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Abstract

The tumor microenvironment comprising of the immune cells and cytokines acts as the ‘soil’

that nourishes a developing tumor. Lack of a comprehensive study of the interactions of this

tumor microenvironment with the heterogeneous sub-population of tumor cells that arise

from the differentiation of Cancer Stem Cells (CSC), i.e. the ‘seed’, has limited our under-

standing of the development of drug resistance and treatment failures in Cancer. Based on

this seed and soil hypothesis, for the very first time, we have captured the concept of CSC

differentiation and tumor-immune interaction into a generic model that has been validated

with known experimental data. Using this model we report that as the CSC differentiation

shifts from symmetric to asymmetric pattern, resistant cancer cells start accumulating in the

tumor that makes it refractory to therapeutic interventions. Model analyses unveiled the

presence of feedback loops that establish the dual role of M2 macrophages in regulating

tumor proliferation. The study further revealed oscillations in the tumor sub-populations in

the presence of TH1 derived IFN-γ that eliminates CSC; and the role of IL10 feedback in the

regulation of TH1/TH2 ratio. These analyses expose important observations that are indica-

tive of Cancer prognosis. Further, the model has been used for testing known treatment pro-

tocols to explore the reasons of failure of conventional treatment strategies and propose an

improvised protocol that shows promising results in suppressing the proliferation of all the

cellular sub-populations of the tumor and restoring a healthy TH1/TH2 ratio that assures bet-

ter Cancer remission.

1. Introduction

A malignant tumor is formed of heterogeneous population of cells. According to Cancer Stem

Cell (CSC) Hypothesis, this tumor of heterogeneous cells is formed from a distinct group of

cells having stem-like properties that are able to differentiate and renew for an indefinite

period of time [1]. Popularly referred to as the Seed and Soil hypothesis, researchers believe

that the CSCs acts like ‘seed’ and form the tumor initiating population of cells, that is responsi-

ble for the growth, sustenance, metastasis and relapse of Cancer [2]. These CSCs have the
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ability to differentiate both symmetrically and asymmetrically to form the terminally differen-

tiated cancer cells as well as renew the pool of CSCs [3]. However, during proliferation, various

extrinsic and intrinsic environmental factors give rise to random mutational events, such as,

chromosomal breakage, translocation, aberrant signalling events and drug efflux, which are

responsible for transformation and adaptation of the cell to resist the effect of drug and con-

ventional therapeutic strategies [4]. This results in the formation of distinct cellular sub-popu-

lations that are drug resistant and impair the treatment of cancer.

On the other hand, the tumor microenvironment, composed mainly of the immune cells

and the cytokines, plays a crucial role in determining cancer prognosis [5]. As the tumor devel-

ops, each of the tumor cell sub-populations starts manipulating the microenvironment and

induces the production of pro-tumorigenic molecules. The CSCs and the Cancer cells induce

the production of immune-modulatory molecules such as IL-10, IL-13 and TGF-β that are

conducive to the proliferation of the M2-Tumor Associated Macrophages (M2-TAM), the

Type II T-helper (TH2) cells and the T-regulatory (Treg) cells [6, 7]. The IL-10 mediated posi-

tive feedback loop between the tumor and the M2-TAMs helps in the rapid proliferation of the

tumor sub-populations and the progression of the disease [8]. The CSCs also expresses high

levels of co-inhibitory molecule PD-L1 that inhibit the activation of Cytotoxic T (Tc) cells [9].

Additionally, the CSC also tries to evade recognition by the immune cell by suppressing the

expression of Major Histocompatibility Complex (MHC) by the macrophage cells in the

tumor microenvironment. This is achieved by the release of exosomal miRNAs, such as miR-9

and miR-21, into the microenvironment by the tumor that are taken up by the immune cells,

mediating changes in the cytokine expression pattern, antigen-recognition and immune

responses [10, 11]. Along with these strategies of immune evasion, CSC also secretes VEGF, a

growth factor that promotes angiogenesis during tumor progression and plays a pivotal role in

suppressing the maturation of the T cells [12, 13]. These chemokines, cytokines and growth

factors secreted by the stem cells lead the system to an inflammatory state. This also mediates a

crosstalk between different groups of cells in the tumor microenvironment that are crucial for

cancer initiation, progression and metastases formation [14, 15]. These regulatory mechanisms

that operate in the tumor microenvironment serve to suppress the anti-tumorigenic effect of

the Cytotoxic T (Tc) cells and the Type I T-helper (TH1) cells. This immune-suppressed tumor

microenvironment acts as the ‘soil’ that nourishes and augments the growth of both the drug-

sensitive as well as the drug-resistant sub-populations of the tumor, thereby posing a further

challenge to the therapeutic strategies adopted to control cancer [16]. However, literature evi-

dences showing the presence of a few tumor associated antigens (TAA) that helps in the recog-

nition of these tumor cell sub-populations by the infiltrated T cells and the generation of

effective immune responses upon Dendritic Cell (DC) vaccination throws light on the possibil-

ity of control of the disease using immunotherapy [17]. Hence a thorough understanding of

the tumor-immune interaction, considering tumor sub-populations, is crucial to overcome the

immune-suppression induced by the tumor.

In order to gain insight into the regulatory mechanisms governing these tumor-immune

interactions, several studies have been performed using both theoretical as well as experimen-

tal techniques. Such studies have clearly indicated the role of Tc cells and IFN-γ in controlling

Cancer progression [18]. Recent findings have suggested that synergistic activation of Tc cells

and γδ-T cells are efficacious against HMLER-derived Breast Cancer stem-like cells, where γδ-

T cells act as an early source of IFN-γ in tumor immunity, under special in vitro conditions

[19]. The development of Chimeric Antigen Receptor (CAR) T-cell has opened up new ave-

nues for research in tumor immunity [20]. However, lack of truly CSC specific markers leads

to on-target/off-tumor toxicity, where the CAR-T cells or any other CSC-targeted therapy kills

the normal cells as well that display the same markers as that of CSCs [20, 21].
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Mathematical models have been useful in delineating the multiplicity of the complex inter-

actions governing the dynamics of the tumor-immune interaction that remains elusive

through in-vitro experiments. In this context, in-silico studies have shown light on the CSC dif-

ferentiation pattern and its effect on the tumor growth dynamics [3]. Here it has been observed

that symmetric stem cell division shows a correlation with cancer progression [3]. This is in

contrast to another report that mentions symmetric stem cell division lowers cancer risk as it

reduces the accumulation of cellular damage [22]. However, the effect of CSC differentiation

on drug-resistivity and the outcome of the interaction of these differentiated cells with the

tumor microenvironment have not been explored sufficiently. On the other hand, models on

tumor-immune interaction considering the involvement of tumor, immune effector cell and

IL2 have enhanced our understanding about oscillations in tumor sizes, long-term tumor

relapse and the conditions under which tumor elimination may be achieved using Adoptive

Cellular Immunotherapy [23]. Mathematical models are now being exploited for the study of

the efficacy of adaptive immunity for the elimination of aggressive tumors [24, 25], the exis-

tence of an angiogenic switch that regulates Cancer progression [26] and as a powerful tool in

the design of optimal control strategies for Cancer [27, 28].

However, the study of the CSC differentiation pattern and the outcome of the interaction of

these heterogeneous tumor cell sub-populations with the immune cells and cytokines present

in the microenvironment is a challenge yet to be achieved in both experiments as well as

modelling studies. With the aim to gain a clearer and unambiguous picture of the regulatory

mechanisms involved in the immune-escape mechanism of the tumor cells, we propose an

ODE-based mathematical model of the tumor-immune interaction that captures the develop-

ment of a malignant tumor from the ‘seed’, the CSCs, and its interaction with the ‘soil’, the

tumor microenvironment. In this model, we consider the three different modes of CSC differ-

entiation, as well as the effect of random mutations and ask the question, how the stem cell dif-

ferentiation patterns regulate the different cellular sub-populations in the tumor and how it

affects the development of drug resistance? Using this model we have tried to address the unre-

solved question of the correlation of M2 macrophages with more resistant tumors by exploring

the regulatory feedback loops that govern the dynamics of the tumor-sub-population and the

roles of the cytokine feedbacks in shaping the tumor microenvironment. Prior to these studies,

the model has been calibrated and the unknown parameters of the model have been estimated

by fitting the initial growth kinetics of the model with data obtained from Gastric Cancer cell

line using the MCMC-DRAM algorithm [29]. Moreover, the steady state behaviors of all the

model variables have been quantifiably validated with previously reported experimental data

obtained from cytometric and protein expression studies from both in-vitro studies as well as

data obtained from different Cancer patients to establish the generic behavior of our model

and ensure its acceptability in the design of treatment strategies.

In order to design treatment protocols for triggering the Cancer remission, we have intro-

duced radio and chemotherapeutic strategies and observed the fold changes in the tumor mass

in the presence and in the absence of resistant cells, where we demonstrate the failure of the

conventional treatment strategies for curing Cancer. Thereafter, we have ventured the use of

immunotherapy that has also been a popular choice for the elimination of the CSCs that are

resistant to chemo and radio-therapeutic interventions [17, 30]. Hence, using the leads from

our model analysis, we have attempted to propose combinatorial treatment strategies and

design protocols that help in better suppression of the tumor, even in the presence of resistant

cells. However, it may be mentioned here that a vital assumption in our model is that the drug-

sensitive and drug-resistant population of tumor cells elicits similar immune responses. The

resistant population of cells represents a fraction of the tumor cells that are unresponsive to

the conventional treatment strategies. Thus, the difference in their behavior arises when the
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treatment/control is applied. Our novel modeling approach and strategy for the design of

treatment protocol throws light on the ways to optimize drug schedules, dosage and treatment

cycles required for the elimination of the tumor cells. This model may be used as a potential

tool for the prediction of Cancer prognosis and calculation of fold changes in the tumor sub-

populations in response to a new treatment regimen.

2. Model

The tumor-immune interaction model, depicted in Fig 1A, can be perceived as three regula-

tory modules – (i) the core tumor along with the tumor infiltrated Tc cells (red box), (ii) the

immune-stimulators consisting of M1 cells, TH1 cells, IL2 and IFN-γ cytokines (green box)

and (c) the immune-suppressors consisting of M2 cells, TH2 cell, Treg cells and IL10 cytokines

(orange box). The interactions between these components of the model are based on known

experimental evidences and immunological relevance. A detailed description of the model

along with the mathematical assumptions, based on the biological phenomenon, used in its

mathematical formulation has been described in the Methods section.

Based on these biological relevances and mathematical assumptions, the tumor-immune

interaction network has been modelled using 13 Ordinary Differential Equations (Eqs 1–13)

and 71 parameters (as enlisted in the Methods section). The state variables and parameters

used in the formulation of the model have been listed in the S1 Text. The initial values of the

Fig 1. Diagrammatic representation of the tumor-immune interaction model. (a) Cellular interaction network representing

the key players of the tumor microenvironment, viz. Cancer Stem Cells (S), Cancer cells (C), their drug resistant counterparts

(SR and CR), M1-TAM, M2-TAM, TH1, TH2, Tc, Treg immune cells, and cytokines IL10, IFN-γ and IL-2; The tumor

microenvironment has been grouped into three parts, viz.- core tumor and infiltrated Tc cells (red box), the immune-stimulators

(green box) and the immune-suppressors (orange box); the Black arrows represent Activation, while the Red arrow represent

Inhibition; (b) Stem cell differentiation pattern.

https://doi.org/10.1371/journal.pone.0203030.g001
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model variables have been listed in the S1 Text. Here the initial value of the stem cell S0 = 1,

while SR, C, CR have been initialized as zero such that all the tumor sub-populations develop

from the symmetric and asymmetric differentiation of a single stem cell that ensures the con-

servation of the stem cell hypothesis.

3. Therapeutic intervention

The protocols are designed using various combinations of Radiotherapy, Chemotherapy and

Immunotherapy. The dosage, time duration and number of cycles for each therapy are varied

to determine the optimal combination that gives us maximum fold changes in the tumor

reduction as well as enhance the TH1/TH2 ratio to ensure better treatment efficacy. Two treat-

ment protocols have been tested in our model. Protocol 1 is an adaptation from a previously

reported protocol involving Chemotherapy and Radiotherapy, while Protocol 2 is novel com-

binatorial protocol proposed where we have introduced Immunotherapy by triggering the

immune cells of our model (detailed discussion in the Methods section).

4. Results

4.1. Model validation with experimental data

4.1.1. Tumor growth (without therapy). The growth kinetics of the tumor is estimated

by four variables of our model, S, SR, C and CR, signifying the four sub-populations of cells

that are found in the tumor. In order to validate the growth kinetics of these tumor cell sub-

populations of our model, we have used data from different experimental and theoretical stud-

ies of tumor growth estimation. The early temporal growth kinetics of the Stem (S) and Resis-

tant Stem cells (SR) were validated over a period of 5 days, with the reports of Tomasetti and

Levy [3], by choosing the parameter values γS = 2 day-1 and δS = 0.2 day-1 (Fig 2A). Here, it

was observed that the Stem cells (S) start proliferating exponentially during this initial growth

phase of tumor formation. During this time frame, the stem cells also start acquiring mutations

and start producing the Resistant Stem Cells (SR) that gradually starts proliferating slowly and

is maintained in very low numbers inside the tumor [3]. It is to be noted that for all our subse-

quent simulations we have used γS = 0.15 day-1 and δS = 2 x10-7day-1, as reported in the S1

Text.

Temporal behaviors of the Cancer (C) and Resistant Cancer (CR) sub-populations have

been simulated to validate our model with experimental data (Fig 2B; See Methods Section
7.7). Fig 2B depicts the temporal growth kinetics of the Breast cancer cell line MCF-7/TAX-

resistant to Paclitaxel [31], Hepatocellular Carcinoma cell line SK-Hep1/CDDP3-resistant to

Cisplatin [32], and Colon Cancer cell lines SW-620-L-OHP and LoVo-L-OHP-resistant to

Oxaliplatin [33]. Our simulation result mimics the average behavior of the resistant cancer cell

lines over the time period of 5 days (Fig 2B), using the parameter set estimated through the

MCMC method.

The model was simulated for a sufficiently long time to study the temporal evolution of the

drug-sensitive and drug-resistant cancer cells without any therapeutic interventions (Fig 2C).

Here, it was observed that during the early stages of tumor development, the stem cells (S)

show a very slow rate of proliferation. According to our simulation results, it is observed that

although a single stem cell initiates the formation of the entire tumor, the stem cells maintain a

very low number during the first few months of tumor development. The rapid proliferation

of the Cancer cells (C) during the early growth phase lead to their transformation to the resis-

tant CR species that soon start proliferating rapidly, thereby giving rise to a tumor. At the end

of the exponential growth phase, the cancer progression is impeded by the activated M1, TH1

and Tc immune cells and the systems stay relatively stable for some time until the stem cells
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start proliferating exponentially and form the main bulk of the tumor. Our simulation results

indicate that the first resistant stem cell of the tumor is detected at 400 days. Around 800 days

the model reaches its steady state. The total tumor density at steady state can be estimated to

be around 2.5x1010 cells/ml, i.e. 25 times higher than the reported minimum threshold of a

Fig 2. Model validation with experimental data: (a) Stem and Stem resistant cell proliferation at γS = 2 day-1 and δS = 0.2 day-1; (b) Proliferation of the

Cancer Resistant cells as observed in experiments along with the observations from our simulation; figure depicts growth kinetics of the Breast cancer cell

line MCF-7/TAX-resistant to Paclitaxel, Hepatocellular Carcinoma cell line SK-Hep1/CDDP3-resistant to Cisplatin, and Colon Cancer cell lines SW-

620-L-OHP and LoVo-L-OHP-resistant to Oxaliplatin; (c) Temporal cellular behavior of the components of the model during tumor formation; (d)

Temporal cytokine expression pattern during tumor formation; (e) Immune Cell Ratio at steady state- experiment versus simulation results (f) Immune

cell ratio in the disease free condition versus cancer scenario. Note: CD4 = TH1 + TH2; CD8 = Tc.

https://doi.org/10.1371/journal.pone.0203030.g002
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clinically detectable tumor [3]. From here we calculate the relative abundance of the sub-popu-

lations of the tumor cells and derive that at steady state, the tumor is composed of 94.59%

Stem cells (S), 4.49% Cancer cells (C), 1% Cancer Resistant cells (CR) and small fraction of

Stem Resistant cells (SR) that comprises 0.001% of the tumor mass.

4.1.2. Immune cell-ratio comparison with cytometric data. Our simulations results

revealed the dynamics of the adaptive immune responses generated during the tumor develop-

ment (Fig 2C). Here we observe that as the tumor sub-populations begins to proliferate, the Tc

cells show enhanced activation that is required for the natural regression of the tumor (Fig

2C). However, as the tumor continues to proliferate and the resistant cancer cells (CR) peaks to

1.5x109 cells/ml, there is a sharp rise in the M1 and TH1 cells proliferation. The combined effect

of the Tc, M1 and TH1 cells helps to impede the tumor development and decrease it by 3 folds

which then falls below the limit of tumor detection (i.e. 109 cells/ml, [3]) and apparently stays

dormant till 400 days. Thereafter, as the stem (S) and resistant stem (SR) cells start proliferat-

ing, the adaptive immunity becomes active again. However, this is also accompanied with the

increase in abundance of M2 and Treg cells (Fig 2C), that helps in the sustenance and contin-

ued survival of the tumor cells.

In order to analyse the changes in the immune activation state before and after tumor for-

mation, the immune cell ratio values obtained at the steady state are estimated and compared

to the cell ratios in the normal disease-free condition (Fig 2F). It may be mentioned here, in

Fig 2E and 2F, CD4 depicts the summation of both the TH1 and TH2 cells of our model, while

CD8 implies Tc cells. From our model analysis, we observe that, during Cancer, the ratio of

CD4 and CD8 cells reaches a mean value of 2.75, that is in sharp contrast to the normal healthy

individuals which show a value of 1.48 (Fig 2F) [34]. On the other hand, the value of CD4:Treg

ratio in Cancer shows a value of 15.2 that is higher than the ratio observed in the normal sce-

nario. This happens due to the enhanced TH2 proliferation during tumor development. This

also explains the reason for the elevated CD4/Treg ratio. However, the CD8:Treg ratio shows a

decrease in Cancer patients and reaches to about 5.5, which is a characteristic of resistant

tumors in mammals [35]. In Fig 2E we have compared these results of our numerical simula-

tion with experimental data obtained from various literatures. Here, we clearly observe that

our simulation corroborates very well with the experimental observations made from blood

samples of Cancer patients (Fig 2E) [36, 37]. Additionally, we have observed the changes in the

TH1:TH2 and M1:M2 ratios that have important implications in Cancer prognosis. We find

that both TH1:TH2 ratio and M1:M2 ratio get decreased during Cancer as compared to the nor-

mal disease-free conditions (Fig 2F) [38, 39]. These results are in excellent agreement to the lit-

erature that suggests Cancer patients showing TH1:TH2 ratio below 8 show poor disease

prognosis [39].

4.1.3. Cytokine production. IL10 production is a characteristic feature for Cancer detec-

tion. During Cancer, the marked increase in IL10 production has been noted in blood samples

of various cancer patients, where an average concentration of 0.01ng/ml has been recorded in

various protein expression studies [40–42]. The temporal protein expression profile, from our

simulations, suggests the IL10 expression starts increasing around the 15th day until it reaches

to a concentration of 0.005 ng/ml (Fig 2D). The IFN-γ production begins along with the prolif-

eration of the Tc cells and increases sharply with the activation of the TH1 cells (Fig 2D). This

is accompanied by IL2 production that helps in the continued proliferation of the TH1 cells.

After the proliferation of the stem cells, the cytokine production increases further. The IL10

concentration starts increasing rapidly and attains a concentration of 0.009 ng/ml at steady

state. The steady state concentrations of IFN-γ and IL2 reach 9.6 ng/ml and 0.6 ng/ml respec-

tively. The cytokine expression levels from our simulation lie close to the experimentally

observed ranges of protein expression of cancer treatment prior to their treatment [40].
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4.2. Model analysis

4.2.1. Development of drug resistance is governed by the pattern of stem cell differenti-

ation. With the assumption that the stem cells predominantly tend to renew their pool of

stem cells, i.e. with a probability p3, we have varied the values of p1 and p2 to observe the effect

of the asymmetric and symmetric differentiation of the stem cell on the development of drug

resistance (Fig 3A–3D). Here it may be observed that as we increase the values of p1 and p2,

the rate of the stem cell renewal decreases gradually, thereby leading to decrease in the steady

state values of S and SR (Fig 3A and 3B). However, in the case of C cells (Fig 3C), we observe

that as we increase the value of p1, the steady state values of C decreases, whereas the variation

of p2 has little effect on the steady states of C (Fig 3C). The steady state level of CR on the other

hand, is greatly influenced by p1 and p2 (Fig 3D). With the increase in the value of p1 and p2,

the steady states value of CR increases, signifying as the mode of stem cell differentiation

changes, the tumor cell sub-populations tend to transform into the resistant Cancer cells.

Hence, from our results, we may infer that higher asymmetric stem cell division may be associ-

ated with a high rate of drug resistance.

4.2.2. Dual role of tumor associated macrophages. The differential regulatory behavior

of the type I and type II TAMs on the tumor cells was studied by varying the γM1 and γM2

parameters, governing the growth rate of the M1 and M2 macrophages (Fig 3E–3H). Here it

was observed, as we increase the birth rate of M1, the steady state values of all the sub-popula-

tions of the tumor decreases. However, on varying γM2, we observe that although the S, SR and

C sub-populations show a decrease in the steady state values, the CR population increases (Fig

3E–3H). This result corroborates with the experimental observations that indicate that while

M1 macrophages may a have an important role in suppression of the tumor growth, a higher

abundance of M2 macrophages may lead to poor disease prognosis [43]. From our model anal-

ysis, we infer that a higher proliferation of M2 TAMs leads to an increased accumulation of

resistant cancer cells in the tumor. This is primarily because of the feedback regulations that

govern the dynamics of the tumor-immune interaction network.

4.2.3. IFN-gamma and IL10 feedbacks regulate Cancer progression. The cytokines are

the key regulators of the Tumor-Immune interaction network. The IFN-γ produced by the

TH1 cells helps in maintaining the steady state dynamics of the entire system. Parameter varia-

tion studies reveal that as we increase IFN-γ production from the TH1 cells by changing the

value of βTh1Ck2 between 10-7 and 10-2 ng/cell/day, the S and SR cells show a dampening oscilla-

tion in their temporal behavior and these stem cell populations gradually decrease to a very

low value. On the other hand, with the increasing βTh1Ck2 values, the temporal behavior of C

and CR cell population changes from dampening to stable oscillations at βTh1Ck2 = 0.1 (Fig 3I).

The increased production of IFN-γ leads to the rapid killing of the S and SR populations,

whose oscillations dampen with time resulting in complete elimination of the stem cells from

the system (Fig 3J). However, the high rate of C proliferation balances out the negative feed-

back effect of the high IFN-γ production, which keeps oscillating the system (Fig 3K). The

phase-plot depicts the feedback regulation that operates between the Cancer (C) cells and IFN-

γ that regulates the Cancer relapse. As the Cancer proliferation reaches 4x106 cells, the IFN-γ
production starts increasing which reduces the Cancer proliferation. When the Cancer cells

fall below 1x106 cells, the IFN-γ production also starts decreasing. However, at low levels IFN-

γ, the Cancer cells start proliferating again (Fig 3K). This leads the system into stable steady

state oscillations.

Another important feedback regulation that is crucial for the determination of tumor pro-

gression is the negative feedback effect of the IL10 cytokine on the TH1 proliferation. This is

governed by the parameter μTh1Ck1. As the value of μTh1Ck1 is increased, the TH1/TH2 ratio

Immune-regulation in tumor microenvironment
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Fig 3. Parameter variation study. (a-d) Surface plot of the steady state values of S, SR, C and CR under varying p1 and p2; (e-h) Surface plot of the steady

state values of S, SR, C and CR under varying γM1 and γM2; (i) Temporal Plot at βTh1Ck2 = 0.1; (j-k) Phase plane of S vs. IFN-γ and C vs. IFN-γ at βTh1Ck2 =

0.1; (l) TH1/TH2 ratio at varying μTh1Ck1; (m) Fold change in steady states at varying μTh1Ck1.

https://doi.org/10.1371/journal.pone.0203030.g003
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decreased rapidly (Fig 3L). This results in the further proliferation of all the tumor sub-popula-

tions, i.e., S, SR, C and CR, and the fold changes in the steady state values of all four increases

with increasing μTh1Ck1 values (Fig 3M). Here it may be observed that inhibition of TH1 cells

by IL10, results in higher fold changes of the steady state of SR cells.

4.3. Development of treatment strategies

4.3.1. Failure of chemo and radiotherapies due to the presence of resistant cells. Che-

motherapy and Radiotherapy are effective for controlling tumor proliferation in the absence of

the resistant cells, i.e. when the rate of transformation of the stem and cancer cells to their

resistant counterparts reduces. Here we have tried to simulate the cancer scenario without any

mutational pressure, i.e. mC = 0 and mS = 0. Under such conditions, when we apply the Treat-

ment Protocol 1, we observe the Stem and the Cancer cells population decreases rapidly and

an overall reduction in the tumor population is observed (Fig 4). However, during the forma-

tion of a tumor, a certain fraction of the tumor cells acquire resistance to drugs. Under such

conditions, i.e. mC>0 and mS>0, when the Treatment Protocol 1 is applied at the end of the

detection time (DT = 200 days), we observe that even though the drug-sensitive populations

viz. S and C decreases, the resistant populations SR and CR remain unaffected during the che-

motherapeutic cycles. Thereafter, during the Radiotherapy cycles, the SR cell population being

completely unaffected by radiation proliferates rapidly, while the C and CR population sharply

decreases for some time and then becomes stable. In the next treatment-free stage, SR, C and

CR start proliferating again. This activates the IFN-γ from the TH1 and Tc cells that help to

bring down the SR and CR populations a little, that are then sustained at by the M2 and the

Treg cells of the tumor microenvironment. The last phase of Chemotherapy does not have any

effect on SR and CR populations. Hence the reduction in the overall tumor mass is not substan-

tial. Also, it may be noticed here that at the end of this treatment regimen the TH1/TH2 ratio is

reduced to 2.5 that is indicative of poor disease prognosis.

4.3.2. Immune interventions for effective tumor remission. Combinatorial treatment

protocol was designed to reduce the tumor burden and restore healthy TH1/TH2 ratio. Parame-

ter variation studies revealed the importance of the TC and the TH1 cells in the regulation of

the steady state levels of the tumor cells. Here, Immunotherapy was introduced as two control

variables, i.e., u3_Tc and u3_TH1, which boost the production of the TC and TH1 respectively.

The stimulus to the TH1 and TC cells was started at the end of the last chemotherapeutic cycle

and was administered for 20 days followed by 1 day rest. This was repeated for 10 cycles. The

dosage of each therapy was varied in wide ranges, and it was observed that when Immunother-

apy is low, the change in Radio and Chemotherapies does not affect the tumor population sig-

nificantly which is reflected in the very small tumor fold change and low TH1/TH2 ratio (S1

Fig). As the Immunotherapy is increased, the fold change of tumor population increases along

with the TH1/TH2. However at very high doses of immunostimulation, the fold changes

decreases and the TH1/TH2 ratio increases abruptly that leads to extreme suppression of the

TH2 cells in the system. Hence the region 1.5< dI <2.5 can be considered as the ideal dosage of

immunostimulation required for triggering the remission of Tumor. Using the leads from this

analysis, the Protocol 2 was designed. At the end of this treatment regimen, it was observed

that all the four tumor sub-populations showed a huge reduction in their proliferation, i.e. 136

fold reduction in tumor mass (Protocol 2). The TH1/TH2 ratio was boosted to 8.8.

5. Discussion

The model developed here throws light into the development of a full grown tumor from a sin-

gle cancer stem cell (S), and the influence of the tumor microenvironment during its
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maturation. The study of the temporal evolution of tumor development shows that although

the cancer stem cell forms the ‘seed’ from which the tumor emanate, the stem cell population

remains low in the beginning. These cancer stem cells, owing to their slow replication, are

Fig 4. Changes in the tumor growth after therapeutic interventions. Protocol 1 has been applied without and with the presence of resistant cells.

Protocol 2 efficiently suppresses tumor in spite of the presence of resistant cells. Color code: Black-without treatment, Green-Chemotherapy, Red-

Radiotherapy, Pink-Immunotherapy.

https://doi.org/10.1371/journal.pone.0203030.g004
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intrinsically resistant to radiotherapy and are only partially sensitive to chemotherapy [44, 45].

Additionally, the stem cell sub-populations have a strong immune-suppressive effect on the

tumor microenvironment [46]. This phenomenon has been captured in our model in the

study of the temporal evolution of the tumor-immune interaction dynamics, where we observe

that coincident with the proliferation of the stem and resistant stem cell there is also an

increased proliferation of the M2 and Treg cells (Fig 2C). This consequently leads to the lower-

ing of the M1/M2 and TH1/TH2 ratio that is associated with the formation of resistant tumors

(Fig 2F). Moreover, it has been observed in our study that the proliferation of stem cell sub-

populations leads to suppression of the Tc cells and the activation of the Treg cells, that results

in the lowering the CD8/Treg ratio during Cancer (Fig 2F). This happens primarily because of

the direct negative regulatory effects of the stem and resistant stem cells on the growth of the

Tc cells. Hence, an early detection of the tumor is crucial for an effective treatment, when the

stem cell population in the tumor remains low and the resistant stem cell population is not yet

formed.

The model also captures the different patterns of CSC differentiation and its role in deter-

mining the fate of the tumor. Here, it has been observed that as the differentiation pattern of

CSC shifts towards the asymmetric pattern, the CSC pool begins to deplete and the CSC starts

producing the terminally differentiated cancer cells that have a finite lifespan. The reduction in

the stem cell population helps in the reduction of its immune-suppressive effects on the Tc

cells. At the same time, the differentiation of the stem into the cancer cells stimulates the Tc

cells to get activated that now inhibit the tumor via the negative feedback regulation. However,

the steady state value of the resistant cancer cells increases and overrides the negative feedback

effect of the immune cells, reinforcing the observations that a higher asymmetric stem cell dif-

ferentiation may be associated with the formation of more resistant tumors. Our model analy-

sis also indicates that at low p1 value, as the probability of symmetric differentiation (p2) of

stem cells is increased, the steady state levels of stem cells rapidly decreases, however it has little

effect on the steady state value of Cancer cells. On the contrary, at high p1 value, the increase

in p2 leads to the transformation of the cancer to resistant cancer cells. These results signify

that reduction in stem cell symmetric renewal (p3) of the cell leads to its differentiation into

more resistant tumors.

The model further elucidates a dual role of the M2-TAMs in regulating the tumor forma-

tion (Fig 3E–3H). Here we observe that on one hand, the M2-TAMs aid in the suppression of

the S, SR and C cells of the tumor. This is because M2 is a prime source for the production of

IL10 cytokine that has an important role in positively regulating the proliferation of the Cancer

(C) cells. Hence, as the M2-TAMs increase in abundance, the cancer cells begin to proliferate

via a positive feedback loop (Fig 5A). This leads to the activation of both the Tc and TH1 cells

that inhibits the tumor cells via their negative feedback by producing a higher amount of IFN-

γ and higher cytotoxic activity of the Tc cells (Fig 5A). However, on the other hand, it may be

observed that M2-TAMs help in the growth of the CR cells via the positive feedback loop,

while the negative feedback has little effect on the CR sub-population. This observation

explains the reason for the refractory behavior of the tumor to treatment strategies under the

presence of the M2-TAMs [47].

Our study reveals the functional behavior of the feedback mechanisms that regulate the

behavior of the entire tumor-immune interaction network. From our parameter variation

studies, the importance of the IFN-γ production in regulating the temporal behavior of the

tumor development is observed. Here, we found that as the rate of IFN-γ production from the

TH1 cells increases, the negative feedback effect of IFN-γ on the tumor helps in the suppression

of the tumor cells (Figs 3I and 5B). However, the replicative potential of the Cancer and resis-

tant Cancer balances out the negative effect of the IFN-γ leading to an oscillatory tumor-
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relapsing behavior, whereas the slowly replicating stem and resistant cells sub-populations

gradually get eliminated from the tumor due to the high production of the IFN-γ cytokine (Fig

3J and 3K). This finding has important implications in the design of Immunotherapeutic pro-

tocols, where we observe the differential behavior of the tumor cells in response to high IFN-γ
production. Using our model, we further explore the effects of the negative feedback of the

IL10 cytokine on the TH1 cells (Figs 3L, 3M and 5C). We also make an important observation,

where we find that as the sensitivity of TH1 cells to IL10 increases, the TH1/TH2 ratio decreases

sharply. This leads to the increased proliferation of the tumor cells. The fold change in the

steady values of the resistant stem cells is the greatest signifying the prognostic role of the TH1/

TH2 ratio in predicting tumor progression and the formation of a resistant tumor with higher

proportion of resistant stem cells.

With the knowledge of the regulatory mechanisms governing the differential response of

the tumor sub-populations to the microenvironment, we have tried to explore the effect of

treatment strategies conventionally adopted for the treatment of Cancer (Fig 4). Using our

model we have been able to show that the reason for the failure of conventional Chemotherapy

and Radiotherapy is primarily due to the formation of the resistant cancer stem cells SR and

resistant cancer cells CR within the tumor. Under the conditions where there are no mutations

conferring drug resistivity to the tumor, a significant reduction in tumor mass may be

achieved using Chemo and Radio therapy alone. However, in reality, a small population of

resistant tumor cells exists in the tumor that remains refractory to these treatment protocols.

In order to successfully remove the tumor, a combination of the conventional treatment proto-

col along with Immuno-therapy can help alleviate the disease scenario. There can be several

ways of boosting the immune system. However, in this work, we propose that a synergistic

stimulus to both TH1 and Tc cells is required for the generation of an adaptive immune

response that is capable of reducing both the drug-sensitive as well as the drug-resistant sub-

populations of the tumor. In order to achieve this, dosage of Radio, Chemo and Immunothera-

pies were varied to create 1000 different treatment combinations and thereafter a treatment

protocol (Protocol 2) has been designed to ensure maximal reduction in the tumor mass, as

well as the restoration of a healthy TH1/TH2 balance.

In this model, we try to capture the high complexity of the tumor microenvironment with a

simple ODE model that represents the interaction of the tumor cell sub-populations and the

immune cells at the phenotypic level. Here we assume that the parameters governing these cel-

lular interactions are a cumulative outcome of the various molecular and the intracellular sig-

nalling events occurring in the microenvironment that influence the immune evasion but have

Fig 5. Regulatory feedback loops. (a) The M2 macrophage triggers two feedback loops. The first loop through IL10 is

a positive feedback that triggers tumor proliferation. This, in turn, activates the second loop through IFN- γ that

inhibits the tumor; (b) The TH1 derived IFN- γ inhibits the tumor via a negative feedback that leads to an oscillation in

the population of tumor cells; (c) The positive feedback loop through IL10 is responsible for the maintenance of tumor

and suppression of TH1/ TH2 ratio.

https://doi.org/10.1371/journal.pone.0203030.g005
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not been explicitly considered in this model for its simplification. However, it is worth men-

tioning that depending on the availability of data and hybrid modeling techniques involving a

combination of different mathematical tools and strategies, this model may further be impro-

vised by considering the effect of the various molecular events such as angiogenesis, the role of

the miRNA, exosomes and chemokines in mediating the cellular interactions, the metabolic

pathways as well as the hypoxic conditions [48], that may further help us unravel unknown

regulations underlying the tumor immune interaction and the development of drug-

resistance.

6. Conclusion

With respect to the long standing ‘seed and soil’ hypothesis, we propose a model that throws

light into the previously unexplored regulations governing tumor-immune interaction. This

novel approach of developing of a tumor-immune interaction model considering both the

stem cell differentiation pattern as well as the effect of the microenvironment has helped us in

unveiling the effect of stem cell differentiation on the development of drug resistance and the

different mechanistic regulations governing the tumor-immune interaction dynamics. How-

ever, this model does not capture the diffusion kinetics of the cytokines or the time delay asso-

ciated with the cytokine regulations. Nonetheless, the observations derived from the model

have been corroborated extensively with the experimental observations in cytometric and pro-

tein expression studies that strengthen the reliability of our model for the prediction of mecha-

nistic regulations of tumor-immune interaction and design of the treatment protocols. This

study can further be used to optimize treatment strategies, drug dosage and time schedules for

designing advanced treatment protocols for Cancer.

7. Methods

7.1. Model development

7.1.1. Tumor formation. The core tumor consists of the Cancer Stem Cells (S), the Can-

cer Cells (C) and their drug resistant counterparts Resistant Stem Cells (SR) and Resistant Can-

cer Cells (CR) (Fig 1A, red box). The model takes into consideration the different patterns of

stem cell differentiation, viz. the symmetric and asymmetric stem cell differentiation (Fig 1B).

In the asymmetric differentiation, one stem cell (S) produces one daughter stem cell (S) and a

differentiated progenitor Cancer cell (C) with probability p1, while in the symmetric differenti-

ation one stem cell (S) produce either two Cancer cells (C) with probability p2 or two stem

cells (S) with probability p3 (where, p1+p2+p3 = 1). The stem cells undergoing asymmetric dif-

ferentiation acquire mutation (represented with black dotted line in Fig 1A) with a probability

mS that leads to the transformation of a stem cell (S) to a resistant stem cell (SR). Since the

probability that this mutation hits the daughter stem cell and not the differentiated cancer cell

is 0.5, the probability of formation of SR from S is further multiplied by p1/2. The symmetric

differentiation leads to the renewal of the non-mutant stem cell (S) pool with a probability

(1-mS)(1-p1-p2) [3]. Considering these factors (as described by Tomasetti and Levy [3]), we as-

sume that the growth rate of S can be mathematically represented as (γS(1 − mS)(1 − p1 − p2))

S, while the rate of depletion of the stem cell pool, that includes the differentiation of S to C

and the transformation S to SR can be represented as dS þ ðp2
� gSÞ þ gS �

mS�p1

2

� �
S. It may be

mentioned here that γS and δS represents that natural birth and death rates of S cells. A similar

nomenclature has been followed for all the other cell types.

The resistant stem cells are formed from the transformation of an S to SR. The SR follows a

similar pattern of self-renewal and differentiation that leads to the replenishment of the SR
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pool and the formation of differentiated CR cells [3]. Here, it may be assumed that the SR rep-

resents the compartment of stem cells that accumulate all the mutations in its pool, such that

no separate compartment for any secondary mutations has been considered here in this

model.

The Cancer cells (C) are formed from the stem cells (S) with the probability p1+p2. These C

cells follow a Gompertzian growth kinetics that can be mathematically represented by

gC � log Cmax
Cþr1

� �
, where Cmax is the carrying capacity of the tumor [49]. Here, it has been

assumed that during proliferation these C cells acquire mutations with a probability mC and

get transformed into CR cells. Hence the probability of proliferation of the non-mutant C cell

is further multiplied by a factor (1-mC). The CR cells are formed from the differentiation of the

SR cells with probability p1+p2 and the transformation of the C to CR cells with probability mC.

The CR cells also follow similar Gompertzian growth kinetics. The total carrying capacity of

these non-stem tumor cells has been considered as Ktumor, while each of C and CR has a carry-

ing capacity of Ktumor/2, so that both the cell populations can use the nutrients equally and

have an equal advantage in proliferation.

7.1.2. Immune cells in the tumor microenvironment. As the tumor develops the resi-

dent TAMs, both M1 and M2, encounters the C and CR cells of the tumor and gets activated

(Fig 1A) [38]. It may be assumed that this cell to cell interaction will follow a saturating kinetics

where even in the presence of a high number of tumor cells, the availability of TAMs acts as

the limiting condition. Hence a Michaelis-Menten type functional form may be used to repre-

sent the TAM activation, e.g. gM1 �
M1�ðCþCRÞ
M1þlM1

� �
. These M1 and M2 TAMs now activate the TH1

and TH2 cells respectively [50]. Here the abundance of the TH cells acts as the limiting condi-

tion. In a similar way, the M2-TAMs also activate the Treg cells present in the tumor microen-

vironment [51]. The Tc cells, on the other hand, infiltrate the tumor, gets directly activated by

C and CR cells (Fig 1A). However, the S and SR cells of the tumor inhibit the Tc cell prolifera-

tion [9]. This is a bidirectional reaction, as the activated Tc also tries to kill the tumor cell sub-

populations via its cytotoxic activity [52, 53]. The Treg cells act as immune-suppressor of the

system and try to inhibit Tc proliferation, whereas the TH1 cells act as immune-stimulator of

the system that helps in Tc proliferation and tumor infiltration [54, 55]. All these cell to cell

interactions tend to follow saturation growth kinetics and hence have been modelled using the

Michaelis Menten form discussed earlier [23].

7.1.3. Cytokines and feedbacks. Tumor formation triggers the immune system to pro-

duce cytokines. In this model, three important cytokines have been considered, viz. IFN-γ, IL-

2 and IL-10 (Fig 1A). The activation of the TH1 cells stimulates the production of IL-2 cytokine

from them. The amount of cytokine produced is directly proportional to the abundance of

effector cells activated. Hence, this has been modelled using the Law of Mass Action, e.g.

(βTh1CK3 � TH1), where βTh1CK3 (units: ng cell-1day-1) is the rate of production of IL2 from TH1

cells [56]. This IL2 is responsible for the auto-regulation and sustained proliferation of the TH1

cells. Hence, we have considered a positive feedback loop from IL-2 to TH1 cell that has been

modelled using a saturating function
mTh1Ck3�IL2�TH1

IL2þk9
, where the cytokine acts as the limiting factor

[23, 56]. Similarly, the IFN-γ is produced by TH1 and Tc cells which have a negative feedback

effect on all the tumor cell sub-populations. The production of IL-10 is regulated by M2, Treg

and TH2 cells. An auto-regulatory positive feedback loop exists between IL10 and the Treg

cells. IL10 also plays an important role in the proliferation of the C and CR cells and inhibition

of the TH1 cells. This IL10 mediated regulation captures the inhibitory actions of TH2 on TH1

cells that are often observed in Cancer scenario.
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7.2. Model equations

Based on the biological relevance and mathematical assumptions discussed above, the equa-

tions representing the tumor-immune interaction network comprising of 13 Ordinary Differ-

ential Equations (Eqs 1–13) and 71 parameters have been enlisted below:

�
dS
dt
¼ ðgSð1 � mSÞð1 � p

1
� p

2
ÞÞS � dS þ ðp2

�gSÞ þ gS �
mS�p1

2

� �
S �

mS � S � IFNg

k1 þ IFNg

� �

�
tck � S � Tc
ktc1þ Tc

� �

ðEq 1Þ

�
dSR

dt
¼ ðgSð1 � p1 � p2Þ � ðdS þ ðp2�gSÞÞÞ SR þmS�gS � 1 �

p1

2
� p2

� �
S

�
mSR�SR � IFNg

k2 þ IFNg

� �

�
tck � Sr � Tc

ktc2þ Tc

� �

ðEq 2Þ

�
dC
dt
¼ gC � ð1 � mCÞ � log

0:5 � Ktumor

C þ r1

� �

� Cþ gS � ðp1
þ p

2
Þ � S � dC � C � mC�gC � C

þ
mC1 � C � IL10

IL10þ k3

� �

�
mC2 � C � IFNg

IFNgþ k4

� �

�
tck � C � Tc
ktc3þ Tc

� �

ðEq 3Þ

�
dCR

dt
¼ gC � CR � log

0:5 � Ktumor

CR þ r2

� �

þ gS � SR � ðp1 þ p2Þ þmC � gC � C � dCR � CR

þ
mC1 � CR � IL10

IL10þ k5

� �

�
mC2 � CR � IFNg

IFNgamma þ k6

� �

�
tck � Cr � Tc
ktc4þ Tc

� �

ðEq 4Þ

�
dM1

dt
¼ gM1 �M1 �

C þ CR

M1 þ lM1

� �

� dM1 �M1 þ
mM1Ck2 �M1 � IFNg

IFNgþ k7

� �

ðEq 5Þ

�
dM2

dt
¼ gM2 �M2 �

C þ CR

M2 þ lM2

� �

� dM2 �M2 þ
mM2Ck1 �M2 � IL10

IL10þ k10

� �

ðEq 6Þ

�
dTH1

dt
¼ gTH1 �

TH1 �M1

lTH1 þ TH1

� �

� ðdTH1 � TH1Þ �
mTH1Ck1 � IL10 � TH1

IL10þ k8

þ
mTh1Ck3 � IL2 � TH1

IL2þ k9
ðEq 7Þ

�
dTH2

dt
¼ gTH2 �

TH2 �M2

lTH2 þ TH2

� �

� ðdTH2 � TH2Þ ðEq 8Þ

�
dTc
dt
¼ gTc � Tc �

C þ CR

Tc þ lTc1

� �

þ gTc �
Tc � TH1

Tc þ lTc4
� mTcS � Tc �

Sþ SR
Tc þ lTc2

� �

� dTc � Tc

� mTcTreg � Tc �
Treg

lTc3 þ Treg

 !

ðEq 9Þ
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�
dTreg

dt
¼ gTreg �

Treg �M2

Treg þ lTreg2

 !

� dTreg � Treg þ mTregCk1 �
IL10 � Treg

Treg þ k11

 !

ðEq 10Þ

�
dIL10

dt
¼ bM2 �M2 � dCk1 � IL10þ bTreg � Treg þ bTh2 � TH2 ðEq 11Þ

�
dIFNg

dt
¼ bTh1CK2 � TH1 þ bTc � Tc � dCk2 � IFNg ðEq 12Þ

�
dIL2

dt
¼ bTh1CK3 � TH1 � dCk3 � IL2 ðEq 13Þ

7.3. Control and therapeutic strategies

a. Radiotherapy (R) - With the aim to reduce the tumor cell proliferation, control variables

were introduced in our model. Here, the control variable u1 signifies the probability of cell

death due to Radiotherapy (Eq 14),

u1 ¼ 1 � expð� adR � bdR
2Þ ðEq 14Þ

where α and β are the parameters governing the radio-sensitivity of the cells, and dR is the

dose of radiotherapy applied, measured in Grey (Gy) units [57]. The value of α and β
depends on the oxygenation state of the cell [58]. In our model it has been considered that

Radiotherapy affects only the Cancer (C) and the Cancer Resistant (Cr) populations of the

tumor. It has no effect on the stem cells owing to their slow growth rate.

b. Chemotherapy (C) - The control variable u2, signifying chemotherapy has an effect on the

drug-sensitive stem (S) and cancer (C) cells of the tumor (Eq 15). u2_S and u2_C are

defined as the probabilities of cell death, due to chemotherapy, of Stem cells and Cancer

cells respectively (Eq 15 and Eq 16).

u2 S ¼ f C�ð1 � expð� MC
�dCÞÞ � kS ðEq 15Þ

u2 C ¼ f C�ð1 � expð� MC
�dCÞÞ ðEq 16Þ

Here, fC denotes the frequency of chemotherapy per day, M is defined as the efficiency of

the chemotherapeutic drug in m2mg-1 denoting the area of the tumor affected per mg of

the drug and dC is the concentration of the drug in mg m-2. The efficacy of the chemother-

apy of the stem cells depends on the factor kS that represent the inhibitory effect of IL-4 on

the stem cells that reduces the efficacy of the drugs. Sequestration of IL-4 makes the stem

cells sensitive to chemotherapy [44, 59].

c. Immunotherapy (I) - The parameter set was systematically screened to identify key param-

eters governing the negative feedback of the immune cells on the Tumor population.

Then, the immunotherapy was introduced in our model as perturbations to the system in

order to overcome the immunosuppressive effect of the tumor cells and to restore a healthy
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TH1 /TH2 balance.

u3 Tc ¼ dI
�MTC ðEq 17Þ

u3 TH1 ¼ dI
�MTH1 ðEq 18Þ

Eq 17 and Eq 18 depicts the control variables for providing immune-boost to the TC and

TH1 cells, respectively. dI signifies the dose of immunostimulant, measured in mg day-1 that

must be given to the system, while MTC and MTH1 are the measures of the sensitivity of the

TC and TH1 cells, respectively.

7.4. Designing treatment protocols

The protocols are designed using various combination of the above mentioned treatment strat-

egies, viz. Radiotherapy, Chemotherapy and Immunotherapy. The dosage, time duration and

number of cycles for each therapy are varied to determine the optimal combination that gives

us maximum fold changes in the tumor reduction. The general form of the protocols can be

described as follows:

DT200 ! ðR
dR=n
tR ÞnR ! FTtFT ! ðCh

dC
tC ÞnC ! ðI

dI
tI ÞnI

Here, Ch denotes Chemotherapy, R denotes Radiotherapy and FT signifies a treatment-free

period or relaxation time. The model was run till 200 days before the start of any therapeutic

interventions. This has been considered as the standard detection time (DT) for a full grown

tumor. Here the subscripts (tR, tC and tI) denotes the time duration for which the treatment

was given, and the superscripts (dR, dC and dI) represent the dosage. The subscript outside the

bracket (nR, nC and tI) denotes the number of cycles for which that treatment was repeated.

7.4.1. Protocol 1. This Protocol is an adaptation of the standard treatment protocol used

for applying chemo and radiotherapy (adapted from British Columbia Cancer Agency Proto-

col GIGAJCPRT - http://www.bccancer.bc.ca/). It was applied to our model to observe the fold

changes in the tumor cell population. The protocol can be summarized as follows:

DT200 ! ðCh
800

14
Þ

6
! ðR60=28

40 Þ ! FT15 ! ðCh
800

14
Þ

6

7.4.2. Protocol 2. This Protocol was designed as a combinatorial treatment protocol of

Chemotherapy, Radiotherapy and Immunotherapy to enhance the treatment efficacy. Based

on Protocol 1, this Protocol is an improvisation where Immunotherapy has been included that

boosts both the TH1 and Tc simultaneously. In order to design this combinatorial treatment

protocol, the dose of Radio, Chemo and Immunotherapy were varied over wide ranges in

order to create 1000 treatment combinations. The treatment efficacy of each combination was

plotted in a 4-dimensional scatter plot, measured in terms of fold change and TH1/TH2 ratio

(S1 Fig). The Protocol 2 can be summarized as follows:

DT200 ! ðCh
800

14
Þ

6
! ðR60=28

40 Þ ! FT15 ! ðCh
800

14
Þ

6
! ðI2

20
Þ

10

7.4.3. Measuring treatment efficacy. The efficacy of a treatment protocol is measured by

the reduction in the size of the tumor and the overall recovery from the immune-suppression

induced by the tumor, to ensure minimal chances of tumor relapse. Hence we have defined

two parameters that can be used as an indicator of Cancer prognosis:
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a. Fold Change – The treatment efficacy was estimated by measuring the fold change of the

tumor mass at the end of the treatment period as compared to the tumor mass measured at

the time of detection.

b. TH1/TH2 ratio - In order to ensure maximum treatment efficacy and minimize chances of

Cancer relapse, the TH1/TH2 ratio was used as an indicator for disease prognosis. A mini-

mum threshold of TH1/TH2� 5 was chosen to optimize treatment protocol.

7.5. Positivity and boundedness

This system of equations (Section 1.2, Eqs 1–13) can be analyzed with the initial conditions (S1

Text) defined in the thirteen dimensional variable space

R13

þ
¼ ½ðS; SR;C;CR;M1;M2;TH1;TH2;Tc; Treg ; IL10; IFNg; IL2Þ

2 R
13
jðS; SR;C;CR;M1;M2;TH1;TH2;Tc; Treg ; IL10; IFNg; IL2Þ � 0�

It can be proven, that all solutions of the system in R13
0þ

remain in R13
0þ

. Hence, R13
0þ

is posi-

tively invariant, and it is sufficient to consider solutions only in R13
0þ

. In this region, the usual

existence, uniqueness and continuation results hold for the system. From our numerical simu-

lations also, we have observed the existence of positive solutions. The solution set we get for

the set of ODEs represents the effective cell population and protein concentrations of the spe-

cies considered in the model at different time points during the tumor development. The fixed

point attained by all the variables of the model is a part of this positive solution space.

Also, we observe that the right-hand side of Eqs 1–13 (Section 1.2) are smooth functions of

the variables (S, SR, C, CR, M1, M2, TH1, TH2, Tc, Treg, IL10, IFNγ, IL2). Also, since all the

parameters are non-negative, local existence and uniqueness properties hold in R13
þ

, and if the

following necessary conditions are satisfied,

1. S0 > 0

2. p1+p2 < 1

3. mS < 1

4. mC < 1

5. γS(1-p2)> δS

then, we can state the following proposition.

Proposition 1: All the solutions of Eqs 1–13 (Section 1.2) which initiate in R13
þ

are uni-

formly bounded.

Proof: The proof of Proposition 1 is obvious as all the variables satisfy the condition of posi-

tive invariance for all the solutions of Eqs 1–13 (Section 1.2) which initiate in R13
þ

, the assump-

tions and necessary conditions (stated in Section 1.3) [60].

7.6. Sensitivity analysis

The sensitivity analysis of the model was performed by the extended Fourier Amplitude Sensi-

tivity Test eFAST technique using a MATLAB based toolbox [61]. The sensitivity analysis was

carried out using the whole set of parameters [k = 71]. 100 samples were chosen per search

curve and resampling of the search curves was carried out 5 times [NS = 100, NR = 5]. Hence,

the total number of model simulations N = (k+1)�Ns�NR = 36000. The Sensitivity Indices (Si)

of the parameters (p<0.05) for the variables governing the growth of the tumor sub-
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populations, viz. S, SR, C and CR were estimated at different stages of the tumor development

(Fig 6A–6D). Here it may be observed that at different time points that Si values of the parame-

ters change, signifying the importance of the parameters in the different stages of the tumor

development. The knowledge from this sensitivity analysis was used to determine the parame-

ters that have a maximum effect on the tumor development.

7.7. Parameter estimation from Cancer cell line data

The model comprises of a total of 71 parameters. The values of 21 parameters of the model

were curated from the existing literature. The unknown parameters were estimated (few were

assumed within the biological feasible ranges) using the MATLAB based toolbox that employs

the MCMC-DRAM algorithm for parameter estimation [62]. The time course experiment

cytometric data for cancer cell proliferation obtained for 7 days in for Gastric cancer cell line

(SGC7901) that was fitted for approximating the cancer cell behavior during the growth phase

(Fig 6F) [29]. Parameters that were sensitive for the growth of the Cancer (C sub-population)

Fig 6. Sensitivity analysis and parameter estimation: (a-d) Sensitivity Analysis plots for S, SR, C and CR respectively. The x-axis represents the

parameters with p<0.05; (e) Trace Plot showing the best fitting parameter values as estimated by the MCMC algorithm; (f) Predictive plot of cancer

proliferation using the estimated parameter values. The red circles represent the cancer cell proliferation values as obtained from Cell Counting

experiments using Gastric Cancer cell line [29].

https://doi.org/10.1371/journal.pone.0203030.g006
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cells were varied in biologically feasible ranges. The prior distribution was assumed to be nor-

mal and the MCMC simulation was carried out for 5 lakh iterations to ensure the convergence

of the chain (Fig 6E). The estimated parameter values for the model have been listed in S1

Text.

7.8. Experimental data for model calibration

Apart from the parameters estimated using the MCMC method, the remaining unknown

parameters governing the steady state behavior of the system were manually adjusted within

the biologically feasible ranges for the calibration of the model so as to ensure that the simula-

tion results corroborated with the various experimental observations. These parameter values

(labelled as ’Expected’) used for the numerical simulation of the model have been enlisted in

S1 Text. The experimental data used for this purpose were extracted from the available litera-

ture. For the validation of the growth kinetics of the resistant Cancer cells, time-course data of

resistant cell lines were obtained from Breast cancer cell line MCF-7/TAX-resistant to Pacli-

taxel [31], Hepatocellular Carcinoma cell line SK-Hep1/CDDP3-resistant to Cisplatin [32],

Colon Cancer cell lines SW-620-L-OHP and LoVo-L-OHP-resistant to Oxaliplatin [33]. The

cytometric data obtained for the validation of the immune cell ratios were mostly obtained

from Gastric Cancer, Ovarian Cancer and Osteosarcoma studies [34–39]. The data for the vali-

dation of cytokine expression were obtained from cases of Gastric and Breast Cancer studies

[40–42]. These data used came from heterogeneous sources as none of the previously per-

formed experiments were found to report the values of all cytometric data in a single experi-

ment. Moreover, the use of data from the different Cancer studies ensures that the model is

generic and mimics the average behavior observed in most Cancer studies. The use of data

from both in vitro studies as well as data obtained from Cancer patients ensures the reliability

of the model for its use in designing therapeutic control. In order to make the model specific

for a single type of Cancer, one needs to simply obtain the cytometric data from a single exper-

imental source and adjust the parameters accordingly.

7.9. Interior equilibria

To ensure positivity and existence of the interior equilibrium solutions, 36000 random param-

eter sets were generated (as mentioned in Section 7.6) within the biologically feasible ranges.

Thereafter the model is simulated up to 800 days for each set of parameter. It was observed

that each model simulation led to the positive interior equilibrium solution. Hence, we can

state and prove the following Proposition.

Proposition 2: Positive interior equilibria exists for the set of equations Eqs 1–13 (Section

1.2).

Proof: The interior equilibrium points are the steady-state solutions of the Eqs 1–13 (Sec-

tion 1.2) under the necessary conditions (Section 1.3) in the biologically feasible ranges of

parameter values and initial conditions S1 Text.

7.10. Model initialization and numerical simulation

The tumor mass is formed by the sub-populations S, SR, C, CR. In our model, the S cell sub-

population has been initialized to 1, while all the other tumor cell sub-populations have been

considered as 0. The initial values of the remaining variables have been initialized based on

cytometric data and cytokine expression values of healthy individuals, curated from the litera-

ture. The details have been provided in the S1 Text. The model was simulated numerically

using the variable-step, variable order solver, ode15s, in MATLAB1 2017a platform.
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Supporting information

S1 Text. Model parameters. The Supplementary Text contains the description of the parame-

ters and state variables used for the model simulations.

(DOCX)

S1 Fig. Treatment conditions under varying dose of Radiotherapy, Chemotherapy and

Immunotherapy. The scatter plot depicts (a) the fold change of tumor population and (b)

TH1/TH2 ratio under 1000 treatment combinations.

(TIF)
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