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Introduction
Cancer heterogeneity exists both functionally and morphologi-
cally, amplifying the challenges of effectively treating the dis-
ease.1 Therapy stratification tailored to suit the precise 
characteristics of each patient yields a better prognosis.2 
Biopsies with specific indicative property, also known as bio-
markers, can be expression levels of proteins or RNA, copy 
number variation of specific genes, micro-RNA, or non-coding 
RNA.3 Genomic, proteomic, and other “-omic” approaches to 
evaluate tumor samples have aided in developing gene panels 
of predictive biomarkers, which identify patients who will 
respond to distinct therapy strategies.4 In order to minimize 
invasiveness in generating samples, liquid biopsies from body 
fluids such as blood, saliva, and urine have been investigated to 
develop biomarker gene panels.5

For nearly 70 years, we have known that there are circulat-
ing nucleic acids within the blood,6 but the concept gained 
importance in the late 1970s when serum of cancer patients 
was noted to have a higher concentration of nucleic acids 
compared to healthy individuals.7 Hypothesizing that circu-
lating tumor cell-free DNA (cfDNA) can provide potential 

clues related to primary and metastatic tumors, studies on 
these DNA have been pursued in many cancer types.8 Ovarian 
cancer is the most lethal of all gynecologic malignancies. For 
2021, it is estimated that there would be 21 410 new cases and 
13 770 deaths.9 Despite response to first-line therapy, ~80% of 
patients will experience disease recurrence, and unfortunately, 
emergence of resistance to chemotherapy is inevitable for 
most patients.10-12 Platinum-based chemotherapy is the single 
most active treatment strategy for ovarian cancer, and the 
underlying mechanisms of resistance to platinum-based 
chemotherapy are most likely multifactorial.13-15 These include 
neutralizing alterations by cancer cells to platinum-based 
intercalated DNA adducts and epigenetic responses of the 
chemotherapy.16 Hence, resistance to platinum-based chemo-
therapy is a major challenge for clinicians, with median pro-
gression free survival of 4 months, and median overall survival 
of 12 months for these patients.17,18 Development of a gene 
signature panel for reliable prediction of prognosis prior to 
manifestation of chemo-resistance may help risk-stratify 
patients with more aggressive disease for whom treatment 
approaches could be altered.
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Although cancer patients have higher concentration of 
cfDNA than healthy individuals,7,19-21 the concentration and 
gene composition of cfDNA vary amongst cancer patients.22 
Prior research has shown that DNA encoding oncogenes, tumor 
suppressor genes, microsatellite alterations, and hypermethyl-
ated genes are circulating in the plasma of cancer patients.23 
cfDNA levels in the serum has been shown to predict response 
to therapy,24 and qualitative evaluation of cfDNA methylation 
has been used to differentiate cancer survival.25,26 However, the 
development of precise gene signature panels with specific 
genes in the serum is incomplete. Rapid and accurate methods 
of determination may provide better prediction of response to 
anti-cancer therapies. Based on this rationale, we sought to 
develop a precise prognostic gene signature panel of cfDNA 
genes in poor prognosis (platinum free interval [PFI] < 6 months) 
versus favorable prognosis (PFI >24 months) patients with 
high grade serous ovarian cancer.

Our results on sequencing the cfDNA isolated from poor 
and favorable prognosis patient serum samples indicated that a 
distinct cluster of genes as DNA fragments are circulating in 
the blood. Based on the quantification of these genes, they were 
grouped as genes of higher or lower dosage in the poor progno-
sis patients compared to favorable prognosis patients. Those 
high dose genes observed in poor prognosis patient samples 
were compared to the Reactome database for cancer relevance. 
Transforming growth factor, beta receptor II (TGFBR2) and 
Zinc finger, MIZ-type containing 2 (ZMIZ2), which indi-
cated multiple interactions with cancer associated proteins, 
were verified for protein expression in patient tumor tissues. 
Based on our study, we propose a novel multi-factorial approach 
to develop a gene signature panel, with genes identified in 
cfDNA fragments of patient serum and their protein expres-
sion levels in tumor tissues that could demarcate prognosis in 
ovarian cancer patients.

Materials and Methods
Patient selection

Eligibility was restricted to women with stage IIIC high grade 
serous carcinoma of the ovary, fallopian tube, or peritoneum 
who underwent primary debulking surgery followed by adju-
vant platinum-based chemotherapy. All women were treated by 
gynecologic oncologists at Stephenson Cancer Center at The 
University of Oklahoma Health Sciences Center. In order to 
compare groups with distinct prognosis and clinical course, 
patients were dichotomized into 2 groups based on their time 
from completion of platinum-based chemotherapy until first 
recurrence (PFI). PFI < 6 months was selected as the poor 
prognostic group, and PFI ⩾ 24 months defined the favorable 
prognostic cohort. The study methods and experimental proto-
cols were approved by the University of Oklahoma Health 
Science Center, Office of Human Research Participant 
Protection, Institutional Review Board (IRB approval # 6404). 
The authors confirm that the methods were carried out in 

accordance with relevant guidelines and regulations. All patients 
in the study were above 18 years and were informed of the 
nature of the study and provided written consent, prior to treat-
ment and collection of samples. The storage of samples was 
done by Stephenson Cancer Center Biospecimen core. 
Deidentified serum and tissue samples were made available to 
the researchers for this study. TMA of 126 ovarian cancer 
patients and pertaining deidentified patient characteristics were 
graciously provided by the authors of earlier publication.27

cfDNA isolation

CfDNA from the 2 ml of retrospectively collected serum from 
each patient was isolated using Quick-cfDNA™ Serum & 
Plasma Kit (Zymo Research) following the manufacturer’s 
protocol. The DNA was eluted in 25 μl of elution buffer and 
the quantification was done using Qubit kit on a Qubit fluo-
rometer (Thermo Fisher). An estimated 1 ng/μl of sample were 
loaded on High Sensitivity DNA chip (Agilent) and run on a 
Bioanalyzer 2100 (Agilent). The DNA integrity and purity 
were evaluated. The electrographs were generated using the 
2100 expert software (Agilent).

Sequencing and analysis of cfDNA

For sequencing of the cfDNA, a total of 1 ng of cfDNA was 
used to construct library using the Nextera XT DNA library 
preparation kit (Illumina). The samples were sequenced on 
MiSeq system (Illumina) at 2 × 250 base pair read length. The 
sequencing yielded about 60 million reads and the quality aver-
ages were ⩾Q30 in 71% or more reads. The sequences were 
aligned against the human genome sequence (GRCh build 38) 
assembled by Genome Reference Consortium and a pairwise 
sequence data analysis was performed using GeneSifter analy-
sis software (Perkin Elmer). Annotated genes were normalized 
to their reads per kilobase per million mapped reads (RPKM) 
for each sample and gene count were averaged for each group 
of patients. Gene copy number variations were statistically 
evaluated following the Welch’s t-test method with P < .05. 
Volcano plot for the genes that showed fold change of >1and 
< −1 in poor compared to favorable prognosis patient groups 
was performed. Heatmap for the gene copy number variation 
and the ratio of poor prognosis patient genes, grouped either 
higher (⩾1.5-fold) or lower (⩽ −1.5-fold) compared to favora-
ble prognosis patient genes, were generated using ggplot2 algo-
rithm of the R program.

Gene ontology analysis

Both groups, high and low dose genes, were analyzed using the 
PANTHER (protein annotation through evolutionary rela-
tionship) system for their gene ontology.28 Classification of 
these genes into various groups was based on their biological 
processes, protein class, or molecular functions. This was 



Gunderson et al	 3

performed using PANTHER on their website, www.pant-
herdb.org.

Immunohistochemical staining of tissue microarray 
(TMA)

All the concomitant patient FFPE samples were collected. 
Hematoxylin-Eosin (HE) stained sections were marked for 
tumor by a pathologist. Triplicate tumor cores of 1 mm diam-
eter were set in an empty block using Tissue Arrayer ATA110C 
(Veridiam) to develop a TMA. For control, normal uterus and 
fallopian tube were used. The TMA was constructed at the 
Stephenson Cancer Center’s Tissue Pathology Shared 
Resource using standard methodology.29 TMA of 126 ovarian 
cancer patient tumor samples were provided by the authors of 
an earlier publication.27 IHC-staining of both TMA with the 
antibodies of interest was carried out at the SCC Tissue 
Pathology Shared Resource that utilizes automated Leica 
Bond III for IHC staining. Antibodies used were TGFBR2 
(1:400; BIOSS) and ZMIZ2 (1:30; Novus Biologicals). IHC 
staining method were followed as described in publication,30 
briefly, FFPE tissues were sectioned. Deparaffinization and 
rehydration were performed on an automated Multistainer 
(Leica ST5020). Subsequently, these slides were transferred to 
the Leica Bond III™, where target retrieval and peroxidase-
blocking were performed. It was followed by the primary anti-
body incubation for 60 minutes and Poly-HRP IgG reagent 
was used as secondary antibody. DAB (3,3′-diaminobenzidine 
tetrahydrochloride) was used as chromogen and slides were 
counterstained with hematoxylin. Stained slides were dehy-
drated (Leica ST5020) and mounted (Leica MM24). Antibody 
specific positive control and negative control (omission of pri-
mary antibody) were parallel-stained.

Scanning and analysis of IHC slides

Methods for scanning and analysis of the IHC stained slides 
have been adapted similar to the earlier publication.30 Briefly, 
the IHC stained TMA slides were scanned using an Aperio 
slide scanner (Leica Inc.). The TMA were segmented, and indi-
vidual spots were assigned to respective patients using the TMA 

lab software, which works in conjunction with the spectrum 
software from Leica Aperio. Quantification of the various pro-
tein staining was done using Spectrum software (Leica Inc.).

Software used

Cytoscape 3.4v with plugin for Reactome FIViz app 6 with FI 
network style for connections. R program with ggplot2 pack-
age using R-Studio was used to generate the heatmap for the 
genes. Multiple unpaired t-tests were done for patient analysis 
and for individual protein expression studies t-tests were done 
for all the TMA analysis. All statistical analysis was done using 
Graphpad Prism 7.0v.

Results
Two cohorts of retrospective ovarian cancer patient samples 
were used in this study. The primary cohort for the cfDNA 
analysis included 33 patients with either <6-month (poor 
prognosis; 11 patients) or ⩾24-month (favorable prognosis; 
22 patients) PFI. In order to maintain clinico-pathological 
uniformity, only patients with stage IIIC high grade serous 
ovarian cancer who underwent primary debulking surgery 
were included in the study. The majority of patients were 
Caucasian with similar BMI and initial serum CA125 con-
centration (units/milliliter). On average, women diagnosed at 
younger age (61.2 ± 1.7 year) favored longer (⩾24 months) 
survival (Table 1). A secondary cohort included 126 ovarian 
cancer patients and the tumor samples from these patients 
represented in a TMA27 were analyzed for validation of the 
results. Adapting the above criteria, this cohort was divided 
into 3 categories, poor prognosis (26 patients), favorable 
prognosis (32 patients), and rest of the patients between 6 and 
24 months PFI (68 patients). The characteristics of the poor 
and favorable prognosis patients had similar BMI, initial 
CA125 concentration, and age of diagnosis (Supplemental 
Table 1).

cfDNA characteristics and sequence analysis

Retrospective serum collected at the time of diagnosis from 
first cohort of both poor and favorable prognosis patients were 

Table 1.  Clinical characteristics of patients selected in the study.

Characteristics Favorable 
prognosis

Poor 
prognosis

P-value

Age at diagnosis 58.4 ± 2.3 67 ± 3.8 .0355

Platinum free interval 47.4 ± 5.8 2 ± 0.7 .0001

Body mass index 24.14 ± 1.4 26.07 ± 2.0 .2222

Initial CA125 (units/ml) 1568.1 ± 469.6 1824.2 ± 799.3 .3931

cfDNA conc (ng/μl) 1.53 ± 0.5 1.51 ± 0.6 .8692

www.pantherdb.org
www.pantherdb.org
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used to extract the cfDNA. Concentration of cfDNA in the 
serum did not vary among both groups of patients (Table 1). 
The molecular size of cfDNA fragments obtained in the serum 
were between 50 and 10 000 base pairs (Figure 1A and B).

An unbiased next generation sequencing to delineate the 
gene composition in the cfDNA of the test samples was car-
ried out following previously published procedures.31,32 The 
cfDNA fragments were sequenced and annotated against the 
human genome sequences (GRch build 38). Copy number 
variation of the cfDNA for each gene for each group of 
patients was calculated. Comparing the gene copy number 
variations between the poor and favorable prognosis patients, 
gene dosage for each group of patients was calculated. A vol-
cano plot was generated following previously published meth-
ods.33 The volcano plot from the results representing the gene 
dosage of >1and < −1 for the poor prognosis compared to the 
favorable prognosis patients was constructed and presented in 
Figure 1C. In order to avoid losing physiologically critical 

genes and signaling pathway proteins that may play a crucial 
role, an arbitrary gene dosage cut-off of 1.5-fold variation was 
chosen based on previous studies.34,35 Using a cutoff of 1.5-
fold gene dosage and <0.01 P-value threshold, 29 genes were 
identified to be of higher and 64 genes of lower gene dosages 
in the poor prognosis compared to favorable prognosis patients 
(Tables 2 and 3).

Gene ontology analysis on genes

Gene ontology enrichment analysis was performed using the 
PANTHER classification system.28 A heatmap for the copy 
number variation and ratio of the higher dose genes in the poor 
and favorable prognosis patients were plotted (Figure 2A; 
Table 2). Similarly, a heatmap of the copy number variation 
was plotted for the 69 lower dosage genes that had 1.5-fold or 
lower fold ratio in the poor prognosis compared to favorable 
prognosis patients (Figure 3A; Table 3).

Figure 1.  Identification of higher and lower dose of genes in the cfDNA isolated from serum of platinum resistant (poor prognosis) and sensitive (favorable 

prognosis) patients. (A and B) Chromatogram generated for cfDNA isolated from serum of patients using High sensitivity DNA analysis chip. (A) Favorable 

and (B) Poor prognosis. (C) Volcanic plot showing genes of higher and lower dose in sequenced cfDNA isolated from patients with poor and favorable 

prognosis. P-value cutoff: 0.05 (red line); lower threshold: 1.5 (green line); higher (red spheres); and lower (green spheres) genes.
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Table 2.  cfDNA higher dosage genes in the poor prognosis ovarian cancer patients.

Gene Gene name Favorable Poor P-value

MVP Major vault protein 4.14 7.89 .0002

C16orf53 Chromosome 16 open reading frame 53 2.51 4.61 .0014

PLEC1 Plectin 1, intermediate filament binding protein 500 kDa 7.79 13.50 .0020

DLGAP2 Disks, large (Drosophila) homolog-associated protein 2 4.36 7.41 .0022

KRT9 Keratin 9 1.41 2.67 .0024

KDM5C Lysine (K)-specific demethylase 5C 4.42 8.08 .0025

MGAT4B Mannosyl (alpha-1,3-)-glycoprotein beta-1,4-N-acetylglucosaminyltransferase, 
isozyme B

1.61 3.84 .0029

ZMIZ2 Zinc finger, MIZ-type containing 2 3.43 5.65 .0035

C17orf68 Chromosome 17 open reading frame 68 3.83 7.25 .0036

GPR176 G protein-coupled receptor 176 2.48 4.15 .0036

KIF17 Kinesin family member 17 2.71 5.06 .0043

ADAMTSL3 ADAMTS-like 3 3.96 6.58 .0045

UNC5B Unc-5 homolog B (C. elegans) 2.82 4.83 .0052

CORO6 Coronin 6 1.63 3.67 .0062

PANX2 Pannexin 2 1.63 2.83 .0063

DKFZp686O24166 Hypothetical protein DKFZp686O24166 2.88 4.77 .0068

HIP1R Huntingtin interacting protein 1 related 2.86 4.99 .0069

QRICH2 Glutamine rich 2 3.78 7.37 .0072

NRG2 Neuregulin 2 1.84 3.29 .0073

COL4A3 Collagen, type IV, alpha 3 (Goodpasture antigen) 2.54 4.38 .0074

CA12 Carbonic anhydrase XII 2.15 3.78 .0076

MYO1H Myosin IH 2.49 4.27 .0088

ELF3 E74-like factor 3 (ets domain transcription factor, epithelial-specific ) 1.97 3.77 .0090

TGFBR2 Transforming growth factor, beta receptor II (70/80 kDa) 1.98 3.90 .0091

LOC653781 Similar to protein expressed in prostate, ovary, testis, and placenta 2 1.59 3.15 .0093

PKP1 Plakophilin 1 (ectodermal dysplasia/skin fragility syndrome) 3.95 6.47 .0094

DGCR14 DiGeorge syndrome critical region gene 14 2.16 4.70 .0094

C1orf2 Chromosome 1 open reading frame 2 1.79 3.47 .0094

SLC10A3 Solute carrier family 10 (sodium/bile acid cotransporter family), member 3 1.44 2.91 .0098

Table 3.  cfDNA lower dosage genes in the poor prognosis ovarian cancer patients.

Gene Gene Name Favorable Poor P-value

OSBP Oxysterol binding protein 2.88 1.32 .0001

ARFGAP2 ADP-ribosylation factor GTPase activating protein 2 3.00 1.63 .0002

FAM105A Family with sequence similarity 105, member A 3.39 1.11 .0003

ZNF652 Zinc finger protein 652 3.52 1.81 .0007

(Continued)



6	 Biomarker Insights ﻿

Gene Gene Name Favorable Poor P-value

CTNNA2 Catenin (cadherin-associated protein), alpha 2 2.44 1.09 .0008

C6 Complement component 6 2.49 1.16 .0008

RAGE Renal tumor antigen 2.08 1.02 .0009

TBC1D8B TBC1 domain family, member 8B (with GRAM domain) 2.19 1.12 .0011

CCDC120 Coiled-coil domain containing 120 3.14 1.53 .0011

UBE2L3 Ubiquitin-conjugating enzyme E2L 3 2.57 1.21 .0012

LOC100130698 Hypothetical LOC100130698 4.71 2.24 .0016

PBX1 Pre-B-cell leukemia homeobox 1 2.99 1.56 .0021

GLUD2 Glutamate dehydrogenase 2 2.60 1.17 .0022

STIM1 Stromal interaction molecule 1 3.33 1.70 .0024

DGKK Diacylglycerol kinase, kappa 4.50 2.28 .0025

DNAL1 Dynein, axonemal, light chain 1 2.79 1.40 .0027

POU2F3 POU class 2 homeobox 3 2.52 1.17 .0031

ALG13 Asparagine-linked glycosylation 13 homolog (S. cerevisiae) 2.99 1.53 .0032

FOSL2 FOS-like antigen 2 3.78 2.14 .0036

FKBP9L FK506 binding protein 9-like 2.15 1.21 .0038

TM4SF18 Transmembrane 4 l six family member 18 2.53 1.35 .0038

POLQ Polymerase (DNA directed), theta 2.93 1.48 .0044

CD163L1 CD163 molecule-like 1 3.37 1.82 .0045

FAM55C Family with sequence similarity 55, member C 3.94 2.04 .0045

FAM123B Family with sequence similarity 123B 7.65 4.27 .0047

GPR119 G protein-coupled receptor 119 2.61 1.33 .0047

IDE Insulin-degrading enzyme 2.76 1.41 .0048

SLC22A17 Solute carrier family 22, member 17 2.34 1.13 .0048

CNTLN Centlein, centrosomal protein 3.63 1.75 .0050

ZNF235 Zinc finger protein 235 2.90 1.67 .0054

GPR112 G protein-coupled receptor 112 7.12 4.15 .0056

EAF1 ELL associated factor 1 3.01 1.62 .0056

TRIM13 Tripartite motif-containing 13 2.51 1.36 .0061

NPY2R Neuropeptide Y receptor Y2 2.60 1.40 .0061

RRP8 Ribosomal RNA processing 8, methyltransferase, homolog (yeast) 2.73 1.42 .0061

PCYT1B Phosphate cytidylyltransferase 1, choline, beta 4.02 2.16 .0062

CRYBG3 Beta-gamma crystallin domain containing 3 5.00 2.85 .0062

CD207 CD207 molecule, langerin 2.39 1.34 .0065

XRN1 5-3 exoribonuclease 1 2.40 1.51 .0068

ZNF208 Zinc finger protein 208 4.46 2.40 .0069

Table 3. (Continued)

(Continued)



Gunderson et al	 7

Gene Gene Name Favorable Poor P-value

KIAA1919 KIAA1919 2.48 1.18 .0070

SLC22A4 Solute carrier family 22 (organic cation/ergothioneine transporter), member 4 2.12 1.15 .0070

MCART6 Mitochondrial carrier triple repeat 6 3.09 1.39 .0070

SSR1 Signal sequence receptor, alpha 3.30 1.94 .0070

PREX2 Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2 2.54 1.31 .0072

MYH16 Myosin, heavy chain 16 pseudogene 2.82 1.44 .0074

LRRC33 Leucine rich repeat containing 33 2.76 1.31 .0074

CD96 CD96 molecule 2.43 1.28 .0076

PCDH15 Protocadherin 15 4.24 2.12 .0079

ALG11 Asparagine-linked glycosylation 11, alpha-1,2-mannosyltransferase homolog 
(yeast)

2.50 1.42 .0083

TREX1 Three prime repair exonuclease 1 2.50 1.46 .0083

DOK6 Docking protein 6 3.81 2.28 .0089

ITPR1 Inositol 1 and 4,5-triphosphate receptor, type 1 6.77 4.43 .0091

ZDHHC22 Zinc finger, DHHC-type containing 22 3.18 1.69 .0091

TFAP2E Transcription factor AP-2 epsilon (activating enhancer binding protein 2 epsilon) 2.73 1.56 .0093

NCBP1 Nuclear cap binding protein subunit 1and 80 kDa 2.58 1.35 .0093

CASC5 Cancer susceptibility candidate 5 2.35 1.42 .0094

MPL Myeloproliferative leukemia virus oncogene 2.79 1.74 .0094

LRRC66 Leucine rich repeat containing 66 2.55 1.65 .0095

LSM8 LSM8 homolog, U6 small nuclear RNA associated (S. cerevisiae) 3.59 1.99 .0095

NONO Non-POU domain containing, octamer-binding 2.11 1.11 .0096

NDRG3 NDRG family member 3 2.50 1.29 .0096

ANKRD54 Ankyrin repeat domain 54 2.90 1.35 .0096

KCNJ16 Potassium inwardly-rectifying channel, subfamily J, member 16 2.32 1.43 .0100

Table 3. (Continued)

Higher dose genes.  The 29 genes identified as higher dose 
genes in poor outcome patients were subjected to gene ontol-
ogy grouping. Based on the biological processes genes showed 
clustering toward cellular processes (29%), developmental 
processes (14%), and cellular biogenesis (12%) (Figure 2B). 
Many of these genes were classified as cytoskeletal proteins 
(23%), and about 9% each as enzyme modulators, transcrip-
tion factors, nucleic acid binding proteins, receptors, and sign-
aling proteins (Figure 2C). Furthermore, these factors reflect 
in their molecular function classification, attributing them to 
protein binding function (47%) and catalytic activity (27%) 
(Figure 2D).

Lower dose genes.  Gene ontology analysis showed that these 
lower dose 64 genes were involved in cellular processes (36%), 
metabolic processes (18%), stimulus response (13%), and 

biological regulations (11%) of the cell (Figure 3B). Distinctly 
different from higher dosage genes, protein classification 
showed a higher number of them as hydrolases (16%), recep-
tors (16%), and nucleic acid binding proteins (14%) (Figure 
3C). Agreeing with the biological process grouping, the molec-
ular function classification of these genes indicated a greater 
number of lower dosage genes grouped with protein binding 
(40%), catalytic (21%), or receptor activity (16%) (Figure 3D).

Interaction nodes analysis of the higher dosage genes

Reactome database was searched using Cytoscape functional 
interaction network analysis module for cancer linked genes, to 
determine which of the higher dose genes formed nodes of 
interaction with cancer associated genes.36 Figure 4 shows the 
degree-based circular layout representation of the analysis. 
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Polyubiquitin-C precursor (UBC) is one of the linker genes 
used in the network analysis that showed 17 nodes, which had 
the highest number of nodes amongst all proteins (Supplemental 
Table 2). However, among the cfDNA higher dose genes, 
Transforming growth factor, beta receptor II (TGFBR2) was 
the hub for highest number of 5 nodes (Supplemental Table 2). 
Other major proteins that formed at least 2 node hubs were 
Zinc finger, MIZ-type containing 2 (ZMIZ2), Neuregulin 2 
(NRG2), E74-like factor 3 (ets domain transcription factor) 
(ELF3), Unc-5 homolog B (UNC5B), and Huntingtin inter-
acting protein 1 related (HIP1R) (Supplemental Table 2).

Validation of interaction network hub proteins of 
cfDNA in patient tumor samples

The higher dose genes, TGFBR2 and ZIMZ2, identified may 
be a consequence of gene amplification, which can lead to 
upregulation of the protein in the cancer cells. Hence, 

immunohistochemistry (IHC) staining of TGFBR2 (Figure 
5A, i) and ZMIZ2 (Figure 5B, i) were carried out on FFPE 
sections of the TMA constructed from ovarian cancer patient 
tumor samples. Since normal ovarian tissue was not available at 
that time of analysis, normal uterus and fallopian tube tissues 
were used as controls. The cell membrane receptor, TGFBR2 
membranous expression IHC analysis showed increased 
expression in favorable patients compared to poor prognosis 
patients (Figure 5A, ii). IHC analysis of ovarian cancer patients 
for ZMIZ2 showed increased nuclear expression in poor 
patients compared to the favorable prognosis group of ovarian 
cancer patients (Figure 5B, ii). The expression levels of 
TGFBR2 and ZIMZ2 in the second cohort of 126 ovarian 
cancer patient tumor TMA was analyzed by IHC staining for 
the proteins. IHC analysis of TGFBR2 membranous expres-
sion level decreased in poor prognosis (Supplemental Figure 
1A), while ZMIZ2 expression level increased in poor prognosis 
patients (Supplemental Figure 1B).

Figure 2.  Ontology classification of higher dosage genes in poor compared to favorable prognosis patients into various relationship groups. (A) Heatmap 

representing absolute expression levels of higher dosage genes in corresponding poor and favorable prognosis patient serum. (B) Grouping of genes by 

their involvement in various biological processes, (C) classification of the genes based on their cellular functions, and (D) molecular functional grouping 

based on the molecular activities of their gene products.
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Discussion
Resistance to platinum-based therapy is a major clinical chal-
lenge in caring for women with ovarian cancer.37 Clinicians lack 
tools to preemptively identify platinum resistance, which crip-
ples their effort to risk-stratify treatment options for ovarian 
cancer patients.38 An ideal tool would be minimally invasive and 
rapidly testable method with high fidelity. Toward this goal, cir-
culating tumor cell-free DNA (cfDNA) in the retrospective 
serum of poor and favorable prognosis patients, which were col-
lected at the time of diagnosis, was analyzed herein. Hence, 
identification of prognostic gene signature that differentiate 
poor (PFI < 6 months) versus favorable (PFI > 24 months) 
prognosis patients, dichotomized based-on the time to their first 
recurrence, was analyzed in this study.

Previous studies have shown that the cfDNA in the serum 
has multiple origins including apoptotic or necrotic tumor 

cells, exosomes, macrophage activity, and release by normal 
cells.39-43 The differential profile of genetic signatures in 
cfDNA could be the result of apoptotic cancer cell derived 
DNA,44 chromosomal gene amplification/deletion,42,45 circu-
lating tumor cell derived DNA,46 or DNA specifically released 
as intratumoral signaling conduits by the cancer cells.47,48 
Nevertheless, it can be posited that the cfDNA profile from 
poor versus favorable prognosis patients will exhibit variation 
in their respective gene composition. Hence, understanding the 
gene composition based on the cfDNA sequences would shed 
more light on the behavior of those cells that release the DNA.

Our sequence analyses of the cfDNA indicated that the 
samples from poor-prognosis patients exhibited 29 genes at 
higher dosage and 64 genes at lower dosage levels (Figure 1C; 
Tables 2 and 3). Many of the genes in the higher dosage group 
clustered toward functions essential in cancer cell invasion and 

Figure 3.  Ontology classification of lower dosage genes in poor compared to favorable prognosis patients into various relationship groups. (A) Heatmap 

representing absolute expression levels of lower dosage genes in corresponding poor and favorable prognosis patient serum. (B) Grouping of genes by 

their involvement in various biological processes, (C) classification of the genes based on their cellular functions, and (D) molecular functional grouping 

based on the molecular activities of their gene products.



10	 Biomarker Insights ﻿

metastasis whereas the gene signature from the lower group 
consists mostly of genes encoding receptors and enzymes 
involved in growth inhibition or tumor suppression. Reasoning 
that the presence of specific gene signature rather than the lack 
of it or decrease in gene dosage levels could present a more reli-
able parameter for poor-prognosis, we focused on characteriz-
ing the gene signature associated with higher dosage genes.

All the 29 higher dosage genes from poor prognosis patients 
were investigated for cancer association. This search yielded at 
least 15 genes that were referenced to having functional rela-
tionship with some type of cancer. Specifically, increased 
expressions of Transforming growth factor beta receptor II 
(TGFBR2), Neuregulin 2 (NRG2) as well as the respective 
signaling pathways activated by the proteins in ovarian cancer 
progression and metastasis are well characterized.49-51 TGFBR2 
functional effect is impaired by YAP and EZH2 signaling in 
small cell lung cancer52 and by another protein, GFT2IRD1, in 
colorectal cancer.53 NRG2 ligand binds with ErbB2 receptors 
and downstream signaling lead to colorectal cancer and breast 
cancer progression.54,55 Potential role of Keratin 5 (KRT5) as 
well as Collagen, type IV, alpha 3 (COL4A3) in invasive 

metastasis and disease recurrence in ovarian cancer have also 
been previously known.56,57 Although a defined role for 
PANX1 in ovarian cancer is thus far unknown, it is shown to 
promote invasive migration in hepatocellular carcinoma.58 
Similarly, PKP1 has been shown to be associated with tumor 
progression and metastasis in prostate cancer and mela-
noma59,60 while Kinesin superfamily protein 17 (KIF17) is 
known to be associated with Rho-mediated epithelial cell 
migration.61 In addition, the poor-prognosis gene signature 
identified by our study also includes Zinc finger, MIZ-type 
containing 2 (ZMIZ2) involved in Wnt1/β-catenin signaling 
in colorectal cancer and papillary thyroid cancer62,63; Netrin B 
receptor (UNC5B), which is involved on Netrin-1 signaling in 
gastric cancer cell proliferation via PI3K/AKT pathway64; 
Disk, Large homolog-associated protein 2 (DLGAP2) is 
involved in pancreatic cancer through AMPK pathway65; G 
protein-couple receptor (GPR176) is implicated in breast can-
cer transcriptional response,66 which is an immune therapy tar-
get for ovarian cancer67,68; and Lysine-specific histone 
demethylase 5C (KDM5C) gene that promotes prostate can-
cer by repressing PTEN expression.69

Figure 4.  Identification of network gene nodes related to cancer among the higher dosage genes of poor compared to favorable prognosis patients. 

Interaction network nodes of higher dosage genes in circular layout generated using Reactome functional interaction network database on Cytoscape. 

Higher dosage genes (purple circles with black fonts) and linker genes (green circles with red fonts); solid black lines indicate known interactions and 

broken black lines are predicted interactions.
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Analysis of these 15 genes in TCGA database oncoprint 
(National Cancer Institute, The Cancer Genome Atlas) using 
cBioportal,70,71 further confirmed that these genes were pre-
dominantly amplified, or deleted but not mutated (Supplemental 
figure 2). These gene amplification/deletions variation among 
patients suggested that their functional protein expression may 
vary in the patient tumor samples.72 Hence, the top 2 proteins 
identified by Reactome functional database analysis that is, 
TGFBR2 and ZMIZ2 were tested for their protein expression 
in the patient tumor samples. About 3% of patients reported in 
TCGA data show amplification and our sequencing results 
show higher dosage of TGFBR2 in poor prognosis patients. In 
contrast, the protein expression, as monitored by TMA, was 
downregulated in poor prognosis patient tumor samples, thus 
presenting an apparent inconsistency between the data from 
the cfDNA analysis and TMA analysis. It should be noted here 
that TGFBR2 shows increased expression in omental metasta-
ses and invasive front of ovarian cancer.51 Since our TMA does 
not represent any samples from omental metastases or invasive 
front of ovarian cancer tissue, it is more likely that our TMA 
analysis missed the expression profile of TGFBR2. Previous 
findings that the expression of TGFBR2 is closely associated 
with ovarian cancer progression also point to a prognostic role 
for TGFBR2. Further IHC analysis of TMA representing 

different locales of ovarian cancer tissues should establish the 
unequivocal role of TGFBR2 as a prognostic biomarker in 
ovarian cancer liquid biopsy. It should also be noted here that 
the age difference between the poor-prognosis and favorable-
prognosis is significantly different (Table 1). Considering the 
previous findings that omental metastases show increased 
expression of TGFBR2,51 it is possible that the age difference 
and possibly the associated metastatic stage of the tumor plays 
a role in presenting TGFBR2 as a cfDNA-based prognostic 
biomarker in ovarian cancer. Thus, it is possible that age could 
be a parameter in deciding which biomarker can be used for 
prognosis. Further analysis with distinct age group, histological 
sub-types, stage/grade, and spatial localization of the expressed 
markers is anticipated to consolidate the prognostic biomarker 
candidacy of cfDNA-gene signatures such as that of TGFBR2.

Interestingly, gene signature for ZMIZ2 shows higher dos-
age as well as protein upregulation in poor prognosis patient 
tumor samples. This corroborates well with the previous find-
ings that indicated a pro-tumorigenic role for ZMIZ2.73,74 
Staining of ZMIZ2 on a second cohort of ovarian cancer 
patients, reiterated the upregulation of ZMIZ2 in poor prog-
nosis patients. Functionally, this is validated by the findings 
that the expression of ZMIZ2 is correlated with the Wnt/beta-
catenin signaling74 and Wnt-signaling is often dysregulated in 

Figure 5.  Expression of higher dosage genes in poor prognosis patients compared to favorable prognosis patient tumors. (A) TGFBR2 overexpression in 

patients, (i) Representative IHC staining of TGFBR2 in the FFPE tissue sections at 4× magnification, (ii) Expression levels of TGFBR2 on the cell 

membranes of the cells in tumor tissues of the ovarian cancer patients. (B) ZMIZ2 overexpression in patients, (i) Representative IHC staining of ZMIZ2 in 

the FFPE tissue sections at 4× magnification, (ii) Expression levels of ZMIZ2 in the nucleus of the cells in tumor tissues of the ovarian cancer patients.
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ovarian cancer.75 In light of its tumor promoting role in other 
cancers,62,76,77 ZMIZ2 could prove to be a valid prognostic bio-
marker for ovarian cancer poor prognosis/therapy-resistance.

Various oncogenes and tumor suppressors have been identi-
fied as prognostic and diagnostic biomarkers for ovarian cancer 
progression.78 cfDNA based biomarkers are investigated widely 
for methylation patterns and DNA copy number variations in 
ovarian cancer patients.79,80 Advances in next generation 
sequencing allowed our approach to sequence the minimal 
quantity of cfDNA for gene signature panels.81 Although, the 
level of amplification of the considered genes may be low, this 
pilot project indicates presence of specific genes as cfDNA 
fragments in serum and respective protein expression levels in 
tumor tissue, which of those can be exploited further as multi-
factorial definition for prognosis determination in ovarian can-
cer patients. However, we acknowledge that larger cohort of 
patients, inclusive of various ethnic background, need to be 
tested and an unequivocal panel of gene signatures developed 
to serve as a novel tool for stratification of prognosis among 
ovarian cancer patients.
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