantly make decisions regarding
new interactions and terminating existing ones. For example Carell
et al. found a negative treatment effect for the students they
intended to help because these students avoided the peers with
whom the designed-group intended them to interact and instead
formed more homogeneous sub-groups [31]. Finally, while ran-
domized assignments do apply to most human experiments in
question, virtually all of them have been conducted on non-
random populations. Thus, although employing randomization
may represent gains in internal validity, such gains might be out-
weighed by a loss in external validity or representativeness by
selecting a specific sample [26,32].
4. Conventional statistical methods

A conventional statistical model that is widely adopted in esti-
mating contagion/influence effect has origins in Friedkin & Johnsen
[33]:

Yit ¼ b0 þ b1Yit�1 þ b2Aijt�1Yjt�1 þ b3Xit þ eit ð1Þ
where Yit is the behavior of i at time t, Yit-1 is the behavior of i at
time t-1, and Yjt-1 is the behavior of alter j at time t-1. Aijt-1 is a
weighting matrix based on the observed social network at time
t-1. Together Aijt�1Yjt�1 represent the network exposure of individ-
ual i. Aijt�1Yjt�1 can take many different forms. Two popular forms
include the average of network partners’ behavior or the sum of
network partners’ behavior, and Xit represents other time varying
or invariant concurrent variables that might affect behavioral out-
come Y. Correspondingly, b2 represents the contagion effect of
interest.
This relatively simple yet effective model can take many differ-
ent forms of specifications to accommodate a binary outcome, a
count variable, and time-to-event data [34,35]. Although this
model does not directly model the selection process—and there
could still be strong homophily in the selection process—this
model controls for the lagged dependent variable Yit-1 and other
covariates Xit that are likely to drive both the behavior and selec-
tion model. As long as all of the variables affecting the behavioral
outcome or both the behavior and selection are observed and con-
trolled using this relatively simple model, contagion effects can be
correctly estimated [16,20]. However, it is rare that researchers can
obtain all relevant variables in the real world, especially with
observational data.

We also note here this model assumes a lagged, rather than
simultaneous, contagion effect. That is, the model assumes conta-
gion does not occur in the same period in the discrete time data.
To model contagion effects as simultaneous, Christakis et al. repre-
sent the contagion model on a dyadic level [5] as:

Yit ¼ b0 þ b1Yit�1 þ b2Yjt�1 þ b3Yjt þ b4Xit þ eit ð2Þ
Specifically, they use the lagged measure of an alter’s behavior

Yjt-1 to control for homophily and simultaneous measure of the
alter’s behavior Yjt to represent contagion. However, this method
is potentially problematic for two reasons. First, the inclusion of
both lagged and simultaneous measures of the alter’s behavior
can cause difficulties in both estimation and interpretation [36].
For example, an unbiased estimation of simultaneous contagion
effects requires specific structural constraints or a maximum like-
lihood estimation based on an equilibrium model [1,37]. Second, it
remains likely that this model omits other variables that drive both
behavior and network selection.

Another similar but more sophisticated approach is through
propensity score matching. Specifically Aral et al. estimated the
contagion effect of adoption of a mobile service-application in a
large global instant-messaging network [18]. Individuals with
friends adopting the mobile service application were considered
the treatment group while those without were considered con-
trol group. They modeled the probability of receiving treatment
as

PðTit ¼ 1jXitÞ ¼ exp½ait þ bitXit þ eit�
1þ exp½ait þ bitXit þ eit � ð3Þ
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where Tit is the treatment status of individual i on day t and Xit rep-
resents the vector of demographic and behavioral covariates of i.
Each treated individual is then matched to an untreated individual
with the most similar predicted probability of receiving treatment
frommodel (3). Matched pairs are thus ‘‘equally likely to have a cer-
tain number of adopter friends because of observed and correlated
latent homophily, contrasting them on the sole dimension of their
neighbors’ actual adoption status” [18]. Contagion is estimated as
the difference in the probability of adoption among matched pairs.
This method is appealing as it deliberately controls for the selection
process by modeling the choice of friends (adopt vs. not adopt) as a
function of various demographic and behavioral variables. How-
ever, as with other propensity score-matching methods, this model
also requires a ‘‘strong ignorability assumption” [38], meaning there
are no omitted variables that affect the treatment status—in this
case, the network selection. Hence this method suffers from the
same limitations as the previous methods.

5. Stochastic actor-oriented models

Given the limitations of traditional statistical methods, many
new estimation methods and procedures have been developed
over time. One of the models that has received much attention in
recent years is called stochastic actor-oriented model (SAOM)
[19]. SAOM is a type of micro-simulation model that characterizes
how actors change both their network relations and behavior over
time. In principle, it is similar to an agent-based model [39], but
the SAOM uses statistical inference to estimate the network
dynamics and contagion/influence effects from observational data.
Specifically, in the simulation process, an SAOM assumes the
underlying time is continuous and that actors control their behav-
ior and outgoing ties. At a given moment, one probabilistically
selected actor has the opportunity to change one outgoing tie or
small step in his or her behavior. The change follows a Markov pro-
cess in which small changes in networks and behavior are accumu-
lated in each micro step, and large differences can then be
observed between initial and final networks [19]. For statistical
inference, the parameter values of the simulation algorithms are
selected such that the simulated and observed data resemble each
other most closely [40]. Specifically the parameters can be esti-
mated by matching key statistics of the simulated and observed
networks via method of moments, generalized method of
moments, or likelihood-based methods [41].

Each micro-step change for each actor has two parts: a change
opportunity process and a change determination process [19]. The
change opportunity process decides the rate of actors to make
changes, and an actor’s waiting time until the next micro step of
either kind is exponentially distributed with parameter

ktotal ¼
X
i

knetwork
i þ kbehaviori ð4Þ

where knetwork
i decides actor i’s rate to change networks and

kbehav iori decides actor i’s rate to change behavior. Both parameters
can be functions of an actor’s network positions (e.g., centrality)
as well as individual characteristics (e.g., age and sex).

The change determination process decides an actor’s choice of
tie or behavior when the actor has an opportunity to make a
change. Specifically, the choice probability of network ties follows
a multinomial logit shape and can be expressed as

exp
X
k

bkski xð Þ
" #

=
X
x0

exp
X
k

bkski x
0ð Þ

" #
ð5Þ

here, x represents the state of the network and sik xð Þ represents the
various effects based on network x for actor i, such as reciprocity,
transitivity, centrality, and homophily based on various
characteristics. The sum in the denominator extends over all possi-
ble next network states x’ [40]. Similarly, the probability of actor i
choosing a specific behavior can be expressed as

exp
X
k

bkski zð Þ
" #

=
X
z0

exp
X
k

bkski z
0ð Þ

" #
ð6Þ

where z represents the behavior state and the sum in the denomi-
nator extends over all possible next behavior states z’. The behavior
effects are represented by ski zð Þ, such as the similarity between the
ego’s behavior and the alter’s average behavior, which represents
the behavior assimilation process, and the corresponding parameter
estimate represents the contagion or influence effect.

SAOM is appealing as it intuitively incorporates both the
influence- and network-selection process from an individual-
level perspective, such that the network-selection effects are
adjusted for in estimation of contagion effects. SAOM has been
applied to study various contagion phenomena such as the spread
of smoking, marijuana use, and disease infection [42–44]. How-
ever, as the model is based on a simulation algorithm, computation
can be very time consuming, especially for relatively large net-
works. The model is also relatively inflexible as researchers can
only use pre-defined network and behavioral terms. More impor-
tantly, although SAOM simultaneously models contagion and
network-selection processes, it can still suffer from the aforemen-
tioned omitted variable bias problem, and contagion estimates
from SAOMs are not more conservative relative to other conven-
tional methods [45]. As Steglich et al. pointed out, estimates from
SAOMs are still biased when ‘‘non-observed variables co-
determine the probabilities of change in network and/or behavior
[40].”

6. Instrumental variable methods

Neither conventional statistical methods nor SAOMs can
account for the bias in the estimation of contagion effects induced
by the omitted variable in the behavioral (and network selection)
model. Instrumental variable (IV) methods also have the potential
to address the omitted variable-bias problem, and have been
widely used across many different fields in the social sciences,
including Mendelian randomization in epidemiology and bioinfor-
matics [46]. IV methods are used in situations in which explana-
tory variables are correlated with unobserved error terms that
can be caused by simultaneity, omitted variables, measurement
errors, and so forth. IV methods work through identifying a set of
new variables (instruments) that only correlate with endogenous
explanatory variables, but not directly with outcome variables or
the unobserved error terms. As such, the methods achieve consis-
tent estimation by ‘‘blocking out” the correlation between the
endogenous variable and the unobserved errors [47,48].

A handful of studies have used IV methods to estimate conta-
gion effects. The instrumental variables used in these studies can
be broadly grouped into two categories: substantive and structural.
Substantive IVs are usually theoretical or empirical constructs (e.g.,
individual characteristics) that only correlate with an alter’s
behavior, but not directly with an ego’s behavior of interest or
unobserved variables that affect an ego’s behavior/network selec-
tion. For example, Duncan et al. used a friend’s intelligence as an
instrument for the friend’s occupational and educational aspira-
tions to estimate peer effects on an individual’s aspirations [49].
O’Malley et al. used genetic alleles as IVs for friends’ BMI to esti-
mate social contagion effects on weight status [50]. An used
friends’ family smoking status as an IV for friends’ smoking status
to estimate peer effects on smoking [51]. However, all of these
methods require a strong theoretical argument of the validity of
the instrumental variables—that is, the IVs only correlate with an
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alter’s behavior but not with an ego’s behavior or unobserved vari-
ables through other routes. In many cases, these assumptions are
essentially untestable. In addition, weak instrument problems
often occur when the IV is only weakly correlated with an alter’s
behavior, which induces inconsistency problems and large stan-
dard errors of estimates, especially with small sample sizes [48,52].

On the other hand, structural IVs exploit structural properties of
networks or the data to identify instrumental variables. For exam-
ple, Bramoullé et al. argued that if there are intransitive triads in
the observed network—for example i� > j� > k, but i and k are
not connected—then i’s outcome can be used as an instrument
for j to estimate contagion effects for k’s outcome, since k is not
directly influenced by i [17]. In another example, Xu utilized the
dynamic nature of the longitudinal data and argued that if the
omitted variable that determines behavior/selection is constant
over time, the omitted variable can be removed by first-
differencing the model [20]. In such a case, contagion effects can
then be correctly estimated by using all the past outcome values
as IVs, as proposed by Arellano and Bond [53]. However, identifica-
tion of the contagion effects in these models would also require
somewhat strong assumptions and data requirements. In Bra-
moullé et al. [17], the validity of the IV depends on the assumption
that i does not influence k through any alternative path, and sim-
ulations have shown that the quality of IV estimates decreases
with denser networks and complex functions of intransitivity. In
Xu [20], the validity of the IV depends on the assumption that
the unobserved variable is constant over time; that errors in the
future are independent of past values of the outcome; and that
errors are serial-independent, which make them difficult to test.
In addition, simulation evidence also shows substantial instability
in the contagion estimates when the number of time points is
small.

7. Incorporating the omitted variable in the estimation
procedure

Finally, another school of thought is to directly deal with the
omitted variable that drives the behavior/network selection. By
directly incorporating the omitted variable in the estimation pro-
cess of contagion effects, it is likely that the bias in the
contagion-effects estimates will be substantially reduced. There
are two possible approaches here. The first is to incorporate the
omitted variable in the estimation procedure. Although the omit-
ted variable is unobserved, it can be modeled as a latent construct
in a structural equation model (SEM) framework, a widely used
method often employed as an alternative approach to deal with
unobserved variables [54]. Xu adapted a SEM model from Bollen
& Brand and modeled the contagion process in a SEM framework
with the omitted variable represented as a latent construct of the
ego’s behavior over time [20,55]. In principle, this method is
appealing as it accounts for the entanglement among contagion/in-
fluence and other processes though incorporating the correlation
between the omitted variable and the alter’s behavior in the esti-
mation procedure. Simulation evidence has shown that this
method can produce a small bias in contagion-effects estimates,
but the performance is unstable when the number of time points
is small or the true coefficient is large.

Another approach is to create a proxy variable for the unob-
served variable that drives both the behavior and network selec-
tion. Intuitively, if there is any information about the unobserved
variable from the selection process, it can be extracted and used
in the estimation of the contagion/influence process, which will
reduce the bias in the contagion-effects estimates. Liu and Chen
employed network- embedding algorithms from the machine
learning approach and represented the network topology structure
as actor attributes in a low-dimensional space [56]. Specifically,
they employed a factorization- based algorithm, GraRep; a random
walk-based algorithm, node2vec; and a deep learning-based algo-
rithm, Structural Deep Network Embedding (SDNE), to extract the
low-dimensional embedding vector (representing network topol-
ogy) as actors’ attributes and included these attributes as addi-
tional covariates in the contagion-effects estimation using a
conventional statistical model as in model (1). Simulation results
show that although none of these methods completely removed
the bias in the estimates of contagion effects, controlling for these
embedding vectors significantly improved the estimation when
compared with no control at all. However, a potential problem
with this machine-learning approach is that the embedding vec-
tors represent the network topology generated by all possible
mechanisms, including patterns generated by factors already
accounted for in the contagion estimation, such as homophily
based on the observed variables. As a result, the embedding vectors
can often be a poor measurement of the unobserved variables that
drive both behavior and network selection.

A more careful differentiation of the network topology gener-
ated by observed variables vs. unobserved variables has also been
proposed. Specifically, Shalizi & McFowland and Xu built on the
theoretical logic of latent space models as applied to social-
network data [20,57,58]. Latent space models assume that each
individual has a ‘‘latent position” that lies in an unobserved n-
dimensional social space, and the probability of interaction
between any two actors depends on the latent positions of these
two actors. Specifically, they take a logistic form and specify the
selection model as
logodds Zij ¼ 1jci; cj; xij;a; b
� � ¼ aþ b

0
xij � Dðci; cjÞ ð7Þ
here, Zij indicates whether there is a network tie from i to j, xij is a
vector of observed covariates (at the dyadic or node level), c indi-
cates the latent social position of i and j, and Dðci; cjÞ represents
the distance between i and j’s latent position such that a smaller
distance indicates a higher likelihood of having a tie. For any pair
of i and j, a smaller distance between the latent social position
and the unobserved variable (homophily) results in a higher likeli-
hood of a network tie and vice versa. Thus, by accounting for all the
observed covariates in the latent space model, when two individu-
als are close to each other in terms of the unobserved variable, they
are more likely to have a network tie and they should also be close
to each other in terms of latent social positions. Székely et al. have
shown that for two one-dimensional variables X and Y (e.g., latent
social position and the unobserved variable that drives both behav-
ior and network selection), if the distance correlation (e.g., correla-
tion between them (e.g., correlation between |Xi-Xj| and |Yi-Yj|) is 1,
then one can be written as a linear function of the other [59]. Thus
the estimated latent social positions from the latent space model
can be included as a proxy for the unobserved variable in the esti-
mation of contagion effects.

Shalizi & McFowland showed that if the network grows accord-
ing to a continuous latent space model, latent homophilous attri-
butes can then be consistently estimated and controlling for
these latent attributes allows for unbiased and consistent estima-
tion of contagion/influence effects in additive- influence models
[57]. Simulation evidence from Xu showed that when there is a
time-invariant unobserved variable that co-determines behavior
and network selection, the estimated latent social positions can
be good proxies for the unobserved variable [20]. Moreover, the
latent space-adjusted approach outperforms other state-of-art
estimation approaches in producing the smallest bias and standard
error of the contagion effect in a dynamic linear-in-mean influence
model as in model (1). The results are also robust to the inclusion
of additional covariates, structural properties (e.g., transitivity) in
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networks, different scaling of the latent space model, or even mis-
specifications [20].

The latent space-adjusted approach is appealing, as carefully
differentiating the unobserved variables from the observed ones
in the selection process, as well as the inclusion of latent position
as additional covariates, is flexible and can be applied to any spec-
ification of the contagion/influence model. However, the approach
also has several limitations. One limitation is that the latent space-
adjusted approach requires the same unobserved variable in both
the behavioral and selection models. It does not account for the
unobserved variables that are only present in one of the processes
but not the other (though such variables are usually less of a con-
cern). A second limitation is that the choice of dimensions of latent
social space in the latent space model is not clear. Although Xu [20]
chose one-dimensional latent social positions, this does not need
to be the case and there is no clear rule on how many dimensions
users should use. A third limitation is that computation of latent
social position is very time consuming, and the time increases sig-
nificantly with the increase of data or the number of dimensions in
the latent social position.
8. Summary and outlook

Studying the spread of disease and the contagion/social influ-
ence of health phenomena is at the center of social network stud-
ies. The correct estimation of contagion effects is crucial in terms of
advancing scientific knowledge, informing public policy, and
designing effective health interventions. In this review, we
describe how estimation of contagion effects can be biased due
to its entanglement with homophilous selection or common social
or environmental factors, and how this challenge in estimation can
be framed as an omitted variable bias problem. We then intro-
duced various methods with the potential to correctly estimate
contagion effects, including adjusting for observed covariates
through conventional statistical models, isolating contagion from
other confounding factors through randomized experiments or
instrumental variables, modeling the contagion and selection pro-
cess at the same time through stochastic actor-oriented models,
and incorporating the omitted variable in the estimation procedure
through machine learning or a latent space model. Each method
has unique strengths and weaknesses and researchers should care-
fully employ these methods based on the characteristics of the data
collected. For example, if we have a rich set of covariates and lon-
gitudinal data, conventional methods and an SAOM can often yield
good results. The instrumental variable method is a viable option if
observed data is limited but theoretically sound instrumental vari-
ables are present. Alternatively, the latent space-adjusted approach
can be employed if none of the previous conditions apply and the
primary concern is entanglement between the contagion and
selection process.

There are also many new challenges, especially with the devel-
opment of technology and the growth of ‘‘big data.” All of the
methods in this review were originally designed to deal with
small-to-midsize infrequent human interaction data. With the
development of new bio sensors and social sensors, we can collect
much more biological, physiological, social and network informa-
tion around humans, and we can collect this information at a much
higher frequency. Similarly, with the popularization of social
media data and other technologies, the size of the network in ques-
tion is also expanding, often by tens of millions. This causes at least
two unique problems. First, the scaling problem poses various
challenges to an estimation, especially for computationally inten-
sive methods such as SAOMs and the latent space-adjusted
approach. New algorithms are required to handle big social net-
work data more efficiently. Additionally, as individuals interact dif-
ferently in large networks, new models must be developed to
account for network characteristics such as nesting and clustering.
Second, with big network and biological/physiological variables of
interest, new theories must be developed to account for how
humans interact differently in big network, as well as how the con-
tagion process operates for biological and physiological traits. Note
that we did not specify a contagion/influence model in this review,
as there are various specifications of contagion/influence models
and the ‘‘correct” specification is critically dependent upon the the-
ories of the contagion/influence process. For example, the conta-
gion of sexually transmitted disease is fundamentally different
from learning and engaging in weight loss behavior through role
modeling or peer support, and we need different theories to specify
contagion models of the two processes. Thus the development of
new theories of contagion is at the heart of correctly specifying
and estimating an appropriate contagion model.

With the improvement of capacity to harness data, the develop-
ment of scientific theories, and appropriate statistical methods, the
scientific community will continuously improve its understanding
of the contagion and influence process in human disease and
health networks.
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